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Thus we have been restricted to presenting only a sample of them. Unfortu-
nately, most of these applications refer to the more recent work of Yueh [52]
without recognizing the more general and powerful work of Losonczi that
preceded a decade earlier. Even Yueh did not cite Losonczi’s work. The aim
of the present paper is to highlight the issue in order to give Losonczi the
recognition he justly deserves.

2. A class of tridiagonal matrices

Based on an earlier work [34], Losonczi [33] in 1990 introduced and stud-
ied the following general family of n× n complex tridiagonal matrices:

(1) Mn,k =
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In this form where n− 2k � 0, the upper left and bottom right corners rep-
resent k × k principal submatrices. For the case of n− 2k < 0, the matrices
took the following form:

(2) Mn,k =
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where the principal submatrices in the upper left and lower right corners
are now (n− k)× (n− k). The main reason for studying these matrices is
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Abstract. This survey paper summarizes the more important recent ap-
plications of the eigenpairs formulas for a family of tridiagonal matrices based on
Losonczi’s seminal work of almost thirty years ago, which not only seems to have
been largely ignored, but has also been re-cast or re-discovered in alternative guises
by various authors since. In the course of presenting these applications, we also
make contact with earlier more specific applications where Losonczi’s work could
have been applied to yield the results more quickly. Many of the recent applica-
tions in physics and engineering cite less general work, which followed Losonczi
more than a decade later.

1. Introduction

For almost a century there has been an active interest/fascination in
tridiagonal matrices. For the first 75 years since the pioneering paper of
Egerváry and Szász [13], the interest was primarily mathematical where the
aim was to develop the spectral theory, viz. the determinants, eigenvalues
and eigenvectors, for increasingly more general and complicated tridiagonal
matrices. This culminated in the most general class of these matrices stud-
ied by Losonczi in [33]. As we shall observe here, over the last two decades
there has been an explosion in applications of tridiagonal matrices to impor-
tant topics in applied mathematics, physics and technology/engineering. In
fact, we cannot do due justice to all these applications in this brief survey.
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that they arise: (i) in determining the discrete quadratic inequalities of the
Wirtinger type [15] and (ii) when estimating specific coefficients in trigono-
metric polynomials [13,21,43]. From this study Losonczi was able to derive
general formulas for the eigenpairs of Mn,k, resulting in explicit formulas for
several special cases. In what follows we shall without loss of generality only
consider matrices of the first form, viz. (1). The corresponding results for
matrices of the form in (2) follow naturally and are left as an exercise for
the reader.

If we put n = qk+ r, with r ∈ {0, 1, . . . , k− 1}, and let Pn,k(x) represent
the characteristic polynomial of Mn,k, then according to Theorem 1 in [33],
we find that

(3) Pn,k(x) = Pq+1,1(x)
r Pq,1(x)

k−r .

This means that the eigenvalues of Mn,k can be found from the spectral
analysis of the following matrix:

(4) Mℓ,1 =



















a c
d 0 c

d
. . .

. . .
. . .

. . . c
d 0 c

d b



















ℓ×ℓ

.

Moreover, from (7) in Theorem 2 of the same reference, we have
(5)

Pn,1(x) = (
√
cd)n

�

Un

� x

2
√
cd

�

− a+b√
cd

Un−1

� x

2
√
cd

�

+
ab

cd
Un−2

� x

2
√
cd

�

�

.

where {Un}n�0 are Chebyshev polynomials of the second kind. For n ≥ 1,
these orthogonal polynomials, which have been studied extensively since
their discovery in the 1850’s (for example, see [10,42]), satisfy the three-
term recurrence relation given by

(6) 2xUn(x) = Un+1(x) + Un−1(x) , for n � 1,

subject to the initial values U0(x) = 1 and U1(x) = 2x. One of the most
famous formulas for Un(x), valid for all values of n, is

Un(x) =
sin(n+ 1)θ

sin θ
,

where x = cos θ and 0 � θ < π.
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In regard to eigenvectors, if λ = 2
√
cd cos θ represents an eigenvalue of

Mn,1, then according to Theorem 3 of [33] the corresponding eigenvectors
can be expressed as u = (u0, u1, . . . , un−1), where

uℓ =
(

√
c√
d

)ℓ(

sin(ℓ+ 1)θ +
a

b
sin ℓθ

)

, for ℓ = 0, 1, . . . , n− 1.

We present here a survey of some of the most important recent papers
that deal with the applications and theory of these tridiagonal matrices,
which continue to this day to fascinate scientists in engineering and physics.
As part of this survey, we shall discuss important references preceding Loson-
czi’s seminal work as far back as 1928, which deal with more specific or less
general matrices than those studied by Losonczi. At the same time we shall
cite applications up to the present day in order to demonstrate that these
matrices represent a hive of activity in different fields of science and technol-
ogy. It should be emphasised that the list of publications provided in this
survey is by no means exhaustive, but should give the reader a taste of just
how important Losonczi’s work is.

In the following sections we shall survey several earlier papers contain-
ing similar results to Losonczi, then present several other versions of his
work, where the authors were unaware of [33] and finally discuss the most
recent applications, where the results of [33] emerge in different fields of ac-
tivity, but are not duly acknowledged. Before doing so, however, we need to
make some preliminary remarks to help the reader to understand the later
material.

3. Preliminary remarks

First, it is obvious that spectral theory when applied to (1) and espe-
cially (4) reduces them to the symmetric case where b and c are replaced

by
√
bc. Moreover, if we regard a tridiagonal matrix as the adjacency ma-

trix of a path, then the off-diagonal entries become the weights of each edge.
Similarly, one can regard (1) as the (weight) adjacency matrix of two types
of path. For more details, the reader is referred to [19].

Second, when we replace d by 1 and c by cd in (1), the resulting matrix
is known in the theory of orthogonal polynomials theory as a monic Jacobi
matrix [4]. Obviously, the characteristic polynomial is invariant, while the
signs of c and d are completely redundant. Nevertheless, they are retained
in many examples here for convenience.
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4. Before Losonczi

In 1945 Rutherford [44] derived (5) for the case of c = d = 1 with a and
b, arbitrary. As a consequence, he was able to obtain the eigenvalues for

(7)
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. . .
. . . 1
1 0











n×n

.

These are in turn given by

λℓ = −2 cos
� 2ℓπ

2n+ 1

�

,

where ℓ = 1, 2, . . . , n. For the matrix

(8)
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n×n

he found that the eigenvalues are given by

λℓ = 2 cos
�ℓπ

n

�

, for ℓ = 1, 2 . . . , n.

Several years later, in his Master’s thesis [14] Elliott not only re-derived
Rutherford’s results by providing a more detailed exposition, but also in-
cluded the matrix

(9)



















1 1
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. . . 1
1 0 1

1 −1



















n×n

,

whose eigenvalues were found to be

λℓ = 2 cos
�(2ℓ− 1)π

2n

�

, for ℓ = 1, 2 . . . , n.
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Although outside the scope of this work, it should be pointed out that
the matrices studied by Rutherford in [44] were motivated by various prob-
lems in physics and chemistry and have since had a tremendous impact in
modern research areas such as nanotechnology.

Another motivation for Losonczi’s study of his more general tridiago-
nal matrices was the pioneering paper of E. Egerváry and O. Szász [13] on
multivariable operator theory, free pluriharmonic functions and trigonomet-
ric polynomials. In this work the authors related their study to the case of
a = b = 0 in Mn,k. As a consequence, they derived (3) by rearranging the
rows and columns.

Losonczi was able to generalize all the above-mentioned results via one
elegant and powerful tridiagonal matrix. Moreover, in addition to calculat-
ing the eigenvalues for the matrix, he was able to derive formulas for the
corresponding eigenvectors. In the following sections we shall turn our at-
tention to more recent literature, where his results have emerged, but have
not been cited. It should be mentioned that the list of applications presented
here is by no means exhaustive.

5. Applications

Matrices of the form of (7) are structurally simple but are, nevertheless,
rich in applications. Our survey of important examples begins with the de-
scription of a major result in [5]. There the authors determine the singular
eigenvalues of a Jordan block denoted by Jn(µ). To determine these val-
ues, they present the product of Jordan blocks, one of which is the complex
conjugate. Specifically, they consider

J∗
n(µ)Jn(µ) =











r2 r

r 1 + r2
. . .

. . .
. . . r
r 1 + r2











n×n

,

where µ = reiθ. The singular eigenvalues of Jn(1), which represent the main
result of their paper, are later found to be

λn =

�

2 + 2 cos
� 2kπ

2n+ 1

�

= 2 cos
� kπ

2n+ 1

�

, for k = 1, . . . , n.

This result appears in Theorem 3.3 of [5].
Capparelli and Maroscia also study the generating functions for the de-

terminants of these matrices, but this is outside the scope of the present
paper. However, it should be noted that the polynomials associated with
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multivariable operator theory, free pluriharmonic functions and trigonomet-
ric polynomials. In this work the authors related their study to the case of
a = b = 0 in Mn,k. As a consequence, they derived (3) by rearranging the
rows and columns.

Losonczi was able to generalize all the above-mentioned results via one
elegant and powerful tridiagonal matrix. Moreover, in addition to calculat-
ing the eigenvalues for the matrix, he was able to derive formulas for the
corresponding eigenvectors. In the following sections we shall turn our at-
tention to more recent literature, where his results have emerged, but have
not been cited. It should be mentioned that the list of applications presented
here is by no means exhaustive.

5. Applications

Matrices of the form of (7) are structurally simple but are, nevertheless,
rich in applications. Our survey of important examples begins with the de-
scription of a major result in [5]. There the authors determine the singular
eigenvalues of a Jordan block denoted by Jn(µ). To determine these val-
ues, they present the product of Jordan blocks, one of which is the complex
conjugate. Specifically, they consider

J∗
n(µ)Jn(µ) =











r2 r

r 1 + r2
. . .

. . .
. . . r
r 1 + r2











n×n

,

where µ = reiθ. The singular eigenvalues of Jn(1), which represent the main
result of their paper, are later found to be

λn =

�

2 + 2 cos
� 2kπ

2n+ 1

�

= 2 cos
� kπ

2n+ 1

�

, for k = 1, . . . , n.

This result appears in Theorem 3.3 of [5].
Capparelli and Maroscia also study the generating functions for the de-

terminants of these matrices, but this is outside the scope of the present
paper. However, it should be noted that the polynomials associated with

Acta Mathematica Hungarica

EIGENPAIRS OF A FAMILY OF TRIDIAGONAL MATRICES 381



Acta Mathematica Hungarica 160, 2020

EIGENPAIRS OF A FAMILY OF TRIDIAGONAL MATRICES 7

matrices of the form given by (4) with b = 0, are referred to as co-recursive
in the literature, and their properties, particularly orthogonality, have been
studied for a long time since Chihara [11]. A recent example is the appli-
cation of Caputo–Fabrizio fractional operators in various physical problems
[9]. The above matrix for µ = 1, viz. J∗

n(1)Jn(1), also appears in many
different areas such as civil engineering construction [46,48,49], mechanical
engineering [28], or in the analysis of multiconductor transmission lines [25].

Similar matrices also appear in spectral graph theory [1] where we have











3 1

1 2
. . .

. . .
. . . 1
1 2











.

Such matrices emerge in deterministic port-based teleportation (dPBT) pro-
tocol schemes, where a quantum state is guaranteed to be transferred to
another system without unitary correction as in [36]. Moreover, very sim-
ilar matrices arise in mechanical engineering processes such as freeze-form
extrusion fabrication processes [32].

6. Other applications

In the process of linearizing stochastic resonance problems, which arises
in a very wide class of dynamical systems, one encounters the following ma-
trix:



















λ−D D
D λ− 2D D

D
. . .

. . .
. . .

. . . D
D λ− 2D D

D λ−D



















n×n

.

The above result is referred to as a tridiagonal Toeplitz matrix in [38]. Via
spectral theory, the above matrix becomes the type of matrix given by (8).
In addition, almost identical matrices can be found in: (i) the theory of ex-
periments in fluids [45] with D = 1, (ii) the fast two-dimensional smoothing
with the discrete cosine transform in information science [35], where D = 1
and λ = 0, and (iii) the stability of the matrix formulations for the Crank-
Nicolson finite difference method for time-dependent diffusion on a staggered
grid [39]. In the last example it is found that the above matrix arises when
implicit boundary conditions are applied resulting in (4.4) of their paper,
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which in turn corresponds to D = 1/2 and λ = 2 in the above matrix. To
solve the eigenvalue problem these authors use the paper by Yueh [52], which
is discussed in the following section, but is itself a particular case of Loson-
czi’s more universal work.

Another application where the above tridiagonal matrices arise is in the
study of powers of them such as (8) or (9). This was first carried out by
Rimas in [40,41], but continues to fascinate many researchers to this day.
Because the knowledge of the eigenpairs of these matrices is vital in these
efforts, it means that Losonczi’s results in [33] are continually being redis-
covered and used. However, he is often not credited for the solutions because
the authors are unaware of his seminal work. Instead they only cite more re-
cent references, which also do not cite him properly. In fact, there is a host
of papers with applications where the above matrices appear. Some recent
examples are [2,7,8,27,30]. Yet again, none of these papers cites Losonczi’s
work.

7. More general cases

One of the most famous realizations of the general case (4), bearing in
mind that it is a simplification of the Losonczi class given by (1), is the Kac–
Murdock–Szegő, KMS for short, or Markovian matrix, which first appeared
in [29]. This matrix is a square Toeplitz matrix and is defined as

Kn(ρ) =
�

ρ|i−j|
�

i,j=1,...,n
,

where ρ is a real number. The above class of matrices represents a very
fertile area of research and consequently, they continue to be much studied
up to the present day. For example, see [12,50] or Problem 7.2 on pp. 12–
13 of [26]. The determinants for these matrices are known to be given by
detKn(ρ) = (1− ρ2)n−1. Furthermore, for ρ �= ±1, they reduce to

K−1
n (ρ) =

1

1− ρ2



















1 −ρ
−ρ 1 + ρ2 −ρ

−ρ
. . .

. . .
. . .

. . . −ρ
−ρ 1 + ρ2 −ρ

−ρ 1



















n×n

.

By discarding the factor outside the above matrix and setting ρ = 1, one
obtains the matrix DTD, which arises in the theory of signal processing as
exemplified by [16].

Acta Mathematica Hungarica

C. M. DA FONSECA and V. KOWALENKO382



Acta Mathematica Hungarica 160, 2020

8 C. M. DA FONSECA and V. KOWALENKO

which in turn corresponds to D = 1/2 and λ = 2 in the above matrix. To
solve the eigenvalue problem these authors use the paper by Yueh [52], which
is discussed in the following section, but is itself a particular case of Loson-
czi’s more universal work.

Another application where the above tridiagonal matrices arise is in the
study of powers of them such as (8) or (9). This was first carried out by
Rimas in [40,41], but continues to fascinate many researchers to this day.
Because the knowledge of the eigenpairs of these matrices is vital in these
efforts, it means that Losonczi’s results in [33] are continually being redis-
covered and used. However, he is often not credited for the solutions because
the authors are unaware of his seminal work. Instead they only cite more re-
cent references, which also do not cite him properly. In fact, there is a host
of papers with applications where the above matrices appear. Some recent
examples are [2,7,8,27,30]. Yet again, none of these papers cites Losonczi’s
work.

7. More general cases

One of the most famous realizations of the general case (4), bearing in
mind that it is a simplification of the Losonczi class given by (1), is the Kac–
Murdock–Szegő, KMS for short, or Markovian matrix, which first appeared
in [29]. This matrix is a square Toeplitz matrix and is defined as

Kn(ρ) =
�

ρ|i−j|
�

i,j=1,...,n
,

where ρ is a real number. The above class of matrices represents a very
fertile area of research and consequently, they continue to be much studied
up to the present day. For example, see [12,50] or Problem 7.2 on pp. 12–
13 of [26]. The determinants for these matrices are known to be given by
detKn(ρ) = (1− ρ2)n−1. Furthermore, for ρ �= ±1, they reduce to

K−1
n (ρ) =

1

1− ρ2



















1 −ρ
−ρ 1 + ρ2 −ρ

−ρ
. . .

. . .
. . .

. . . −ρ
−ρ 1 + ρ2 −ρ

−ρ 1



















n×n

.

By discarding the factor outside the above matrix and setting ρ = 1, one
obtains the matrix DTD, which arises in the theory of signal processing as
exemplified by [16].

Acta Mathematica Hungarica

EIGENPAIRS OF A FAMILY OF TRIDIAGONAL MATRICES 383



Acta Mathematica Hungarica 160, 2020

EIGENPAIRS OF A FAMILY OF TRIDIAGONAL MATRICES 9

The general matrix given by (4) is fundamental in the analysis of the
KMS matrices. For example, the following tridiagonal matrix appears in
[50]:



















2−γ
1−γ

−1

−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 −1

−1 1



















n×n

,

as does the inverse of the matrix

Ln = (min(i− j)− γ)i,j=1,...,n .

A similar matrix also appears in [17].
At the beginning of this section we presented the type of matrix that

emerges in the linearization of stochastic resonance problems given by (6).
In their study of the stochastic resonance problem modelled as a one-
dimensional array of nonlinear spatially coupled subsystems in the mean
field limit, Nicolis and Nicolis [37] obtain the following matrix:



















λ−D D
D −2λ−D D

D
. . .

. . .
. . .

. . . D
D −2λ−D D

D λ−D



















n×n

.

In determining the eigenvalues for this matrix they cite once again the work
of Yueh [52], which as have stated previously did not reference the earlier
and more general work by Losonczi.

Occasionally, due to awkward notation, it is not obvious that simple
tridigonal matrices of the above form emerge. For example, in the diagonal-
ization of the Ising model with a transverse magnetic field in the presence
of a local field defect at one edge, Francica et al. obtain by introducing the

nonlocal Jordan-Wigner tranformation the following matrix in Appendix A
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of [20]:

















1 + h2µ2 −h

−h 1 + h2 . . .
. . .

. . .
. . .

. . . 1 + h2 −h
−h h2

















.

Next the authors obtain a version of (5) for their specific application. Again,
rather than cite Losonczi, they use the Yueh’s approach to derive (A12) in
their paper. Interestingly, if one sets µ = 0 in the above matrix, then one
obtains (B3) in [22], which deals with the study of freeze-in dark matter
models where the “Clockwork” mechanism is used to suppress dark matter
couplings. Again, Yueh’s paper is cited in their derivation of the eigenvalues
for the fermionic Clockwork matrix.

Another physical example of this type of matrix is (6) in [3], which takes
the following form:

















−2∆L 2JL

2JL −4∆L
. . .

. . .
. . .

. . .
. . . −4∆L 2JL

2JL −2∆L

















.

Balachandran et al. refer to this as a Toeplitz bordered matrix. It arises from
studying two spin chains of the Heisenberg XXZ model of condensed mat-
ter physics, each with a different anisotropy parameter. To explain the spin
current rectification arising from the different anisotropy in both half-chains,
they consider the case of coupling two chains, one of which is completely po-
larized and the other is at infinite temperature. By studying the case where
the half-chain with non-zero anisotropy is polarized, they derive the above
matrix determining its eigenvalues, which represents the magnon excitation
spectrum for the half-chain.

In a similar fashion Guo and Poletti [23,24] also obtain an n× n tridiag-
onal Toeplitz bordered matrix in their solution for a large class of Lindblad
master equations for noninteracting particles (both fermions and bosons are
considered) on n sites. For the fermionic case the tridiagonal matrix is
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of [20]:
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. . .

. . .
. . .

. . . 1 + h2 −h
−h h2

















.

Next the authors obtain a version of (5) for their specific application. Again,
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matrix determining its eigenvalues, which represents the magnon excitation
spectrum for the half-chain.
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onal Toeplitz bordered matrix in their solution for a large class of Lindblad
master equations for noninteracting particles (both fermions and bosons are
considered) on n sites. For the fermionic case the tridiagonal matrix is

Acta Mathematica Hungarica

EIGENPAIRS OF A FAMILY OF TRIDIAGONAL MATRICES 385



Acta Mathematica Hungarica 160, 2020

EIGENPAIRS OF A FAMILY OF TRIDIAGONAL MATRICES 11

given by
















−ihz − Γ1/2 −iJ/2

−iJ/2 −ihz
. . .

. . .
. . .

. . .
. . . −ihz −iJ/2

−iJ/2 −ihz − Γn/2

















.

Once again, the eigenvalues are determined by referring to the more recent
work of Yueh rather than Losonczi’s work.

8. Extensions

As described in [19], the so-called k-tridiagonal matrices denoted as

T
(k)
n (a∗, b∗, c∗) with a∗ � {a1, . . . , an}, b∗ � {b1, . . . , bn−k} and c∗ � {ck+1,

. . . , cn} can be interpreted as a matrix, whose graph is a set of disjoint paths
or a forest with r paths of length ℓ− 1 and k − r paths of length ℓ, where
n = kℓ− r. The authors then show that these matrices can be expressed
as a direct sum of tridiagonal matrices denoted by Tn. Consequently, the
application of spectral theory, i.e., solving for the determinant, eigenvalues
and eigenvectors, of these more general matrices than those discussed in Sec-
tions 4 to 6 can be achieved by using Egerváry and Szász [13] or the more
general results of Losonczi [33].

There are two interesting extensions of these matrices. The first is when
the main diagonal is comprised of zero entries and both subdiagonals are
not in symmetric positions. Such matrices are studied in [31]. The other has
no such restriction on the main diagonal, but possesses a quasi-symmetry in
the sense that the upper subdiagonal begins horizontally at position k + 1,
and the lower subdiagonal begins vertically at k + 2 as described in [47].
There they are referred to (k, k+ 1) tridiagonal matrices of order n and are

denoted by T
(k,k+1)
n with n ≤ 2k.

The second type of generalization includes matrices of the form


















a c
c 0 e

e
. . .

. . .
. . .

. . . e
e 0 c

c b



















.

The above matrices are studied in detail in [6,18] with many specific cases
of this extension together with their spectra. The eigenvalues are derived by
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relying on the frequently cited [51,52] which we have indicated are simply
replicating Losonczi’s results.

9. Conclusion

In this brief survey, we have presented a great number of important ap-
plications/problems in mathematics, physics and technology involving tridi-
agonal matrices that fall into the class given by (1). The spectral theory for
these matrices and those given by (2) was developed by Losonczi in the early
1990’s [33]. Yet this work has been largely ignored. In fact, many of the
more recent problems cited here have been solved with reference to Yueh’s
work [52], which appeared more than a decade later and is less general than
Losonczi’s paper. It is hoped that this article has redressed this issue so that
Losonczi’s work receives the due recognition it deserves.
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