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Abstract. It is quite rare that a simple area optimization result bears some-
body’s name. One of these statements, called Hajós’ Lemma, became particularly
known, mainly because of its esthetic appearance and due to its application at
solving the densest circle packing problem. Hajós considered a pair of concen-
tric circles and wanted to find the minimum area polygon among those polygons
which contain the smaller circle and whose vertices are outside of the larger cir-
cle. In this paper we state and prove two generalizations of Hajós’ Lemma. In
the first version we allow the circles to be non concentric, in the second version
we consider disc polygons instead of usual polygons.

1. Introduction

Area, diameter, perimeter and width are standard characteristics of pla-
nar polygons. Typically, complex geometric proofs are reduced to the opti-
mization of one of these characteristics under certain geometric constraints.

György Hajós proved the following theorem (see the paper of Molnár
[3]):

Theorem 1 (Hajós Lemma). Let 0 < r < 1. Among all convex polygons,
which contain a circle of radius r, and have no vertices inside of the con-
centric unit circle, the one which is inscribed in the unit circle so that all
sides, with the exception of at most one, are tangent to the smaller circle is
of minimum area.
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Fig. 1: An illustration for Hajós Lemma

Fig. 2: Proof of Hajós Lemma

For visual illustration of Hajós Lemma see Fig. 1. What makes Hajós
Lemma important is its application to the densest circle packing problem.

Corollary 1. That arrangement of circles of radius r, where each disc
is touched by exactly six other ones, has the largest density (largest percent
of the plane occupied by discs) among packings of circles of radius r in the
plane.

We include the proofs of Theorem 1 and Corollary 1 in Section 2 partly
for completeness, but also because later we will refer to the steps of the
proof.

2. Proof of Theorem 1 and Corollary 1

Proof of Theorem 1. Fig. 2 walks the reader through a simple area
reduction process. We start with an arbitrary polygon satisfying the condi-
tions of Hajós Lemma, and then we change the polygon using the following
steps.

Step 1. Using intersection points of the polygon and the unit circle find
an inscribed polygon with smaller area.

Step 2. Do.
Step 3. Rearrange the circular sectors so that in clockwise order the

central angles decrease: α1 ≥ α2 ≥ · · · ≥ αn.
Step 4. Starting with index i = 1, whenever side ViVi+1 does not touch

the unit circle we relocate Vi+1 on the circle in clockwise direction until
ViVi+1 becomes tangent to the inner circle or Vi+1 coincides with Vi+2.
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Step 5. Until all sides of the polygon, with the exception of at most one,
are tangent to the smaller circle.

Each step in the above process decreases the area and at the end we get
the alleged minimum area polygon. �

Fig. 3: Corollary 1, where points represent pharmacy sites

Proof of Corollary 1. In order to use Hajós Lemma in the stated
form we prove the statement of the Corollary for circles of radius

√
3/2. Let

us start with the nearest point subdivision of the plane determined by the
centers of the circles. In particular, we assign to a center, say to center O
those points of the plane which are closer to O, than to any other center.
This leads to a subdivision of the plane into polygons (Fig. 3). A simple
elementary geometric argument shows that no vertex of such polygons can
be closer than 1 to the center of that circle which they contain. According
to Hajós Lemma in case of r =

√
3/2 the smallest area polygon is the regular

one and its area is equal to 3
√
3/2. This, in different terms means that the

portion of the plane which can be occupied by circles cannot be more than

3π/4

3
√
3/2

=
π√
12

≈ 0.907. �

3. New results

Several generalizations of Hajós Lemma were considered before. In [1]
Böröczky considered a pair of concentric circles and wanted to find the min-
imum area polygon among those polygons which contain the smaller cir-
cle and whose vertices, with the exception of two adjacent vertices, are on
the larger circle. In [2] Böröczky et. al. considered a d-dimensional gen-
eralization of Hajós Lemma. They wanted to find the minimum d-volume
d-polyhedron among those d-polyhedrons whose k-faces lie at least at dis-
tance rk (k = 0, . . . , d − 1) from a fixed point.

We generalize Hajós Lemma in the following two ways.
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3.1. Hajós Lemma for non concentric circles.

Theorem 2. Assume a unit circle contains a given non concentric
smaller circle. Consider all polygons which are inscribed in the unit cir-
cle and contain the smaller circle. The smallest area polygon in this family
has all of its sides, with the exception of at most one side, tangent to the
smaller circle.

A

U

V

W

U

V

WV ′

Statement (*) Statement (**) , Case 2 Statement (***)

A

Fig. 4: Proof of Theorem 2

Proof of Theorem 2. For orientation, assume that the centers of the
circles are on a horizontal line and the center on the right is the center of
the unit circle (Fig. 4). We will say that a point (segment resp.) is to the
right from another point (segment resp.), if its projection on the horizontal
line is to the right from the projection of the other point (segment resp.).
The relation to the left can be defined similarly. Consider now a non ver-
tical transversal, which intersects both circles. In particular, consider the
midpoints of the cords of intersection on the transversal. Notice that the
midpoint of the chord of the unit circle is to the right from the midpoint of
the chord of the smaller circle. This immediately implies that

(∗) No vertical transversals of the smaller circle intersects the annulus
two segments so that the segment on the right is longer than the one on the
left.

Let A be the most left point of the smaller circle (Fig. 4). Our proof con-
tinues as a standard minimal choice proof. Let P be one of the smallest area
polygons satisfying the conditions of Theorem 2. Start by the simple fact
that polygon P can not have two non tangent adjacent sides. This simple
statement was also proved in the original Hajós Lemma: Indeed assume UV
and VW are two non tangent sides. One can reposition vertex V along the
unit circle so that no tangency of sides is maintained while the area of the
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triangle UVW decreases and thus the minimal choice of P is contradicted.
For Theorem 2 it is enough to show the following two statements:

(∗∗) No tangent sides of P are completely left from A or their horizontal
projection contains A.

(∗∗∗) Polygon P has at most one non tangent side which is completely
left from A or whose horizontal projection contains A.

Indeed (∗∗) characterizes the non tangent sides while (∗∗∗) claims that there
is only one such side.

Proof of (∗∗). Assume (∗∗) does not hold and try to decrease the area
of P . Let VW be a non tangent side of P so that both V and W are to the
right from A (Fig. 4/Statement (∗∗)). Let UV be the adjacent side of VW
in P . The side UV is tangent to the smaller circle otherwise P would have
two non tangent adjacent sides. We distinguish two cases.

Case 1: UV ≤ VW . In this case modify the polygon P , by moving ver-
tex V along the unit circle toward U . If the move is sufficiently small both
UV and VW became non-tangent. Along this change the area of triangle
UVW decreases, producing a new polygon with area smaller than that of P ,
a contradiction.

Case 2: UV > VW . In this case replace vertex V in P by its reflected
image V ′ along the perpendicular bisector of UW to get a new polygon P ′.
Polygons P and P ′ have equal areas, moreover UW is a non vertical line
so that W is to the right from U . Closer look reveals that (∗) implies that
both UV ′ and V ′W are non tangent segments. Thus, the area of P cannot
be the smallest. �

Proof of (∗∗∗). Indirectly assume (∗∗∗) is false and P has at least two
non tangent sides. If both are left from A, then there are two adjacent such
sides and by repositioning by their common vertex one can decrease the area
of P .

Let VW be a non tangent side of P so that its horizontal projection
contains A (Fig. 4/ Statement (∗∗∗)). Let again UV be the adjacent side
of VW in P . We may assume that UV is tangent to P . If U is to the
left from A, then it is also left from W and thus just like in (∗∗) we can
reposition V and decrease the area of polygon P . If U is right over A, then
the method of (∗∗) produces a new polygon whose area is less than the area
of P . If U is right from A, then any other non tangent side would have both
of its vertices right from A, which contradicts (∗∗). �

In contrast to the original concentric circle version of Hajós Lemma, in
the non concentric case Theorem 2 does not describe uniquely the minimiz-
ing polygon. Theorem 2 reduces the problem to finding the minimum area
within a one parameter family. This is a computational problem unless the
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minimizing polygons have a nice geometric property. For example, we hoped
that the minimizing polygon is always symmetrical to the line connecting
the centers of the circles. Theorem 3 is a numerical evidence that this is not
always the case.

Theorem 3. Assume the unit circle of center O(0, 0) contains a given
non concentric smaller circle of radius r and center O2(−c, 0). Consider all
polygons which are inscribed in the unit circle and contain the smaller circle.
If 0 < c ≤ r ≤ 0.24, then (1, 0) is a vertex of the smallest area polygon. If
c = 0.6, r = 0.2, then (1, 0) is not a vertex of the smallest area polygon.

Theorem 3 settles a special case, where the smaller circle is so small
that the one parameter family consists of triangles only. Depending on the
relative location of the smaller circle the optimizing triangle sometimes is
isosceles, sometimes is not.

Section 4 at the end of this paper contains the short version of the com-
putational proof of Theorem 3.

3.2. Hajós Lemma for disc polygons. An R-disc polygon (or
shortly disc polygon) is the intersection of (finitely many) congruent discs
of radius R. The circular arcs on the boundary of a disc polygon are called
sides, and common points of adjacent sides are called vertices. We say that
a side of a disc polygon is tangent to a circle if the circular arc of the disc
polygon is tangent to the circle. We say that an R-disc polygon with R > 1
is inscribed in a unit circle, if the vertices of P lie on the unit circle.

To illustrate the use of terminology we refer to Fig. 5 which shows a 2-
disc polygon inscribed in the circle C1 of radius 1. The side A2A3 of the
2-disc polygon is tangent to the circle C2.

Fig. 5: A 2-disc polygon in C1

Theorem 4. Let 0 < r < 1 and R > 1. Among all R-disc polygons which
contain the circle of radius r and have no vertices inside of the concentric
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unit circle, the one which is inscribed in the unit circle so that all sides (with
the exception of at most one) are tangent to the smaller circle is of minimum

area.

Fig. 6: Proof of a generalization of Hajós Lemma

Proof of Theorem 4. Fig. 6 walks the reader through a simple area
reduction process. We start with an arbitrary R-disc polygon satisfying the
conditions of Theorem 4, next we change the polygon using the following
steps.

Step 1′. Using intersection points of the disc polygon and the unit circle
find an inscribed polygon with smaller area.

Step 2′. Do
Step 3′. Rearrange the circular sectors so that in clockwise order the

central angles decrease: α1 ≥ α2 ≥ . . . ≥ αn.

Step 4′. Starting with index i = 1, whenever side V̂iVi+1 does not touch
the unit circle we relocate Vi+1 on the circle in clockwise direction until

V̂iVi+1 becomes tangent to the inner circle or Vi+1 coincides with Vi+2.
Step 5′. Until all sides of the disc polygon, with the exception of at most

one, are tangent to the smaller circle. �

At first it looks like we have again a straightforward proof. First by
cutting off parts, next rearranging its pieces and finally moving some of its
vertices, one at a time, it seems that we keep decreasing the area and at the
end we get the alleged minimum area disc polygon. But closer look reveals
that proving that at Step 3′ the area indeed decreases is not so simple. The
following lemmas are going to be the key.

We start with two elementary properties of circles:

Lemma 1. Let c be a semicircle of diameter AB and center O. Let C be

a point on AB such that CB < AC. Let us move a point along the semicircle

from B to A and parameterize the position by Pθ so that θ = ∠BCPθ. Along
the motion both distances CPθ and PθPθ+γ , where γ is a fixed angle, increase.
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Fig. 7: Lemma 1 Fig. 8: Proof of Lemma 1

Proof of Lemma 1. We will compare instances corresponding to
0 < θ < θ′ < π. The inequality CPθ < CPθ′ follows from the fact that the
perpendicular bisector of PθPθ′ passes through O. To see that the inequal-
ity PθPθ+γ < Pθ′Pθ′+γ holds, it is enough to see that the circumradius of the
triangle CPθPθ+γ is less than that of triangle CPθ′Pθ′+γ . Let us superim-
pose the two triangles (Fig. 8) and add the perpendicular bisectors of the
sides emanating from C to get the circumcenters Q and Q′. We already
know that distance CPθ increases as θ increases, thus the relative positions
of Q and Q′ is exactly as shown on Fig. 8. Such relative positions imply
OQ < OQ′. �

Fig. 9: Lemma 2 Fig. 10: Proof of Lemma 2

Next we show that small replacement of a vertex of disc polygons and
also of a regular polygons along their circumcircle changes their areas exactly
in the same way:

Lemma 2. Let A, B and V be three points on a unit circle c, so that V is
closer to B than to A. Moving point V along the circle c toward B decreases
both the area of triangle ABV and the area of the convex region bounded by

the segment AB and circular arcs ÂV and B̂V of radii R > 1 provided O
lies in the mentioned convex region.
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Acta Mathematica Hungarica 160, 2020

AREA MINIMIZATION OF SPECIAL POLYGONS 9

Proof of Lemma 2. The statement concerning the area of triangle
ABV is trivial, we included it in Lemma 2 mainly to stress analogy. Assume
the orientation is so that AB is horizontal (Fig. 9). Let W be the new
position of V and let γ be the central angle ∠V OW . Denote by α (β resp.)

the angle between the circular arcs ÂV and ÂW (and between the circular

arcs B̂V and B̂W resp.). Reflect V and W along the vertical line through
center O to get V and W . Let OW (OV , OV and OW resp.) be the center of

the circle containing the arc ÂW (ÂV , ÂV and ÂW resp.). These centers
lie on a circle of radius R and center A. Observe that the angle ∠V AW
is inscribed in the circle c and is equal to γ/2. Since the triangle AOWW
(AOV V resp.) is isosceles, we have that the segment OWO (OVO, resp.) is
perpendicular to the chord AW (AV resp.). Thus ∠OWOOV = γ/2. By a
similar reason, we get that ∠OV OOW = γ/2. According to Lemma 1 we get
the distance inequality OWOV < OVOW , which in term of the central angles
is the same as α = ∠OWAOV < ∠OV AOW = β. Once we established α < β
Lemma 2 follows immediately from the observation that i) it is enough to
show lemma for small γ, and ii) in case of small γ it is obvious that the
region what we gain can be placed inside of the region what we loose, thus
the total area decreases. �

4. Proof of Theorem 3

First we prove if 0 < c ≤ r ≤ 0.24, then the smallest area polygon in this
family has a vertex with coordinates (1, 0).

Let C1 (C2 resp.) be the circle of radius 1 (r (r < 1) resp.) and center O
(O2 resp.). Let P (cosϕ, sinϕ) be a point on the circle C1. Let T1 and T2 be
two different points on the circle C2 such that PT1 and PT2 be the tangent
lines of the circle C2 as in Fig. 11.

Let Q1 (Q2 resp.) be the intersection point of the line through the points
P and T1 (T2 resp.) as in Figure 11. Let α1 (α2 resp.) be the convex angle
∠POQ1 (∠POQ2 resp.). Observe, the straight line segment Q1Q2 does not
intersects C2. If we search the minimum of the area of the triangle PQ1Q2,
then by Statement (∗∗) of Theorem 2, the point P lies on the circular arc
of C1 between the points when T1 coincides with A and T2 coincides with A.

Let S be the sum of the areas of the triangles POQ1 and POQ2. Let β
(ε resp.) be the angle ∠O2PT2 (∠O2PO resp.). First we find the minimum
of S. We have

S =
1

2
sinα1 +

1

2
sinα2 =

1

2
sin(2β + 2ε) +

1

2
sin(2β − 2ε)

= sin(2β) cos(2ε) = 2 sinβ cosβ(2 cos2 ε− 1).
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Fig. 11: The circles C1 and C2 Fig. 12: The non symmetric case

From the triangle OO2P (T2O2P resp.) we have

ε = arccos
1 + (c+ cosϕ)2 + sin2 ϕ− c2

2
√
(c+ cosϕ)2 + sin2 ϕ

(
β = arcsin

r√
(c+ cosϕ)2 + sin2 ϕ

resp.
)
.

Since 0 < β < π/2 and 0 < ε < π/2,

S = 2
r√

(c+ cosϕ)2 + sin2 ϕ

√
1−

( r√
(c+ cosϕ)2 + sin2 ϕ

)2

×
(
2

(
1 + (c+ cosϕ)2 + sin2 ϕ− c2

2
√
(c+ cosϕ)2 + sin2 ϕ

)2

− 1

)
.

Let us assume that the area S is a function of ϕ. The derivative of S is

S′(ϕ) =
−2cr sinϕ

(2c cosϕ+ c2 + 1)3
√
2c cosϕ+ c2 − r2 + 1

f(ϕ),

where

f(ϕ) = 4c3 cos3 ϕ+ (10c4 + 6c2) cos2 ϕ+ (4c5 + 16c3 − 4c3r2) cosϕ

+ 5c4 + 4c2 − 6c2r2 + 2r2 − 1.

The sign of S′(ϕ) depends on the sign of f(ϕ) only. Let

g(x) = 4c3x3 + (10c4 + 6c2)x2 + (4c5 + 16c3 − 4c3r2)x

+ 5c4 + 4c2 − 6c2r2 + 2r2 − 1.
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Observe g(cos(ϕ)) = f(ϕ). We have

g′(x) = 12c3x2 + (20c4 + 12c2)x+ 4c5 + 16c3 − 4c3r2.

The zeros of g′ are

x1 =
−3− 5c2 +

√
9− 18c2 + 13c4 + 12r2c2

6c

and

x2 =
−3− 5c2 −

√
9− 18c2 + 13c4 + 12r2c2

6c
.

We show x2 < −1. After performing the equivalent changes on the inequality

−3− 5c2 −
√
9− 18c2 + 13c4 + 12r2c2

6c
< −1

we have √
9− 18c2 + 13c4 + 12r2c2 ≥ 0 > −5c2 + 6c− 3

which is true for for all r ∈ [0, 1] and c ∈ [0, 1].
We show −1 < x1. Let us assume that x1 is a function of c and r. Let

us denote this function by F (c, r). The function h(c) = F (c, 0) is a function
of one variable and it is decreasing on the interval [0, 1] and its minimum is
−1. The partial derivative

F ′
r(c, r) =

2cr√
9− 18c2 + 13c4 + 12r2c2

is positive if c > 0 and r > 0.
We show x1 < 0. After performing the equivalent changes on the in-

equality

−3− 5c2 +
√
9− 18c2 + 13c4 + 12r2c2

6c
< 0

we have r2 < 4 + c2 which is true for all r ∈ [0, 1] and c ∈ [0, 1]. Thus
g′(x) > 0 if x1 < x ≤ 1. If g(1) ≤ 0, then g(x) < 0 for x ∈ (x1, 1).

Let us assume that g(1) is a function of c and r which is denoted by
G(c, r). Thus

G(c, r) = 4c5 + 15c4 + (20− 4r2)c3 + (10− 6r2)c2 + 2r2 − 1.

We will show that G(c, r) < 0 if 0 < c ≤ 0.24 and 0 < r ≤ 0.24. Since

G′
c(c, r) = 4c(c+ 1)(5c2 + 10c− 3r2 + 5) > 0
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for 0 < c ≤ 0.24, 0 < r ≤ 0.24,

G′
r(c, r) = 4r(1− 2c)(c+ 1)2 > 0

for 0 < c ≤ 0.24 and 0 < r ≤ 0.24,

g(1) = G(c, r) ≤ G(c, 0.24) ≤ G(0.24, 0.24) = −0.002 < 0.

Thus g(x) < 0 if x1 < x ≤ 1. If x1 < x ≤ 1 and cosϕ = x, then 0 < ϕ < ϕ0

where ϕ0 > π/2. Moreover f(ϕ) < 0 if 0 < ϕ < ϕ0. Therefore S′(ϕ) > 0 if
0 < ϕ < ϕ0 but S′(0) = 0.

Observe

g(1)− g(−1) = 8c5 + 40c3 − 8c3r2 = 8c3(c2 + 5− r2) > 0

for all r ∈ [0, 1] and c ∈ [0, 1]. Since g′(x) < 0 if −1 < x < x1 and g′(x) > 0
if x1 < x < 1 and 0 > g(1) > g(−1), g(x) < 0 if x ∈ [−1, 1]. Therefore
S′(ϕ) > 0 if 0 < ϕ < π, S′(0) = 0 and S′(π) = 0. Moreover S is the smallest
if ϕ = 0 and the greatest if ϕ = π.

Now we find the smallest area of the triangle OQ1Q2. Observe 4β < π/2.
The area of the triangle OQ1Q2 is the smallest if β is the smallest. Thus the
area of the triangle OQ1Q2 is the smallest if the coordinates of P are (1, 0).
Therefore the area of the triangle PQ1Q2 is the smallest if the coordinates
of P are (1, 0).

Next we prove if c = 0.6, r = 0.2, then the smallest area polygon in this
family does not have the vertex with coordinates (1, 0).

If c = 0.6, r = 0.2 and P0(1, 0), then the area of the triangle P0Q1Q2 is
0.4883. If c = 0.6, r = 0.2 and P1(0,1), then the area of the triangle P1Q1Q2

is 0.4771. Thus if c = 0.6 and r = 0.2, then the minimum of the area of the
triangle does not attain in the symmetric case (Fig. 12). �
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