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Abstract. In set theory without the Axiom of Choice (AC), we investi-
gate the set-theoretic strength of Dilworth’s theorem for infinite posets with finite
width, and its possible placement in the hierarchy of weak choice principles.

1. Introduction

Dilworth [4] established the following deep result about partial orders
with bounded finite antichains, which is of great combinatorial and order-
theoretical interest: Let P be an arbitrary poset and let k be a natural num-
ber. If P has no antichains of size k + 1 while at least one k-element subset
of P is an antichain, then P can be partitioned into k chains.

In other words, the above result, which is uniformly known as Dilworth’s
Theorem—abbreviated here by DT—states that if the maximum number of
elements in an antichain of a poset P is finite, then it is equal to the mini-
mum number of pairwise disjoint chains into which P can be decomposed.
Dilworth’s original proof was somewhat complicated and consisted of two
parts: in the first part, the theorem was proved for the case where P is finite
(with a fairly involved argument), and in the second part, the proof of the
general case was based on the finite case and the Teichmüller–Tukey Lemma
(“If a non-empty subset U ⊆ ℘(X) is of finite character, i.e., A ∈ U if and
only if every finite subset of A belongs to U , has a ⊆-maximal element”).
The latter Maximal Principle is well-known to be equivalent to the full AC in
ZFA, i.e., Zermelo–Fraenkel set theory with atoms (see for example Herrlich
[7, Theorem 2.2]).

Since Dilworth’s original proof, several other proofs of DT in the fi-
nite case (i.e., DT for finite posets) were accomplished by many researchers,
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which were considerable simplifications of the original corresponding one.
We would like to single out the notably elegant and short proofs by Galvin
[6], Perles [15], and Tverberg [19]. Furthermore, Perles [16] showed that DT
ceases to be true if the given poset contains arbitrarily large finite antichains
(and no infinite antichains). Usually, the supremum of the cardinalities of
antichains in a poset is called the width of the poset. So in the finite case,
the width of a (finite) poset P is equal to the minimum cardinality of a par-
tition of P into chains, and by DT, this is also true for infinite posets with
finite width.

DT in the finite case is certainly a theorem of ZF (i.e., Zermelo–Fraenkel
set theory without AC). However, as Dilworth’s original proof explicitly in-
dicated, AC comes into the picture for the infinite case (that is, for infinite
posets with finite width). Now, it is part of the folklore that DT does not
imply back AC in ZF. In particular, DT is derivable from the Boolean Prime
Ideal Theorem (BPI), which is well-known to be strictly weaker than AC

in ZF (see [8]). Furthermore, a proof of DT can also be achieved by using
the n-Coloring Theorem (“If (V,E) is a graph whose finite subgraphs are n-
colorable then so is the whole graph (V,E)”, where an n-coloring of (V,E)
is a map C : V → n such that adjacent vertices have different colors, i.e.,
{u, v} ∈ E ⇒ C(u) �= C(v)) by De Bruijn and Erdős [3], who used Rado’s
Selection Lemma in conjunction with the Axiom of Choice for Finite Sets
(ACfin) for its proof (complete definitions will be given in Section 2). We note
that for any integer n ≥ 3, the n-Coloring Theorem is equivalent to BPI, as
shown by Läuchli, and so is ‘Rado’s Selection Lemma + ACfin’, as shown in-
dependently by Rav, Wolk, and Blass (see Howard–Rubin [8] for complete
references to the above results; in particular, we point out that Blass’ proof
appears in Note 33 of [8]). A quite simple and short proof of DT, which
employs an equivalent form of BPI (called Intersection Lemma), has been
given by Erné [5] (both the Intersection Lemma as well as the so-called Fi-
nite Cutset Lemma are due to Erné, who proved in [5] their equivalence to
BPI).

We will also provide a very simple proof of DT using the Propositional
Compactness Theorem, which is equivalent to BPI (see [8]). Furthermore, we
will prove that the implication ‘BPI → DT’ is not reversible in ZFA, which is
a new result. In particular, we will establish that DT does not imply ACω

fin

(Axiom of Choice for countably infinite families of non-empty finite sets)
in ZFA (using a suitable Fraenkel–Mostowski permutation model), which is
known to be strictly weaker than BPI in ZF (see [8]). Whether or not DT in
conjunction with ACfin implies BPI, is unknown to us.

Although the implication ‘BPI → DT’ is undoubtedly a strong and infor-
mative result, beyond this there seems to be a considerable gap in informa-
tion (at least to the best of our knowledge) about the set-theoretic strength
of DT and its more precise placement in the hierarchy of weak choice prin-
ciples. It is also a surprising fact that DT does not appear in the important
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encyclopedic book [8] by Howard and Rubin on the consequences of AC.
The motivation for the research in this paper stems exactly from this lack
of source of information.

Among other results, we will show that DT is not provable in ZF, by ar-
guing that it implies AC for linearly ordered sets of n-element sets (ACLO

n ),
for any integer n ≥ 2. This answers the first plausible question that arises
about the strength of DT, and completely settles that it is in vain to expect
that DT might be proved without invoking any form of choice. The above
result also gives that the Axiom of Multiple Choice (MC)—which is equiva-
lent to AC in ZF, but not equivalent to AC in ZFA— does not imply DT in
ZFA (while it implies DT in ZF).

We will also prove that the Axiom of Choice for well-ordered families of
non-empty sets (ACWO) does not imply DT in ZFA. In particular, we will
establish that for any integer n ≥ 2, ACWO does not imply AC

LO
n in ZFA by

introducing a new Fraenkel–Mostowski model with the required properties.
The latter independence result also settles the corresponding open problem
(for ZFA) in Howard and Rubin [8]. Furthermore, we will show that for any
regular cardinal ℵα, the statement “for every infinite cardinal λ < ℵα, DCλ”
does not imply DT in ZF; in particular, neither the (weaker than AC

WO)
Principle of Dependent Choice (DC) nor the (weaker than DC) Axiom of
Countable Choice (ACω) implies DT in ZF. The non-provability of DT from
MC, ACWO, and ∀λ < ℵα(DCλ) (for any regular cardinal ℵα) indicates that
DT is actually a strong axiom.

Yet, we will prove that DT does not imply Marshall Hall’s Theorem in
ZFA (which is deducible from BPI, and it is unknown whether it is equivalent
to BPI), and is not derivable from Rado’s Selection Lemma in ZFA. (We
recall here that DT in the finite case is equivalent to Philip Hall’s theorem,
see for example Cameron [2].) Now, Perles [15] mentions that DT can be
easily deduced from the finite case (which requires no choice) and Rado’s
Selection Lemma. However, our aforementioned result shows that Perles’

assertion is incorrect in the setting of ZFA. (As mentioned above, what is
certainly true is that Rado’s Lemma in conjunction with ACfin implies DT.)
A proof of DT using Rado’s Selection Lemma in conjunction with ACfin can
be found in Mirsky [12, Theorem 4.4.1], where minor adjustments to the
proof are required (so that the use of ACfin to be clarified).

Last but not least, we will give a new ZF-proof of DT for well-orderable
(infinite) posets with finite width. This will be useful in establishing some
of our forthcoming main results.

2. Notation, terminology, and known results

Definition 2.1. Let (P,≤) be a partially ordered set (poset). A subset
C ⊆ P is called a chain in P , if (C,≤↾ C) is linearly ordered.
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A subset A ⊆ P is called an antichain in P , if no two elements of A are
comparable under ≤.

A ⊆-maximal subset M ⊆ P of pairwise incomparable (under ≤) ele-
ments is called a maximal antichain in P .

A set X is called Dedekind-finite if there is no injection f : ω → X
(as usual, ω denotes the set of natural numbers). Otherwise, X is called
Dedekind-infinite.

An infinite set X is called amorphous if X cannot be written as a disjoint
union of two infinite subsets.

A topological space (X, τ) is called compact if for every U ⊆ τ such that⋃
U = X there is a finite subset V ⊆ U such that

⋃
V = X .

Definition 2.2.

(1) The Axiom of Choice, AC (Form 1 in [8]): Every family of non-empty
sets has a choice function.

(2) The Axiom of Choice for Finite Sets, ACfin (Form 62 in [8]): Every
family of non-empty finite sets has a choice function.

(3) ACWO (Form 40 in [8]): Every well-ordered family of non-empty sets
has a choice function.

(4) The Axiom of Countable Choice, ACω (Form 8 in [8]): Every count-
ably infinite family of non-empty sets has a choice function.

(5) ACω
fin

(Form 10 in [8]): Every countably infinite family of non-empty
finite sets has a choice function.

(6) The Principle of Dependent Choice, DC (Form 43 in [8]): Let X
be a non-empty and let R be a binary relation on X such that (∀x ∈ X)
(∃y ∈ X)(x R y). Then there exists a sequence (xn)n∈ω of elements of X
such that xn R xn+1 for all n ∈ ω.

(7) Let κ be an infinite well-ordered cardinal number. DCκ (Form 87(κ)
in [8]): Let S be a non-empty set and let R be a binary relation such that for
every α < κ and every α-sequence s = (sξ)ξ<α of elements of S there exists
y ∈ S such that s R y. Then there is a function f : κ → S such that for every
α < κ, (f ↾ α) R f(α).
(Note that DCω is a reformulation of DC.)

(8) DF = F (Form 9 in [8]): Every Dedekind-finite set is finite.
(9) ACLO (Form 202 in [8]): Every linearly ordered family of non-empty

sets has a choice function.
(10) Let n ∈ ω \ {0, 1}. ACLO

n (Form 33(n) in [8]): Every linearly ordered
family of n-element sets has a choice function.
(11) The Axiom of Multiple Choice, MC (Form 67 in [8]): Every family A

of non-empty sets has a multiple choice function, i.e., there is a function F
with domain A such that for every A ∈ A, f(A) is a non-empty finite subset
of A.
(12) The Boolean Prime Ideal Theorem, BPI (Form 14 in [8]): Every

Boolean algebra has a prime ideal.
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(13) Marshall Hall’s Theorem, MHT (Form 107 in [8]): Let {S(a) : a ∈ A}
be a family of finite subsets of a set X . Then if

(∗) for each finite F ⊆ A there is an injective choice function for {S(a) : a
∈ F}
then there is an injective choice function for {S(a) : a ∈ A}.

Philip Hall’s Theorem states that (∗) is equivalent to “for any finite
F ⊆ A, |

⋃
{S(a) : a ∈ F}| ≥ |F |”—the latter property is known as Hall’s

Condition. The proof of P. Hall’s theorem does not require any choice prin-
ciple.
(14) Rado’s Selection Lemma, RSL (Form 99 in [8]): Let F be a family of

finite sets and suppose that to every finite subset F of F there corresponds a
choice function φF whose domain is F such that φF (T ) ∈ T for each T ∈ F .
Then there is a choice function f whose domain is F with the property that
for every finite subset F of F, there is a finite subset F ′ of F such that F ⊆ F ′

and f(T ) = φF ′(T ) for all T ∈ F .
(15) Ramsey’s Theorem, RT (Form 17 in [8]): If A is an infinite set and

[A]2 (the family of all 2-element subsets of A) is partitioned into two sets X
and Y , then there is an infinite subset B ⊆ A such that either [B]2 ⊆ X or
[B]2 ⊆ Y .
(16) The Chain-Antichain Principle, CAC (Form 217 in [8]): Every infinite

poset has either an infinite chain or an infinite antichain.

Theorem 2.3 ([8], [10]). The following hold :
(i) In ZFA, AC → MC → “Antichain Principle” (“every poset has a max-

imal antichain”). None of the above implications is reversible in ZFA.
(ii) In ZF, AC ↔ MC ↔ “Antichain Principle”.
(iii) BPI is equivalent to each of “Propositional Compactness Theorem”

(“a set X of propositional formulas is satisfiable if each finite subset of X is
satisfiable”), and “RSL + ACfin”. Furthermore, RSL is strictly weaker than
BPI in ZFA, and ACfin is strictly weaker than BPI in ZF.

(iv) ([17]) CAC is strictly weaker than RT in ZF.
(v) DT in the finite case is equivalent to P. Hall’s theorem.
(vi) BPI → MHT → ACfin.
(vii) ([13]) In ZFA, MC implies RSL.
(ix) DF = F implies RT.

We note that it is an open problem whether RSL implies BPI in ZF. For
recent research on RSL and a topological variant of RSL, which is equivalent
to BPI, the reader is referred to Howard and Tachtsis [9].

It is also an open problem whether or not any of the implications in
Theorem 2.3(vi) is reversible.

Theorem 2.4. BPI implies DT. Hence DT is strictly weaker than AC

in ZF. Furthermore, DT does not imply RT in ZF, and hence (by Theo-
rem 2.3(ix)) neither does it imply DF = F in ZF.
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Proof. Let (P,≤) be an arbitrary poset with finite width k (where k is
some natural number). Let L be a propositional language with propositional
variables pxi, where x ∈ P and 1 ≤ i ≤ k. The variable pxi has the intended
meaning that the element x of P belongs to the i-th chain. Let F be the set
of all formulas of L, and also let Σ be the subset of F which comprises the
following formulas:

(1) px1 ∨ px2 ∨ · · · ∨ pxk for x ∈ P ;
(2) ¬(pxi ∧ pyi) for incomparable elements x, y of P and 1 ≤ i ≤ k;
(3) ¬(pxi ∧ pxj) for x ∈ P and 1 ≤ i, j ≤ k with i �= j.
The formulas in (1) suggest that every element of P belongs to at least

one of the k chains; the formulas in (2) suggest that each of the k many
sets (which cover P ) is a chain; and the formulas in (3) suggest the k many
chains which cover P are pairwise disjoint.

Now by DT in the finite case (recall that this is provable without choice),
it is fairly easy to see that for every finite subset Σ0 ⊂ Σ there is a valuation
mapping f ∈ 2F which satisfies Σ0, that is, f(φ) = 1 for all φ ∈ Σ0. Hence,
by Theorem 2.3(iii), there is a valuation mapping f ∈ 2F which satisfies Σ.
For each i ∈ {1, . . . , k}, we let

Ci = {x ∈ P : f(pxi) = 1}.

Clearly C = {Ci : 1 ≤ i ≤ k} is a partition of P into k chains.
For the second and third assertions of the theorem, consider the basic

Cohen model of ZF, which is labeled as Model M1 in [8]. It is well-known
that BPI (and hence DT) is true in M1, whereas RT (and hence, by Theo-
rem 2.3(ix), DF = F) is false in M1 (see [1], [8]). �

Theorem 2.5 [11]. Let {Xi : i ∈ I} be a family of compact spaces which

is indexed by a set I on which there is a well-ordering ≤. If I is an infinite

set, let there also be a choice function F on the collection {C : C is closed,
C �= ∅, C ⊆ Xi for some i ∈ I}. Then the product space

∏
i∈I Xi is compact

in the product topology.

3. Main results

We start this section by proving that, in ZF, Dilworth’s Theorem is true
for well-ordered infinite posets with finite width. The argument is a slight
variant of the one for the proof of Theorem 2.4 and could also be used to
establish the latter theorem. The reason is that BPI is equivalent to Ty-
chonoff’s product theorem for compact Hausdorff spaces (i.e., “products of
compact Hausdorff spaces are compact”), see [8, Form 14] for complete ref-
erences to this result. Furthermore, we note that we could argue for the next
result using the proof of Theorem 2.4 and transfinite induction; however, we
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prefer to give the following proof so that the interested reader attains further
insight and information.

We also prove that for any integer n ≥ 2, DT implies ACLO
n , and thus DT

is not provable in ZF.

Theorem 3.1. The following hold :
(i) DT for well-ordered infinite posets with finite width is provable in ZF.

(ii) For any integer n ≥ 2, DT implies AC
LO
n . Hence DT is not provable

in ZF. Furthermore, MC does not imply DT in ZFA, and thus by (i) and
(vii) of Theorem 2.3, neither the Antichain Principle nor RSL implies DT

in ZFA.
(iii) DT does not imply the Antichain Principle in ZFA.

Proof. (i) Let (P,≤) be an infinite poset with finite width k, and such
that P is well-ordered. Let L, pxi (where x ∈ P and 1 ≤ i ≤ k), F , and
Σ ⊆ F be defined as in the proof of Theorem 2.4.

Let Var = {pxi : x ∈ P, i ∈ {1, . . . , k}}. Since P × {1, . . . , k} is well-
orderable (for P is well-ordered), so is Var. For every W ∈ [P ]<ω \ {∅} (the
set of non-empty finite subsets of P ), we let ΣW be the subset of F , which
is defined as Σ except that the subscripts in the formulas run through the
set W ∪ {1, . . . , k}. We let

FW = {f ∈ 2Var : ∀φ ∈ ΣW (f ′(φ) = 1)},

where W ∈ [P ]<ω \ {∅} and for f ∈ 2Var, the element f ′ of 2F denotes the
valuation mapping determined by f .

Now using DT in the finite case, one easily verifies that the family

Z = {FW : W ∈ [P ]<ω \ {∅}}

has the finite intersection property (i.e. any finite subfamily of Z has a non-
empty intersection). It is also easy to see that for each W ∈ [P ]<ω \ {∅}, FW

is closed in the product space 2Var (where 2 is the discrete 2-element space
{0, 1}). By Theorem 2.5, we derive that 2Var is compact, and consequently⋂

Z �= ∅.
Let f ∈

⋂
Z and also let f ′ ∈ 2F be the unique valuation mapping which

extends f . Then f ′(φ) = 1 for all φ ∈ Σ. We may finish now the proof as in
Theorem 2.4 in order to write P as a disjoint union of k chains.

(ii) Fix n ∈ ω \ {0,1}. Let A = {Ai : i ∈ I} be an infinite family of n-ele-
ment sets (the mapping i �→ Ai (i ∈ I) is a bijection), where the index set I
is equipped with a linear order, say ≤. Without loss of generality we assume
that A is disjoint (otherwise, we may work with the disjoint family B =
{Ai × {i} : i ∈ I}). We define a binary relation � on A =

⋃
A as follows:

for all x ∈ A, x � x, and for distinct x, y ∈ A,

x ≺ y ⇐⇒ x ∈ Ai, y ∈ Aj , and i < j.
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Clearly, � is a partial order on A such that the only antichains in A are
the subsets of the sets Ai (i ∈ I). Thus the width of (A,�) is n, and conse-
quently by DT, A has an n-sized partition C = {C1, . . . , Cn}, where Ci is a
chain in A for every i ∈ {1, . . . , n}.

As |Ai ∩ Cj | ≤ 1 for all i ∈ I and all j ∈ {1, . . . , n}, the only way that
the union of the Cj ’s covers each Ai is that |Ai ∩ Cj | = 1 (i ∈ I and j ∈
{1, . . . , n}). Then, each Cj determines a choice function for the system A.

For the second assertion of (ii), fix any n ∈ ω \ {0, 1}. Then in Pincus’
model M47(n,M) in [8], ACLO

n is false (see [8] for complete references to this
result), and hence by the above argument, so is DT.

For the third assertion of (ii), we note that in the second Fraenkel model
(Model N2 in [8]), MC (and hence the Antichain Principle and RSL) is true,
whereas the axiom of countable choice for pairs is false (see [8], [10]), and
thus so is DT.

(iii) In Mostowski’s linearly ordered model—Model N3 in [8]—BPI is
true (see [8]). Thus, by Theorem 2.4, DT is true in N3. On the other
hand, in N3, the set A of atoms is linearly ordered, but it is not well-
orderable. Since the Antichain Principle implies “every linearly ordered set
can be well-ordered” (see Jech [10, Theorem 9.1(a)]), it follows that the
Antichain Principle is false in N3. �

It is easy to see that the statement “for every integer n ≥ 2, ACLO
n ” is

equivalent to “for every integer n ≥ 2, the union of a linearly orderable fam-
ily of n-element sets is linearly orderable”. (Assuming that ACLO

n is true for
all integers n ≥ 2, fix an integer n ≥ 2, and let A = {Ai : i ∈ I} be an in-
finite family of n-element sets (the mapping i �→ Ai (i ∈ I) is a bijection),
where the index set I is equipped with some linear order ≤. For each i ∈ I ,
let Bi = {f : f is a one-to-one function from n onto Ai}. Then the family
B = {Bi : i ∈ I} is linearly orderable, and |Bi| = n! for all i ∈ I . By AC

LO
n! ,

let F be a choice function for B. On the basis of the functions F (i) (i ∈ I)
and the binary relation � on

⋃
A, as this was defined in the proof of (ii) of

Theorem 3.1, it is straightforward to define a linear order on
⋃

A.)
From the above observation and Theorem 3.1(ii), we immediately obtain

the following corollary.

Corollary 3.2. For any integer n ≥ 2, DT implies the statement “the

union of a linearly orderable family of n-element sets is linearly orderable”.

Remark 3.3. We recall that the Antichain Principle is equivalent to AC

in ZF (see Theorem 2.3(ii)), and thus it implies DT in ZF.
Also, as mentioned in Section 1, for every integer n ≥ 3, the n-Coloring

Theorem (if (V,E) is a graph whose finite subgraphs are n-colorable, then
so is the whole graph (V,E)) is equivalent to BPI, and thus implies DT (see
Theorem 2.4). On the other hand, Mycielski [14] showed that the 2-Coloring
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Theorem is equivalent to AC2 (the axiom of choice for families of pairs, and
Form 88 in [8]), which is strictly weaker than BPI in ZF (see [8]).

Now, in the permutation model N2∗(3) of [8] (due to P. Howard), AC2,
and thus the 2-Coloring Theorem, is true. However, in N2∗(3), there is
a countably infinite family of 3-element sets of atoms which has no choice
function in the model. By Theorem 3.1(ii), it follows that DT is false in
N2∗(3). Hence, the 2-Coloring Theorem does not imply DT in ZFA.

Theorem 3.4. DT does not imply AC
ω
fin

in ZFA. Hence, by Theo-
rem 2.3(vi), DT does not imply MHT (and hence BPI) in ZFA.

Proof. For our independence result we will use Lévy’s permutation
model, which is labeled as Model N6 in [8]. The description of N6 is as fol-
lows: We start with a ground modelM of ZFA + AC with a countably infinite
set A of atoms which is written as a disjoint union

⋃
{Pn : n ∈ ω}, where

Pn = {an1 , a
n
2 , . . . , a

n
pn

}, pn being the n-th prime number (p0 = 2, p1 = 3, etc.).
Let G be the group generated by the following permutations πn of A:

πn : an1 �→ an2 �→ · · · �→ anpn

�→ an1 ,

πn(x) = x for all x ∈ A \ Pn.

(G is the weak direct product of cyclic groups of order pn.) For any ele-
ment x of M , fixG(x) denotes the subgroup {φ ∈ G : ∀y ∈ x(φ(y) = y)} of G
and SymG(x) denotes the subgroup {φ ∈ G : φ(x) = x} of G. Let F be the
filter of subgroups of G generated by {fixG(E) : E ∈ [A]<ω}. An element x
of M is called symmetric if SymG(x) ∈ F , and thus x is symmetric if there
exists a finite subset E ⊂ A such that fixG(E) ⊆ SymG(x). Under these cir-
cumstances, E is called a support of x. An element x of M is called hered-
itarily symmetric if x and every element in the transitive closure of x are
symmetric. Lévy’s model N6 is the permutation model which is determined
by M , G, and F , that is N6 consists exactly of the hereditarily symmetric
elements of M .

In N6, ACn (the axiom of choice for families of n-element sets) is true for
all integers n ≥ 2 (see [10, Theorem 7.11]). On the other hand, ACω

fin
is false

in N6 (the countably infinite family {Pn : n ∈ ω} has no infinite subfamily
with a choice function in N6, see [10]). Thus, by Theorem 2.3(vi), MHT

(and hence BPI) is also false in N6.
We show now that DT is true in N6. We will first prove a couple of

claims.

Claim 3.5. Let (P,≤) be a partially ordered set in N6 with support E.
Then for each p ∈ P , the fixG(E)-orbit OrbE(p) of p, i.e., the set OrbE(p) =
{φ(p) : φ ∈ fixG(E)}, is an antichain in P .

Proof. Fix p ∈ P . By way of contradiction, we assume that OrbE(p)
is not an antichain. It follows that for some φ,ψ ∈ fixG(E), φ(p) and ψ(p)
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are comparable, say φ(p) < ψ(p). Since every permutation of A in G moves
only finitely many atoms, we must have that for all π ∈ G there exists k ∈ ω
such that πk = 1A (the identity function on A). Letting π = ψ−1φ, we have
π(p) < p and πk = 1A for some k ∈ ω. It follows that p = πk(p) < πk−1(p) <
· · · < π2(p) < π(p) < p, and thus p < p, a contradiction. �

Claim 3.6. In N6, every poset with finite width can be well-ordered.

Proof. Let (P,≤) be a poset in N6 with finite width k. Let E ⊂ A
be a (finite) support of (P,≤). Then P is written as a disjoint union of
fixG(E)-orbits, i.e.,

P =
⋃

{OrbE(p) : p ∈ P},

where OrbE(p) = {φ(p) : φ ∈ fixG(E)} for all p ∈ P . The family {OrbE(p) :
p ∈ P} is well-orderable in N6 since fixG(E) ⊆ SymG(OrbE(p)) for all p ∈ P .

Now, by Claim 3.5, we have that OrbE(p) is an antichain in P for all
p ∈ P . Since the width of P is k, it follows that |OrbE(p)| ≤ k for all
p ∈ P . As ACn is true in N6 for all integers n ≥ 2, it is easy to verify
that

⋃
{OrbE(p) : p ∈ P}, and hence P , is well-orderable in N6. �

By Claim 3.6 and Theorem 3.1(i), it follows that DT is true in N6. �

Theorem 3.7. DT does not imply “there are no amorphous sets”

(Form 64 in [8]) in ZFA. In particular, DT is true in the basic Fraenkel
model in which there are amorphous sets.

Proof. We first recall the description of the basic Fraenkel model, which
is labeled as Model N1 in [8]: We start with a ground model M of ZFA +
AC with a countably infinite set A of atoms. Let G be the group of all per-
mutations of A, and let F be the filter of subgroups of G which is generated
by the filter base {fixG(E) : E ∈ [A]<ω}. The basic Fraenkel model, N1, is
the permutation model determined by M , G, and F .

In N1, the set A of atoms is amorphous (see [8]). Thus we only need to
show that DT is true in N1. To this end, we prove that in N1 every poset
with finite width can be well-ordered; then the conclusion will follow from
Theorem 3.1(i).

So, let (P,≤) be a poset in N1 with finite width. Let E ⊂ A be a finite
support of (P,≤). Then P =

⋃
{OrbE(p) : p ∈ P}, where OrbE(p) = {φ(p) :

φ ∈ fixG(E)} for all p ∈ P . Now, from the proof of Jech’s Theorem 9.2(ii)
in [10] (in particular, see the proof of Lemma 9.3 in [10]), one immediately
obtains that for all p ∈ P , OrbE(p) is an antichain in P . Thus OrbE(p) is
finite, for all p ∈ P . Furthermore, since {OrbE(p) : p ∈ P} is well-orderable
in N1 (every element of this family is supported by E) and “the union of a
well-orderable family of well-orderable sets is well-orderable” is true in N1
(see [8]), it follows that P is well-orderable as desired. �
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Remark 3.8. In order to provide further information to the reader, we
mention here another permutation model in which DT is true, whereas “there
are no amorphous sets” is false. This model was constructed by Tachtsis in
[17], and its description is as follows: We start with a model M of ZFA + AC

with a set of atoms A =
⋃
{Ai : i ∈ ω} which is a countable disjoint union

of pairs Ai = {ai, bi}, i ∈ ω. Let G be the group of all permutations φ of A
such that φ moves only finitely many atoms and for all i ∈ ω, φ(Ai) = Ak for
some k ∈ ω. Let Γ be the filter of subgroups of G generated by {fixG(E) :
E ∈ [A]<ω}. Let N be the Fraenkel–Mostowski model determined by M , G,
and Γ.

In [17], it is shown that, in N , every poset can be expressed as a well-
orderable union of antichains (in particular, for any poset (P,≤) in N ,
OrbE(p) is an antichain for all p ∈ P ), and also that “the union of a well-
orderable family of well-orderable sets is well-orderable” is true. Hence, as
in the proof of Theorem 3.7, we may conclude that DT is true in N .

On the other hand, in N , there are amorphous sets; both A and A =
{Ai : i ∈ ω} are amorphous, as shown in [17]. Furthermore, in [17], it has
been established that CAC is true in N , whereas RT is false in N .

We would also like to note here that the Ordering Principle OP (i.e.,
every set can be linearly ordered, and Form 30 in [8]) lies in strength between
BPI and ACfin (the latter principle implies “there are no amorphous sets”,
see [8]). Thus OP is false in the models N1, N6, and the above model of
[17], and hence DT does not imply OP in ZFA. We do not know whether
or not OP implies DT. We also point out that the relationship between OP

and MHT is unknown (this is also stated in [8]).

Next, we prove that ACWO does not imply DT in ZFA. In fact, we show
something stronger, namely that ACWO does not imply AC

LO
n in ZFA, for any

integer n ≥ 2, and hence by Theorem 3.1(ii), it does not imply DT in ZFA

either. We will establish the above result by introducing a new Fraenkel–
Mostowski model. Furthermore, our result on the independence of AC

LO
n

from AC
WO settles the corresponding open problem (for ZFA) in [8].

Theorem 3.9. For any integer n ≥ 2, ACWO does not imply AC
LO
n in

ZFA. Hence, by Theorem 3.1(ii), ACWO does not imply DT in ZFA either.

Proof. Fix n ∈ ω \ {0, 1}. We start with a ground model M of ZFA
+ AC with a set of atoms, A =

⋃
{Aq : q ∈ Q} (where Q is the set of

rational numbers), which is a disjoint union of the n-element sets Aq =
{aq1, aq2, . . . , aqn} (q ∈ Q). Let G be the group of all permutations π of A
with the following two properties:

(1) for all q ∈ Q there exists r ∈ Q such that π(Aq) = Ar;
(2) for all q, q′ ∈ Q, q < q′, if and only if, Ar = π(Aq), Ar′ = π(Aq′) and

r < r′ (where < is the usual dense linear order on Q).
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Let F be the filter of subgroups of G which is generated by the subgroups
fixG(E) of G, where E =

⋃
{Aq : q ∈ S} for some bounded subset S ⊂ Q. Let

V be the Fraenkel–Mostowski model determined by M , G, and F . (We also
note the following about the elements of G: For every order automorphism
ψ of (Q,≤), let φψ be the element of G defined by φψ(aqi) = aψ(q)i for all
q ∈ Q and i ∈ {1, . . . , n}. Then every element π of G can be given by the
formula π = ρφψ , where ψ is an order automorphism of (Q,≤), φψ is the
corresponding element of G defined above, and ρ is an element of G that
fixes {Aq : q ∈ Q} pointwise.)

Claim 3.10. AC
LO
n is false in V , and hence (by Theorem 3.1(ii)) DT is

also false in V .

Proof. Let A = {Aq : q ∈ Q}. Then A is an element of V , and is also
linearly orderable in V . Indeed, the binary relation � on A defined by:

Aq � Ar ⇐⇒ q ≤ r

is clearly a (dense) linear order on A. Furthermore, ∅ is a support for (A,�),
i.e., every permutation of A in G fixes both A and �.

We assert that A has no choice function in V . Assume the contrary;
thus we may let f be a choice function for A in V . Let E =

⋃
{Aq : q ∈ S}

for some bounded S ⊂ Q, be a support of f . Let r ∈ Q be such that q < r
for all q ∈ S. Choose an element x of Ar such that x �= f(Ar) and consider
the transposition π = (x, f(Ar)), i.e., π interchanges x and f(Ar), but fixes
all the other atoms. Clearly π(Ar) = Ar and π ∈ fixG(E); hence π(f) = f .
However, we have

(Ar, f(Ar)) ∈ f ⇒ (π(Ar), π(f(Ar))) ∈ π(f) ⇒ (Ar, x) ∈ f,

which contradicts the fact that f is a function, since x �= f(Ar). Thus A has
no choice function in V . �

Claim 3.11. ACWO is true in V .

Proof. Let X be a well-ordered set in V comprising non-empty sets.
Let E =

⋃
{Aq : q ∈ S} for some bounded S ⊂ Q, be a support of every ele-

ment of X .1 Let K = [r, r′] be an interval in the ordering of Q such that

1The permutation model V contains all elements of the kernel V (V =
⋃
{Vα : α ∈ On}, where

V0 = ∅, Vα+1 = ℘(Vα), and Vα =
⋃
{Vβ : β < α} if α is a limit ordinal)—this is true for any per-

mutation model—and so AC is true in the kernel; thus every element of V can be well-ordered.
Hence an element x of V can be well-ordered (in V) if and only if there is (in V) an injection f
of x into V . For any such f , πf = f if and only if π ∈ fixG(x), and thus an element x of V can be
well-ordered in V if and only if fixG(x) ∈ F . By definition of F , ‘fixG(x) ∈ F ’ means that there
is a subset F =

⋃
{Aq : q ∈ R} ⊂ A for some bounded R ⊂ Q such that fixG(F ) ⊆ fixG(x), and so

any x ∈ V can be well-ordered if and only if there is a subset F =
⋃
{Aq : q ∈ R} ⊂ A for some

bounded R ⊂ Q, which is a support of every element of x.
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(1) E ⊆ L, where L =
⋃
{Aq : q ∈ K}, and

(2) there are t, t′ ∈ A such that r < t < t′ < r′ and

⋃
{Aq : q ∈ [r, t]} ∩E = ∅ =

⋃
{Aq : q ∈ [t′, r′]} ∩E.

In the ground model M , in which AC is true, we let F be a choice func-
tion for X (so that F may not be in V). For every x ∈ X , we let DF (x)

be a support of F (x). Since � is a dense linear order on A = {Aq : q ∈ Q}
(see the proof of Claim 3.10) and DF (x) =

⋃
{Aq : q ∈ T} for some bounded

T ⊂ Q, there exists a permutation πF (x) ∈ fixG(E) such that

πF (x)(DF (x)) ⊆ L

(see also the parenthetic note following the construction of V). Now we
define

f = {(x, πF (x)(F (x))) : x ∈ X}.

It is clear that f is a function on X , and we assert that f ∈ V . In order
to prove our assertion, we argue that fixG(L) ⊆ fixG(f). Let φ ∈ fixG(L)
and also let x ∈ X . Since E ⊆ L, we have fixG(L) ⊆ fixG(E), and hence
φ(x) = x. Furthermore, since πF (x)(a) ∈ πF (x)(DF (x)) ⊆ L for all a ∈ DF (x),
and φ ∈ fixG(L), we have

φ(πF (x)(a)) = πF (x)(a), for all a ∈ DF (x)

⇒ π−1
F (x)φπF (x)(a) = a, for all a ∈ DF (x)

⇒ φπF (x)(F (x)) = πF (x)(F (x)),

since DF (x) is a support of F (x). Thus φ ∈ fixG(f).
Furthermore, f is a choice function for X . Indeed, since for every x ∈ X ,

F (x) ∈ x and πF (x) ∈ fixG(E), we conclude that πF (x)(F (x)) ∈ πF (x)(x) = x.
�

The above arguments complete the proof of the theorem. �

Theorem 3.12. Let ℵα be a regular aleph. Then “for every infinite well-
ordered cardinal λ < ℵα, DCλ” does not imply DT in ZF. Hence, neither
does the statement “for every infinite well-ordered cardinal λ < ℵα, AC

λ”
(where AC

λ is the axiom of choice for λ-sized families of non-empty sets)
imply DT in ZF.

In particular, DC does not imply DT in ZF, and hence neither does AC
ω .

Furthermore, RT does not imply DT in ZF.

Proof. In the proof of Jech’s Theorem 8.3 in [10], a permutation
model V is constructed so that DCλ is true in V for all infinite well-ordered
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cardinals λ < ℵα, whereas there exists an ℵα-sized family of unordered pairs
which has no choice function in V . Then Jech embeds V in a symmetric
model N of ZF so that N |= ∀λ(λ < ℵα → DCλ)∧¬ACℵα

2 (where ACℵα

2 is the
axiom of choice for ℵα-sized families of pairs). By Theorem 3.1(ii), it follows
that DT is false in N .

The second assertion of the theorem follows from the fact that for any
infinite well-ordered cardinal κ, DCκ → AC

κ (see [10, Theorem 8.1]).
The last assertion of the theorem follows from the first one and the fact

that DF = F (and hence AC
ω) implies RT (see Theorem 2.3(ix)). �

Theorem 3.13. CAC does not imply DT in ZF, and DT does not imply
CAC in ZFA.

Proof. It is known that DF = F implies CAC (see [8]), and since AC
ω

implies DF = F (see [8], [10]), it follows (by Theorem 3.12) that CAC does
not imply DT in ZF.

On the other hand, CAC implies ACω
fin

(see Tachtsis [18]), and hence (by
Theorem 3.4) DT does not imply CAC in ZFA. �

4. Open questions

(1) Is there a model of ZFA in which ACLO is true, but DT is false? (We
recall here that ACLO is equivalent to AC in ZF, but not equivalent to AC in
ZFA (see [8]). It follows that ACLO → DT in ZF.)

(2) Does OP imply DT?
(3) Does MHT imply DT?
(4) Does RSL imply DT in ZF? (Recall that, by Theorem 3.1(ii), RSL

does not imply DT in ZFA.)
(5) Does DT+ ACfin imply BPI?
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