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For every positive integer n and every α = α(n) ∈ [0, 1], let B(n,α) de-
note the probabilistic model in which a random set A ⊆ {1, . . . , n} is con-
structed by choosing independently every element of {1, . . . , n} with prob-
ability α. Number-theoretic problems involving this probabilistic model
have been considered by several authors [1–4,11]. In particular, Cilleruelo,
Ramana, and Ramaré [3] proved the following:

Theorem 1.1. Let A be a random set in B(n,α). If αn → +∞ and

α = o((logn)−1/2), then |A2| ∼ |A|2

2 with probability 1− o(1).

The contribution of this paper is the following generalization of Theo-
rem 1.1.

Theorem 1.2. Let A1, . . . , As be random sets in B(n1, α1), . . . ,
B(ns, αs), respectively; and let k1, . . . , ks be fixed positive integers. If αini

→ +∞ and

αi = o

((

(logn1)
k1−1

s
∏

i=2

(logni)
ki

)−(k1+···+ks−1)/2)

,

for i = 1, . . . , s, then |Ak1

1 · · ·Aks

s | ∼ |A1|k1

k1!
· · · |As|ks

ks!
with probability 1− o(1).

2. Notation

We employ the Landau–Bachmann “Big Oh” and “little oh” notations O
and o, as well as the associated Vinogradov symbol≪, with their usual mean-
ings. Any dependence of implied constants is explicitly stated or indicated
with subscripts. For real random variables X and Y , we say that “X = o(Y )
with probability 1− o(1)” if P(|X| ≥ ε|Y |) = oε(1) for every ε > 0, and that
“X ∼ Y with probability 1−o(1)” if X = Y +o(Y ) with probability 1−o(1).

3. Preliminaries

In this section we collect some preliminary results not directly related
with product sets.

The next lemma is an upper bound on the number of matrices of positive
integers with bounded products of rows and columns.

Lemma 3.1. Let m and n be positive integers. Then, for all x1, . . . , xn,
y1, . . . , ym ≥ 2, the number of m×n matrices (ci,j) of positive integers satis-
fying

∏m
i=1 ci,h ≤ xh and

∏n
j=1 ck,j ≤ yk, for h = 1, . . . , n and k = 1, . . . ,m,

is at most

(1) Om,n

(( n
∏

i=1

xi

m
∏

j=1

yj

)1/2(n−1
∏

i=1

log xi

)m−1)
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Abstract. Given two sets of positive integers A and B, let AB := {ab :
a ∈ A, b ∈ B} be their product set and put Ak := A · · ·A (k times A) for any pos-
itive integer k. Moreover, for every positive integer n and every α = α(n) ∈ [0, 1],
let B(n, α) denote the probabilistic model in which a random set A ⊆ {1, . . . , n}
is constructed by choosing independently every element of {1, . . . , n} with proba-
bility α. We prove that if A1, . . . , As are random sets in B(n1, α1), . . . ,B(ns, αs),
respectively, k1, . . . , ks are fixed positive integers, αini → +∞, and 1/αi does not

grow too fast in terms of a product of lognj ; then |Ak1

1
· · ·Aks

s | ∼ |A1|
k1

k1!
· · · |As|

ks

ks!

with probability 1−o(1). This is a generalization of a result of Cilleruelo, Ramana,
and Ramaré [3], who considered the case s = 1 and k1 = 2.

1. Introduction

Given two sets of positive integers A and B, let AB := {ab : a ∈ A,
b ∈ B} be their product set and put Ak := A · · ·A (k times A) for any posi-
tive integer k.

Problems involving the cardinalities of product sets have been consid-
ered by many researchers. For example, the study of Mn := |{1, . . . , n}2| as
n → +∞ is known as the “multiplicative table problem” and was started by
Erdős [5,6]. The exact order of magnitude of Mn was determined by Ford [7]
following an earlier work of Tenenbaum [12]. Furthermore, Koukoulopoulos
[10] provided uniform bounds for |{1, . . . , n1} · · · {1, . . . , ns}| holding for a
wide range of n1, . . . , ns. Cilleruelo, Ramana, and Ramaré [3] proved asymp-
totics or bounds for |(A ∩ {1, . . . , n})2| when A is the set of shifted prime
numbers, the set of sums of two squares, or the set of shifted sums of two
squares.
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Ramana, and Ramaré [3] proved the following:

Theorem 1.1. Let A be a random set in B(n,α). If αn → +∞ and

α = o((logn)−1/2), then |A2| ∼ |A|2

2 with probability 1− o(1).

The contribution of this paper is the following generalization of Theo-
rem 1.1.

Theorem 1.2. Let A1, . . . , As be random sets in B(n1, α1), . . . ,
B(ns, αs), respectively; and let k1, . . . , ks be fixed positive integers. If αini

→ +∞ and

αi = o

((

(logn1)
k1−1

s
∏

i=2

(logni)
ki

)−(k1+···+ks−1)/2)

,

for i = 1, . . . , s, then |Ak1

1 · · ·Aks

s | ∼ |A1|k1

k1!
· · · |As|ks

ks!
with probability 1− o(1).

2. Notation

We employ the Landau–Bachmann “Big Oh” and “little oh” notations O
and o, as well as the associated Vinogradov symbol≪, with their usual mean-
ings. Any dependence of implied constants is explicitly stated or indicated
with subscripts. For real random variables X and Y , we say that “X = o(Y )
with probability 1− o(1)” if P(|X| ≥ ε|Y |) = oε(1) for every ε > 0, and that
“X ∼ Y with probability 1−o(1)” if X = Y +o(Y ) with probability 1−o(1).

3. Preliminaries

In this section we collect some preliminary results not directly related
with product sets.

The next lemma is an upper bound on the number of matrices of positive
integers with bounded products of rows and columns.

Lemma 3.1. Let m and n be positive integers. Then, for all x1, . . . , xn,
y1, . . . , ym ≥ 2, the number of m×n matrices (ci,j) of positive integers satis-
fying

∏m
i=1 ci,h ≤ xh and

∏n
j=1 ck,j ≤ yk, for h = 1, . . . , n and k = 1, . . . ,m,

is at most

(1) Om,n

(( n
∏

i=1

xi

m
∏

j=1

yj

)1/2(n−1
∏

i=1

log xi

)m−1)

Acta Mathematica Hungarica

A NOTE ON PRODUCT SETS OF RANDOM SETS 77



Acta Mathematica Hungarica 162, 2020

A NOTE ON PRODUCT SETS OF RANDOM SETS 3

Proof. We follow the same arguments of [8, p. 380], where the case
m = n and x1 = · · · = xn = y1 = · · · = ym is proved.

The number of choices for cm,n is at most

min

(

xn
∏m−1

i=1 ci,n
,

ym
∏n−1

j=1 cm,j

)

≤

(

xnym
∏m−1

i=1 ci,n
∏n−1

j=1 cm,j

)1/2

.

We shall sum this latter quantity over all the choices of ci,n and cm,j , with

i = 1, . . . ,m − 1 and j = 1, . . . , n− 1. Since ci,n ≤ yi/
∏n−1

k=1 ci,k and cm,j ≤

xj/
∏m−1

h=1 ch,j, we have

∑

ci,n

1

c
1/2
i,n

≪
( yi
∏n−1

k=1 ci,k

)1/2
and

∑

cm,j

1

c
1/2
m,j

≪
( xj
∏m−1

h=1 ch,j

)1/2
,

for i = 1, . . . ,m− 1 and j = 1, . . . , n− 1. Consequently,

∑

c1,n,...,cm−1,n

cm,1,...,cm,n−1

(

xnym
∏m−1

i=1 ci,n
∏n−1

j=1 cm,j

)1/2

≤ (xnym)1/2
m−1
∏

i=1

(

∑

ci,n

1

c
1/2
i,n

) n−1
∏

j=1

(

∑

cm,j

1

c
1/2
m,j

)

≪m,n

( n
∏

j=1

xj

m
∏

i=1

yi

)1/2(m−1
∏

h=1

n−1
∏

k=1

ch,k

)−1

.

It remains only to sum over all the possibilities for ch,k, with h = 1, . . . ,m−1
and k = 1, . . . , n− 1. We have

∑

ch,k

(m−1
∏

h=1

n−1
∏

k=1

ch,k

)−1

≤
n−1
∏

k=1

∑

c1,k···cm−1,k≤xk

1

c1,k · · · cm−1,k

≪m,n

(n−1
∏

k=1

log xk

)m−1

,

and the desired result follows. �

The next lemma is an upper bound for the number of solutions of a
certain multiplicative equation with bounded factors.

Lemma 3.2. Let m and n be positive integers. Then, for all x1, . . . , xn,
y1, . . . , ym ≥ 2, the number of solutions of the equation a1 · · · an = b1 · · · bm,
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where a1, . . . , an, b1, . . . , bm are positive integers satisfying ai ≤ xi and bj ≤ yj ,
for i = 1, . . . , n and j = 1, . . . ,m, is at most (1).

Proof. If a1 · · · an = b1 · · · bm then there exists an m× n matrix of
positive integers (ci,j) such that ah =

∏m
i=1 ci,h and bk =

∏n
j=1 ck,j, for

h = 1, . . . , n and k = 1, . . . ,m. Indeed, a1 |
∏m

i=1 bi implies the existence
of positive integers c1,1, . . . , cm,1 such that a1 =

∏m
i=1 ci,1 and ci,1 | bi,

for i = 1, . . . ,m. Then a2 |
∏m

i=1 bi/ci,1, which similary implies the ex-
istence of positive integers c1,2, . . . , cm,2 such that a2 =

∏m
i=1 ci,2 and

ci,1ci,2 | bi, for i = 1, . . . ,m. Then a3 |
∏m

i=1 bi/(ci,1ci,2), and so on, until

an =
∏m

i=1 bi/(
∏n−1

j=1 ci,j), when we set ci,n := bi/
∏n−1

j=1 ci,j for i = 1, . . . ,m.
Applying Lemma 3.1 we get the desired result. �

4. Proof of Theorem 1.2

The proof proceeds similarly to that of Theorem 1.1. The main idea is to
give an asymptotic formula and an upper bound for the expectation and the
variance of |Ak1

1 · · ·Aks

s |, respectively, and then conclude by an application
of Markov’s inequality. Some differences are that, in the computation of the
expectation of |Ak1

1 · · ·Aks

s |, we have to replace [3, Lemma 2.1] with the more
general Lemma 3.2, and some additional work is needed to deal with both
the exponents ki and the s factors of the product.

First, we need an asymptotic for the kth power of the size of a random
set A in B(n,α).

Lemma 4.1. Let A be a random set in B(n,α), and fix an integer k ≥ 1.
If αn → +∞, then

(i) E(|A|k) ∼ (αn)k; and
(ii) |A|k ∼ (αn)k with probability 1− ok(1).

Proof. Clearly, |A| follows a binomial distribution with n trials and
probability of success α. Consequently, (i) is known (see, e.g., [9, Eq. (4.1)]).
In turn, (i) implies that

V(|A|k) = E(|A|
2k)− E(|A|

k)2 = ok(E(|A|
k)2).

Hence, by Chebyshev’s inequality, for every ε > 0 we have

P (
∣

∣ |A|k − E(|A|
k)
∣

∣ ≥ εE(|A|
k)) ≤

V(|A|k)

(ε E(|A|k))2
= ok,ε(1),

so that |A|k ∼ E(|A|k) ∼ (αn)k with probability 1− ok(1). �

The next lemma is an easy bound on the size of a product set.

Acta Mathematica Hungarica

C. SANNA78



Acta Mathematica Hungarica 162, 2020

4 C. SANNA

where a1, . . . , an, b1, . . . , bm are positive integers satisfying ai ≤ xi and bj ≤ yj ,
for i = 1, . . . , n and j = 1, . . . ,m, is at most (1).

Proof. If a1 · · · an = b1 · · · bm then there exists an m× n matrix of
positive integers (ci,j) such that ah =

∏m
i=1 ci,h and bk =

∏n
j=1 ck,j, for

h = 1, . . . , n and k = 1, . . . ,m. Indeed, a1 |
∏m

i=1 bi implies the existence
of positive integers c1,1, . . . , cm,1 such that a1 =

∏m
i=1 ci,1 and ci,1 | bi,

for i = 1, . . . ,m. Then a2 |
∏m

i=1 bi/ci,1, which similary implies the ex-
istence of positive integers c1,2, . . . , cm,2 such that a2 =

∏m
i=1 ci,2 and

ci,1ci,2 | bi, for i = 1, . . . ,m. Then a3 |
∏m

i=1 bi/(ci,1ci,2), and so on, until

an =
∏m

i=1 bi/(
∏n−1

j=1 ci,j), when we set ci,n := bi/
∏n−1

j=1 ci,j for i = 1, . . . ,m.
Applying Lemma 3.1 we get the desired result. �

4. Proof of Theorem 1.2

The proof proceeds similarly to that of Theorem 1.1. The main idea is to
give an asymptotic formula and an upper bound for the expectation and the
variance of |Ak1

1 · · ·Aks

s |, respectively, and then conclude by an application
of Markov’s inequality. Some differences are that, in the computation of the
expectation of |Ak1

1 · · ·Aks

s |, we have to replace [3, Lemma 2.1] with the more
general Lemma 3.2, and some additional work is needed to deal with both
the exponents ki and the s factors of the product.

First, we need an asymptotic for the kth power of the size of a random
set A in B(n,α).

Lemma 4.1. Let A be a random set in B(n,α), and fix an integer k ≥ 1.
If αn → +∞, then

(i) E(|A|k) ∼ (αn)k; and
(ii) |A|k ∼ (αn)k with probability 1− ok(1).

Proof. Clearly, |A| follows a binomial distribution with n trials and
probability of success α. Consequently, (i) is known (see, e.g., [9, Eq. (4.1)]).
In turn, (i) implies that

V(|A|k) = E(|A|
2k)− E(|A|

k)2 = ok(E(|A|
k)2).

Hence, by Chebyshev’s inequality, for every ε > 0 we have

P (
∣

∣ |A|k − E(|A|
k)
∣

∣ ≥ εE(|A|
k)) ≤

V(|A|k)

(ε E(|A|k))2
= ok,ε(1),

so that |A|k ∼ E(|A|k) ∼ (αn)k with probability 1− ok(1). �

The next lemma is an easy bound on the size of a product set.

Acta Mathematica Hungarica

A NOTE ON PRODUCT SETS OF RANDOM SETS 79



Acta Mathematica Hungarica 162, 2020

A NOTE ON PRODUCT SETS OF RANDOM SETS 5

Lemma 4.2. Let A1, . . . , As be finite sets of positive integers, and let
k1, . . . , ks ≥ 1 be integers. Then

∣

∣

∣

∣

s
∏

i=1

Aki

i

∣

∣

∣

∣

≤
s
∏

i=1

(

|Ai|+ ki − 1

ki

)

.

Proof. The claim follows easily considering that
(|A|+k−1

k

)

is the num-
ber of unordered k-tuples of elements from a set A. �

For the rest of this section, let A1, . . . , As be random sets in B(n1, α1),
. . . , B(ns, αs), respectively; and let k1, . . . , ks be fixed positive integers. Also,
assume αini → +∞ and

(2) αi = o

((

(logn1)
k1−1

s
∏

i=2

(logni)
ki

)−(k1+···+ks−1)/2)

,

for i = 1, . . . , s. For brevity, we will omit the dependence of implied con-
stants from k1, . . . , ks.

Lemma 4.3. We have E(|A
k1

1 · · ·Aks

s |) ∼ (α1n1)k1

k1!
· · · (αsns)ks

ks!
.

Proof. Hereafter, in operator subscripts, let a := (a1, . . . ,as), where
each ai := {ai,1, . . . , ai,ki

} runs over the unordered ki-tuples of elements of

{1, . . . , ni}. Also, put �a� :=
∏s

i=1

∏ki

j=1 ai,j . With this notation, for each
positive integer x, we have

P(x ∈ Ak1

1 · · ·Aks

s ) = P

(

∨

�a�=x

Ea

)

,

where

Ea :=
s
∧

i=1

(ai ⊆ Ai).

Consequently, by Bonferroni inequalities, we have

P(x ∈ Ak1

1 · · ·Aks

s ) = P

(

∨∗

�a�=x

Ea

)

+ O

(

∑∗∗

�a�=x

P(Ea)

)

=
∑∗

�a�=x

P(Ea) + O

(

∑∗

a �=a
′

�a�=�a′�=x

P(Ea ∧ Ea
′)

)

+O

(

∑∗∗

�a�=x

P(Ea)

)

,

where the superscript ∗ denotes the constraint |ai| = ki for every i ∈
{1, . . . , s}, the superscript ∗∗ denotes the complementary constrain |ai| < ki
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for at least one i ∈ {1, . . . , k}, and a
′ := (a′1, . . . ,a

′
s) follows the same con-

ventions of a. Therefore,

E(|A
k1

1 · · ·Aks

s |) =
∑

x≤n
k1
1

···nks
s

P(x ∈ Ak1

1 · · ·Aks

s )(3)

=
∑∗

a

P(Ea) + O

(

∑∗

a �=a
′

�a�=�a′�

P(Ea ∧Ea
′)

)

+ O

(

∑∗∗

a

P(Ea)

)

.

Since A1, . . . , As are independent and each Ai belongs to B(ni, αi), we have

P(Ea) =
s
∏

i=1

P(ai ⊆ Ai) =
s
∏

i=1

α
|ai|
i .

Hence, for every positive integers m1, . . . , ms, with mi ≤ ki, we have

∑

a:|ai|=mi

P(Ea) =
∑

a:|ai|=mi

s
∏

i=1

αmi

i

=
s
∏

i=1

αmi

i

∑

|ai|=mi

1 =
s
∏

i=1

αmi

i

(

ni

mi

)(

ki − 1

mi − 1

)

,

where we used the fact that the number of unordered k-tuples of elements
of {1, . . . , n} having cardinality equal to m is

(n
m

)( k−1
m−1

)

. Therefore,

(4)
∑∗

a

P(Ea) ∼
s
∏

i=1

(αini)
ki

ki!
and

∑∗∗

a

P(Ea) = o

( s
∏

i=1

(αini)
ki

)

,

as αini → +∞, for i = 1, . . . , s. We have

(5) P(Ea ∧ Ea
′) =

s
∏

i=1

P(ai ∪ a
′
i ⊆ Ai) =

s
∏

i=1

α
|ai ∪ a

′

i|
i .

Suppose that a and a
′, with a �= a

′ and �a� = �a′�, satisfy the condition of ∗,
that is, |ai| = |a′i| = ki for i = 1, . . . , s. We shall find an upper bound for (5).
Clearly, |ai ∪ a

′
i| ≥ |ai| ≥ ki for i = 1, . . . , s. Moreover, since a �= a

′, there
exists i1 ∈ {1, . . . , s} such that ai1 �= a

′
i1
. Since |ai1 | = |a′i1 | = ki, it follows

that |ai1 ∪ a
′
i1 | ≥ ki1 + 1. On the one hand, if there exists i2 ∈ {1, . . . , s} \

{i1} such that ai2 �= a
′
i2 , then, similarly, we have |ai2 ∪ a

′
i2 | ≥ ki2 +1. Hence,

P(Ea ∧Ea
′) ≤ αi1αi2

s
∏

i=1

αki

i .
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′
i1
. Since |ai1 | = |a′i1 | = ki, it follows

that |ai1 ∪ a
′
i1 | ≥ ki1 + 1. On the one hand, if there exists i2 ∈ {1, . . . , s} \

{i1} such that ai2 �= a
′
i2 , then, similarly, we have |ai2 ∪ a

′
i2 | ≥ ki2 +1. Hence,

P(Ea ∧Ea
′) ≤ αi1αi2

s
∏

i=1

αki

i .
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On the other hand, if ai = a
′
i for every i ∈ {1, . . . , s} \ {i1}, then from

�a� = �a′� it follows that
∏ki1

j=1 ai1,j =
∏ki1

j=1 a
′
i1,j . In turn, this implies that

|ai1 ∪ a
′
i1
| ≥ ki1 + 2. Hence,

P(Ea ∧Ea
′) ≤ α2

i1

s
∏

i=1

αki

i .

Therefore, using Lemma 3.2 and recalling (2), we obtain

∑∗

a �=a
′

�a�=�a′�

P(Ea ∧Ea
′) ≤

(

max
1≤i,j≤s

αiαj

)

s
∏

i=1

αki

i

∑

�a�=�a′�

1(6)

≪
(

max
1≤i,j≤s

αiαj

)

(

(logn1)
k1−1

s
∏

i=2

(logni)
ki

)k1+···+ks−1 s
∏

i=1

(αini)
ki

= o

( s
∏

i=1

(αini)
ki

)

.

Finally, putting together (3), (4), and (6), we obtain the desired claim. �

Proof of Theorem 1.2. Define the random variable

X :=
s
∏

i=1

(

|Ai|+ ki − 1

ki

)

−

∣

∣

∣

∣

s
∏

i=1

Aki

i

∣

∣

∣

∣

.

Thanks to Lemma 4.2, we know that X is nonnegative. Moreover, from
Lemma 4.1(i) and Lemma 4.3, it follows that

E(X) = o

( s
∏

i=1

(αini)
ki

)

.

Hence, for every ε > 0, by Markov’s inequality, we get

P

(

X ≥ ε
s
∏

i=1

(αini)
ki

)

≤
E(X)

ε
∏s

i=1(αini)ki
= oε(1),

which in turn implies X = o
(
∏s

i=1(αini)
ki

)

with probability 1−o(1). There-
fore, by Lemma 4.1(ii),

∣

∣

∣

∣

s
∏

i=1

Aki

i

∣

∣

∣

∣

=

s
∏

i=1

(

|Ai|+ ki − 1

ki

)

−X =

s
∏

i=1

|Ai|
ki

ki!
+ o

( s
∏

i=1

|Ai|
ki

)

,

with probability 1− o(1), as claimed. �
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of the positive integers, Proc. Steklov Inst. Math., 296 (2017), 52–64.

[4] J. Cilleruelo, J. Rué, P. Šarka, and A. Zumalacárregui, The least common multiple of
random sets of positive integers, J. Number Theory , 144 (2014), 92–104.
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