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Abstract. This paper establishes the boundedness of the disc multiplier,
the spherical means, the Bochner—Riesz means, the rough singular integral oper-
ators, the universal maximal operator and the directional operators on the radial
subspace of rearrangement-invariant quasi-Banach function spaces.

1. Introduction

This paper aims to study the mapping properties of the disc multiplier,
the spherical means, the Bochner—Riesz means, the rough singular integral
operators, the universal maximal operator and the directional operators on
rearrangement-invariant quasi-Banach function spaces.

These operators have two common features: they are sublinear and
roughly speaking, they are not bounded on the entire LP, 1 < p < oo, while
they are bounded operators from the radial Lebesgue space L? | to LP where
LP | denotes the subspace of L? consisting of radial functions.

Our study is mainly motivated by the disc multiplier. It is a celebrated
result from Fefferman [10] which shows that the disc multiplier is bounded
on L? if and only if p = 2. On the other hand, Herz [12] proved that the disc
multiplier is bounded from Lfad to LP when § < p < 4. The result from Herz
shows that the mapping properties of operators on radial Lebesgue spaces
are different from the entire Lebesgue spaces.

We see that a number of operators share this property. For instance,
the Bochner—Riesz means [18,19], the Hankel multipliers [11], the rough sin-
gular integral operators [24], the universal maximal operator [3,4] and the
directional operators [6].
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The above results motivate us to investigate the mapping properties
of the above mentioned operators on some extensions of Lebesgue spaces
such as the Lorentz spaces, the Orlicz spaces and the Lorentz—Karamata
spaces. The above mentioned function spaces are members of rearrange-
ment-invariant quasi-Banach function spaces.

We have a powerful tool to obtain the mapping properties of sublinear
operators on rearrangement-invariant quasi-Banach function spaces, namely,
the Boyd’s interpolation theorem [1, Ch. 3, Theorem 5.16]. On the other
hand, roughly speaking, the Boyd’s interpolation theorem just assures the
boundedness of a given operator whenever this operator is bounded on the
entire Lebesgue spaces while the disc multiplier does not fulfill this criterion.

Therefore, in this paper, we modify the original Boyd’s interpolation
theorem and extend it to the case where the operator is bounded on ra-
dial Lebesgue spaces. With this extended Boyd’s interpolation theorem, we
apply it to the Bochner—Riesz means, the Hankel multipliers, the rough sin-
gular integral operators, the universal maximal operator and the directional
operators and obtain the corresponding mapping properties on rearrange-
ment-invariant quasi-Banach function spaces.

This paper is organized as follows. Section 2 presents some definitions
and preliminary results on rearrangement-invariant quasi-Banach function
spaces. A general interpolation result for operator on radial function spaces
is established in Section 3.2. The mapping properties of the disc multiplier,
the spherical means, the Bochner—Riesz means, the rough singular integral
operators, the universal maximal operator and the directional operators are
given in Section 3.2 also.

2. Preliminaries and definitions

Denote M(R"™) and LP, 0 < p < oo, the set of Lebesgue measurable func-
tions and the Lebesgue spaces on R", respectively.

We recall the definition of a rearrangement-invariant quasi-Banach func-
tion space from [14]. For any f € M(R") and s > 0, write

d¢(s) = ‘{:1; eR": |f(x)] > s}‘
and
fr@t)=inf {s >0:ds(s) <t}, t>0.

For any f,g € M(R"), f and g are equimeasurable if ds(s) = dg4(s) for
all s > 0.

We say that the function f: [1,00) — (0,00) is equivalent to a function
g: [1,00) — (0, 00) if there exist constants B,C > 0 such that

Cy(t) < f(t) < Bg(t), t=>1.
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We restate the definition of rearrangement-invariant quasi-Banach func-
tion space(r.i.q.B.f.s.) from [14, Definition 4.1].

DEFINITION 2.1. A quasi-Banach space X C M(RR") is a rearrangement-
invariant quasi-Banach function space if there exists a unique quasi-norm
px: M(0,00) — [0, 0] satisfying

(1) px(f) =0« f=0a.e,

(2) \9\ < |fl ae. = px(9) < px(f),

( ) 0< fan a.e. = pX(fn)TpX(f)

(4) xg € M(0,00) and |E| < o0 = px(xp) < oo,
so that

(2.1) 1fllx =px(f7), VfeX.
Write
X ={geM(0,00) : px(g) < o0}.

Obviously, X is a r.i.q.B.f.s. on (0,00).
A Banach space X € M(R") is a Banach function space if || - ||x is a
norm and fulfills items (1)—(3),

(2.2) xg € M(R") and |[E| <0 = xpeX

and

(23)  yme MR and |E| < 00 = / fdz < Cpllflx,
E

for some Cg > 0.

Moreover, X is a rearrangement-invariant Banach function space
(r.i.B.f.s.) if X is a Banach function space and for any equimeasurable
functions f and g, || f|x = [lg] x-

Let X be a r.i.B.f.s. The Luxemburg representation theorem [1, Ch. 2,
Theorem 4.10] guarantees the existence of px for X. The reader is referred
to [1, p. 64] for the uniqueness of px.

The Lebesgue spaces, the Lorentz spaces, the Orlicz spaces, the Lorentz—
Zygmund spaces and the Lorentz—Karamata spaces are members of r.i.q.B.f.s.

We recall the definition of Lorentz-Karamata spaces L4 in the fol-
lowing as we will study the mapping properties of the disc multiplier, the
spherical means,the Bochner—Riesz means, the universal maximal operator

and the directional operators on Lfa‘é’ )
We recall the notion of slowly varying function from [9, Definition 3.4.32].
DEFINITION 2.2. A Lebesgue measurable function b: [1,00) — (0,00) is
called a slowly varying function if for any given e > 0, ¢°b(¢) and tb(t)
are equivalent to a non-decreasing function and a non-increasing function,

respectively.
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For any slowly varying function b, define 7;: (0,00) — (0, 00) by
w(t) = b(max{t,1/t}), t>0.

We now define the Lorentz—Karamata space [9, Definition 3.4.38].

DEFINITION 2.3. Let 1 < p,q < co and b be a slowly varying function.
The Lorentz-Karamata space LP9? consists of those Lebesgue measurable
functions f satisfying

1l = ( /0 (1) £ (1)) Cff>1/q <o

The Lorentz-Karamata space LP'%? is a r.i.q.B.f.s., see [9, Theorem 3.4.41].
When b =1, LP%" reduces to the Lorentz space. For the studies of the
Hausdorftf-Young inequality, the Hankel transform and the oscillatory inte-
grals on Lorentz-Karamata spaces, the reader is referred to [14,15]. Fur-
thermore, we refer the reader to [8,9,22] for the details of Lorentz—Karamata
spaces.

We need to use the following indices in our study. The Boyd’s indices
give control on the operator norm of the dilation operators.

For any s > 0 and f € M(0,0), define (D, f)(t) = f(st), t € (0,00). Let
| Ds|l 55 be the operator norm of Ds on X. We recall the definition of
Boyd’s indices for r.i.q.B.f.s. from [14, Definition 2.2].

DEFINITION 2.4. Let X be a r.i.q.B.f.s. on R™. Define the lower Boyd
index of X, px, and the upper Boyd index of X, ¢x, by

px = sup {p > 0:3C >0 such that Vs € [0,1), ||Dsl|x_x < C’s_l/p},
gx =inf {g > 0:3C > 0 such that Vs € [1,00), || Dsl|x_,x < Cs_l/q},

respectively.

It is easy to see that the Boyd’s index for the Lebesgue space LP, 0 <
p < 00, is p. Furthermore, according to [15, Proposition 6.1], we have

(24) Prp.ab = {drpr.ab = P.

The other index is related to the triangle inequality satisfied by the quasi-
norm | - || x. Let X be ar.i.q.B.f.s. The Aoki-Rolewicz theorem [17, Theorem
1.3] offers a constant 0 < kx < 1 such that py* is sub-additive. That is,

P (f+9) < () + K (9).

Next, we restate the p-convexification of r.i.q.B.f.s. in the following.
Let X be a r.i.q.B.f.s. For any 0 < p < oo, the p-convexification of X,
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XP is defined by X? = {f :|f|P € X}. We equip X? with the quasi-norm
1 £llxe = I1FPX", see [20, Vol. 1L, p. 53,
Since for any 0 <p < oo, (|f|P)* = (f*)? [1, Ch. 1, (1.20)], we have

pxr (%) = px (|7 1P) .

We recall the definition of sublinear operators, see [16].

DEFINITION 2.5. Let (Ro,po) and (Ry,u1) be totally o-finite measure
spaces. Let T' be an operator with domain being a linear subspace of Mg (1)
and taking values in M(pu;) where M(u;), i = 0,1 denote the sets of p;-
measurable functions. We say that 1" is sublinear if

TS+ 9l < (Tl +1TgD), TN =WITAH] pmae

for all f and ¢ in the domain of 7" and all scalar A.

3. Main result

We obtain the extended Boyd’s interpolation theorem in this section.
As applications of this theorem, we establish the mapping properties of the
Bochner—Riesz means, the Hankel multipliers, the rough singular integral
operators, the universal maximal operator and the directional operators on
rearrangement-invariant quasi-Banach function spaces.

For any r.i.q.B.f.s. X, define

Xrad = {fEXf(x)zf(y), ‘(L‘|: ’y‘7 x,yERn}-

We call X,,q a radial rearrangement-invariant quasi-Banach function space.
In particular, Lfad consists of radial functions f belonging to LP.
We first establish an estimate on the decreasing rearrangement of T'(f).

PROPOSITION 3.1. Let 0 < pg < p1 < o0 and X be a r.i.q.B.f.s. Suppose
that T is sublinear and T': Lf;d — LPi 1 =0,1, are bounded. If pg < px
< gqx < p1, then there exist constants Co,Cy > 0 such that for any f € X aq,

Pl

1 plo [e'e)
(T () < Co< | e du) i a( I % du) >0,
0 1
PROOF. Let f € X;aq. For any t > 0, define

fri(x) = min([f (z)[, f*(2)) sgn f(2),
for(@) = (If (@) = f*(£)) " sgn f(z) = f(2) — fi(@)

where sgn f(x) = ‘}CE& when f(x) # 0 and sgn f(z) = 0 otherwise.
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For any s > 0,

fia(s) =min(f*(s), f(t)),  fou(s) = (f7(s) = f* (1))

Since f* is non-increasing,

e’ t o0
I Fuallzs, = /0 (i o(s)P ds = /0 (1 2(s)P ds + / (Fra(s)P ds

— () + / (F*(s))P" ds.

t

Consequently, there is a constant C' > 0 such that for any fixed ¢ > 0

B e <c(mro+ ([Teras) )

By using the inequality (a — b)P° < aP° — b, a > b > 0, we obtain
ol = [ Gt ds = [ as= [ 526 - s oas
t t ¢
* Po Jg — * Po g = * Po g — * Po
< [wreyas— [areras= [ @ as-iro)

The inequality (a — b) »0 < 2a o — bplo, a>b >0 yields

(3.2) lfoelli < 2( [ ds> b (F(1)).

Obviously, when [z] = [y], fou(z) = fo(y) and fi.(z) = fie(y), (3.1)
and (3.2) assure that f1, € LY, and fo, € LY.
Since T is sublinear, according to [1, Ch. 1, (1.16)], we have

(T)(8) < (Tfo.)"(¢/2) + (T fr.)"(t/2).

As T Lf;d — LPi i =0,1 are bounded and f;; € LY ;| i = 0,1, we have

rad’

33) (T () < (t/2) 7 Mo| foull oo + (£/2) 7 Myl frel o

for some My, M7 > 0.
Consequently, (3.1) and (3.2) yield Cy, C1 > 0 such that

oy <o ([ RO ) o ([ )
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_ 00< /O L du> "y 01< /1 Z ) du>

where we use the substitution s = tu at the last equality. O

THEOREM 3.2. Let 0 <py <p1 <oo and X be a r.i.q.B.f.s. Suppose
that T is sublinear and T: LY = — LP:i, i=0,1 are bounded. If py < px

rad

< gx < p1, then, T: X;aq — X s bounded.
PROOF. The Aoki-Rolewicz theorem yields k¢ and k1 so that p™, (),

i

1 = 0,1 are sub-additive.
Since px is a quasi-norm, in view of Proposition 3.1, we have

px((Tf)"(t) = CpX</01(f*(tu))”0 du> '

4 Cpx</loo(f*(tu))p1 du> Y _rtnn

for some C > 0.

Since f* is non-increasing and p™, (-) is sub-additive, we get
X po

1
Poko _— Ko * Po
I Cols ( /0 (f*(tu)) dU>
0

<cpe, (j;oozj*(f*(zj—lt» ) < c];oozw Do, (£ )

e Z 20 (Do f(B)) = C Z 207180 pc(Dyn ()7

j=—o0 J==oo

Select an € > 0 so that pg < px — €, the definition of Boyd’s indices yields
a constant C' > 0 such that

1

0
. (G—1)poko POKO
(3.4) I< C< Z 2(]—1)/-:02— Px—¢ pX(f*(t))pgKio>

Jj=—00
< Cpx (1)) = Cl flx-

Similarly, as f* is non-increasing and p"', (-) is sub-additive, we obtain
X pr1

1P < Z 2j51pX(D2jf*(t))P1fi1.
=0
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Take an € > 0 so that ¢x +¢& < p1. The definition of Boyd’s indices guar-
antees that

1

(3.5) 11 < C(ZQJ’MQ—ZSE ox( f*(t))m) "< Cox (£1(0) = Ol flx

J=0

for some C' > 0. Therefore, (3.4) and (3.5) yield the boundedness of T': X, aq
—-X. O

If Tf is a radial function whenever f is radial, then the above theorem
shows that T is bounded on X, .q.

3.1. Disc multipliers and spherical means. For any f € S'(R"),

the Fourier transform of f is denoted by f.
For any R > 0 and f € L?, define

Spf(x) = (2m) 2 / F©)em € de

l§I<R

and

S*f(z) = sup |Spf(z)], x€R"

Write S = S1. In view of [10], we find that when n > 2, S is bounded on L?
if and only if p = 2.

On the other hand, Herz [12] obtained the following boundedness result
for S on the radial Lebesgue spaces.

THEOREM 3.3. Letn > 2. If n2f1 <p< 2, then S is bounded on L ,.

This result has been extended to S* in [18].

THEOREM 3.4. Let n>2. If " <p< nz_"l, then S* is bounded

» n+1
on Lrad.

Theorem 3.2 gives the subsequent boundedness result for S and S* on
radial rearrangement-invariant quasi-Banach function spaces.

THEOREM 3.5. Let n > 2 and X be a r.i.q.B.f.s. on R". I n2f1 < px
<gx < n2_"1, then S and S* are bounded on X;aq.

Theorems 3.4 and 3.5 have also been generalized to the Bochner—Riesz

means and the Hankel multipliers.
Let 0 <a< "51. For any R > 0, the Bochner—Riesz mean is defined as

S3f(x) = (2m) "2 /

n (1-n) f@etds, feS®), zer,
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and the corresponding maximal operator is given by

52 f (@) = sup [Sgf(2)].
R>0
THEOREM 3.6 (Kanjin [19]). Letn >2 and 0 < a < ™'

p<, 2, then S® is bounded on LP ;.

If n+1+2a <

Therefore, Theorem 3.2 yields the corresponding result for radial rear-
rangement-invariant quasi-Banach function spaces.

THEOREM 3.7. Let n>2, 0 < a< ”51 and X be a r.i.q.B.f.s. on R".

If n+1+2a <px <qx < n—§i2a’ then S is bounded on Xi.q.

We now turn to the Hankel multipliers. Let K € §'(R™) be a radial con-
volution kernel. For any t > 0, write K;(z) =t "K(t"!z), € R". Define
the Hankel multiplier associated with K, Tk by T f = K * f.

THEOREM 3.8 (G. Garrigés and A. Seeger [11]). Letn >1,1<p < n+1

and K be a radial convolution kernel. Suppose that K is locally square inte-
grable. If

(3.6) sup | @ * Ki||r» < 00
t>0

for a radial Schwartz function ® whose Fourier transform is compactly sup-
ported in R™\{0}, then Tk is bounded on L |

By using Theorem 3.2, we obtain the mapping properties for the Han-
kel multipliers Tk on radial rearrangement-invariant quasi-Banach function
spaces.

THEOREM 3.9. Letn > 1, K: be a radial convolution kernel and X be a
r.i.q.B.f.s. on R™. Suppose that K is locally square integmble. If K satisfies
(3.6) for some po,p1 with 1 <py<px <qx <p1 < then the Hankel

n+1 )
multiplier Tk is bounded from X,aq to Xiaq-

In view of (2.4), we have the following result for the disc multiplier, the
Bochner-Riesz mean and the Hankel multipliers on LP:4?.

COROLLARY 3.10. Let n>2, 0<a< ™ 1, 1<p,g<oo and b be a
slowly varymg functzon

(1) I n+l <p< M, then S and S* are bounded on LPab,

rad
(2) If 3" <P <, "o then S& is bounded on o

3) If 1<p< 2”1 and K satisfies (3.6) and K is locally square inte-

D,q,b
rad °

grable, then Tk is bounded on L
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2. Rough singular integrals. Let Q€ L'(S™" 1) with [g, , Q(w) dw
= 0. The rough singular integral operator is defined as

. Q
Tof(x) = lim ) fa ) dy
5o Je<lyl<R |y

The corresponding maximal singular integral operator is given by

tafw = s || ) 1o = )y
0<e<R<o0 <ly|<R |Z/|

[24, Theorem 2] asserts the boundedness of the To and T on radial
Lebesgue spaces.

THEOREM 3.11. Let 1 < p < oo and Q € L'(S"1) with [g, . Qdw = 0.
The rough singular integral operator Tq and the mazximal singular integral
operator T¢y are bounded from L | to LP.

The boundedness of the rough singular integral operator on the entire
LP requires some extra conditions imposed on 2, see [5,23].

Theorem 3.2 assures the boundedness of T, and T¢, on radial rearrange-
ment-invariant quasi-Banach function spaces.

THEOREM 3.12. Let Q € L' (5" 1) with [4, . Qw)dw =0 and X be a
r.i.g.B.f.s. on R™ If 1 <px <qgx < oo, then the rough singular integral
operator Tq and the maximal singular integral operator T¢; are bounded from
Xrad to X.

In particular, if 1 < p,q < oo, b be a slowly varying function and €2 €
LY(S™) with [q, , Q(w)dw = 0, then To: L2%" — LPob and Tg: LPG —
LP%b are bounded.

3.3. Universal maximal operator. Let f be a locally integrable
function. The universal maximal operator M is defined as

Mp@) =sw o [ 1] dy

where the supremum is taken over all rectangles R in R™ containing x with
arbitrary directions.

THEOREM 3.13. Let p>n. The universal mazimal operator M is
bounded on Lfad

For the proof of the above result, the reader is referred to [3,4]. From
[3,4], it is also known that M is not bounded on LP for all 1 < p < co. The
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reader is referred to [7] for some extensions of the above result on /7 radial
functions.

The preceding theorem and Theorem 3.2 yields the boundedness of the
universal maximal operator on radial rearrangement-invariant quasi-Banach
function spaces.

THEOREM 3.14. Let X be a r.i.q.B.f.s. If n < px < qx < 0o, then the
uniwersal maximal operator M is bounded from X,.q to X.

As a consequence of the preceding theorem, the universal maximal op-

erator M is bounded from Lfggb to LP% when n < p < 00, 1 < ¢ < oo and
b is a slowing varying function.

3.4. Directional operators. We recall the definitions of directional
operators from [6]. Let 0 < @ < 27. For any f € L?(R?) and x € R? we
define

1 [ .
My (z) = sup / (e — tei®)] dt,
n>0 2h J_p,

Hyf(x) = lim ! [~ te?)

e—=0 T [t|>e

Hj f(z) = sup|Hep f(2)].
e>0

dt = lim H, o f(z),
e—0

Let S be the unit circle in R? and E be a closed subset of S'. The
maximal directional operators associated with E are defined by

Mpf(x) = sup [Myf(z)],
0cE

Hpf(z) =sup|Hof(x)|, Hpf(x)=sup|Hpf(z)]
0cE 0cE

Whenever E has positive Lebesgue measure, M g is unbounded on LP(R?), 1
<p<oo. If E={0;}jen is a lacunary set, then Mg is bounded on LP(R?),
1 < p < oo, see [21].

For any E C S', define

where N(¢) is the minimum number of closed intervals of length § needed

to cover E. For instance, when E is a Cantor ternary set, then d(E) = iggg
In view of [6], we have the following boundedness result for LF ,(R?).
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THEOREM 3.15. Let p > 1+ d(E). Then
(1) Mg is bounded on LF ,(R?).
(2) If d(E) < 1, then Hp and H}; is bounded on LP  (R?).

Theorem 3.2 gives the corresponding result for radial rearrangement-
invariant quasi-Banach function spaces.

THEOREM 3.16. Let X be a ri.qB.f.s. on R? with 1+ d(E) < px <
qx < oo. Then

(1) Mg : X1aqa — X is bounded.

(2) If d(E) < 1, then HE: Xyag — X and H}: Xiaqa — X are bounded.

When FE is a Cantor ternary set, the preceding theorem assures that
M: LP%Y 5 [pad Hp: P90y [pab and H: P9 5 [P0 are bounded
provided that 1+ }ggg <p<oo,1<qg<ooandbis a slowly varying func-
tion.

Acknowledgement. The author thanks the referee for careful reading
of the paper and valuable suggestions for improving the presentation.
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