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The above results motivate us to investigate the mapping properties
of the above mentioned operators on some extensions of Lebesgue spaces
such as the Lorentz spaces, the Orlicz spaces and the Lorentz–Karamata
spaces. The above mentioned function spaces are members of rearrange-
ment-invariant quasi-Banach function spaces.

We have a powerful tool to obtain the mapping properties of sublinear
operators on rearrangement-invariant quasi-Banach function spaces, namely,
the Boyd’s interpolation theorem [1, Ch. 3, Theorem 5.16]. On the other
hand, roughly speaking, the Boyd’s interpolation theorem just assures the
boundedness of a given operator whenever this operator is bounded on the
entire Lebesgue spaces while the disc multiplier does not fulfill this criterion.

Therefore, in this paper, we modify the original Boyd’s interpolation
theorem and extend it to the case where the operator is bounded on ra-
dial Lebesgue spaces. With this extended Boyd’s interpolation theorem, we
apply it to the Bochner–Riesz means, the Hankel multipliers, the rough sin-
gular integral operators, the universal maximal operator and the directional
operators and obtain the corresponding mapping properties on rearrange-
ment-invariant quasi-Banach function spaces.

This paper is organized as follows. Section 2 presents some definitions
and preliminary results on rearrangement-invariant quasi-Banach function
spaces. A general interpolation result for operator on radial function spaces
is established in Section 3.2. The mapping properties of the disc multiplier,
the spherical means, the Bochner–Riesz means, the rough singular integral
operators, the universal maximal operator and the directional operators are
given in Section 3.2 also.

2. Preliminaries and definitions

DenoteM(Rn) and Lp, 0 < p ≤ ∞, the set of Lebesgue measurable func-
tions and the Lebesgue spaces on R

n, respectively.
We recall the definition of a rearrangement-invariant quasi-Banach func-

tion space from [14]. For any f ∈ M(Rn) and s > 0, write

df (s) =
∣

∣{x ∈ R
n : |f(x)| > s}

∣

∣

and

f∗(t) = inf
{

s > 0 : df (s) ≤ t
}

, t > 0.

For any f, g ∈ M(Rn), f and g are equimeasurable if df (s) = dg(s) for
all s > 0.

We say that the function f : [1,∞) → (0,∞) is equivalent to a function
g : [1,∞) → (0,∞) if there exist constants B,C > 0 such that

Cg(t) ≤ f(t) ≤ Bg(t), t ≥ 1.
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Abstract. This paper establishes the boundedness of the disc multiplier,
the spherical means, the Bochner–Riesz means, the rough singular integral oper-
ators, the universal maximal operator and the directional operators on the radial
subspace of rearrangement-invariant quasi-Banach function spaces.

1. Introduction

This paper aims to study the mapping properties of the disc multiplier,
the spherical means, the Bochner–Riesz means, the rough singular integral
operators, the universal maximal operator and the directional operators on
rearrangement-invariant quasi-Banach function spaces.

These operators have two common features: they are sublinear and
roughly speaking, they are not bounded on the entire Lp, 1 < p < ∞, while
they are bounded operators from the radial Lebesgue space Lp

rad to Lp where
Lp
rad denotes the subspace of Lp consisting of radial functions.
Our study is mainly motivated by the disc multiplier. It is a celebrated

result from Fefferman [10] which shows that the disc multiplier is bounded
on Lp if and only if p = 2. On the other hand, Herz [12] proved that the disc
multiplier is bounded from Lp

rad to Lp when 4
3 < p < 4. The result from Herz

shows that the mapping properties of operators on radial Lebesgue spaces
are different from the entire Lebesgue spaces.

We see that a number of operators share this property. For instance,
the Bochner–Riesz means [18,19], the Hankel multipliers [11], the rough sin-
gular integral operators [24], the universal maximal operator [3,4] and the
directional operators [6].
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We restate the definition of rearrangement-invariant quasi-Banach func-
tion space(r.i.q.B.f.s.) from [14, Definition 4.1].

Definition 2.1. A quasi-Banach spaceX ⊂ M(Rn) is a rearrangement-
invariant quasi-Banach function space if there exists a unique quasi-norm
ρX : M(0,∞) → [0,∞] satisfying

(1) ρX(f) = 0 ⇔ f = 0 a.e.,
(2) |g| ≤ |f | a.e. ⇒ ρX(g) ≤ ρX(f),
(3) 0 ≤ fn ↑ f a.e. ⇒ ρX(fn) ↑ ρX(f),
(4) χE ∈ M(0,∞) and |E| < ∞ ⇒ ρX(χE) < ∞,

so that

(2.1) �f�X = ρX(f∗), ∀f ∈ X.

Write

X̄ =
{

g ∈ M(0,∞) : ρX(g) < ∞
}

.

Obviously, X̄ is a r.i.q.B.f.s. on (0,∞).
A Banach space X ⊂ M(Rn) is a Banach function space if � · �X is a

norm and fulfills items (1)–(3),

(2.2) χE ∈ M(Rn) and |E| < ∞ ⇒ χE ∈ X

and

(2.3) χE ∈ M(Rn) and |E| < ∞ ⇒

∫

E
f dx ≤ CE�f�X ,

for some CE > 0.
Moreover, X is a rearrangement-invariant Banach function space

(r.i.B.f.s.) if X is a Banach function space and for any equimeasurable
functions f and g, �f�X = �g�X .

Let X be a r.i.B.f.s. The Luxemburg representation theorem [1, Ch. 2,
Theorem 4.10] guarantees the existence of ρX for X . The reader is referred
to [1, p. 64] for the uniqueness of ρX .

The Lebesgue spaces, the Lorentz spaces, the Orlicz spaces, the Lorentz–
Zygmund spaces and the Lorentz–Karamata spaces are members of r.i.q.B.f.s.

We recall the definition of Lorentz–Karamata spaces Lp,q,b in the fol-
lowing as we will study the mapping properties of the disc multiplier, the
spherical means,the Bochner–Riesz means, the universal maximal operator

and the directional operators on Lp,q,b
rad .

We recall the notion of slowly varying function from [9, Definition 3.4.32].

Definition 2.2. A Lebesgue measurable function b : [1,∞) → (0,∞) is
called a slowly varying function if for any given ε > 0, tεb(t) and t−εb(t)
are equivalent to a non-decreasing function and a non-increasing function,
respectively.
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For any slowly varying function b, define γb : (0,∞) → (0,∞) by

γb(t) = b(max{t, 1/t}), t > 0.

We now define the Lorentz–Karamata space [9, Definition 3.4.38].

Definition 2.3. Let 1 < p, q < ∞ and b be a slowly varying function.
The Lorentz–Karamata space Lp,q,b consists of those Lebesgue measurable
functions f satisfying

�f�Lp,q,b =

(
∫ ∞

0
(t1/pγb(t)f

∗(t))q
dt

t

)1/q

< ∞.

The Lorentz–Karamata space Lp,q,b is a r.i.q.B.f.s., see [9, Theorem 3.4.41].
When b ≡ 1, Lp,q,b reduces to the Lorentz space. For the studies of the
Hausdorff-Young inequality, the Hankel transform and the oscillatory inte-
grals on Lorentz–Karamata spaces, the reader is referred to [14,15]. Fur-
thermore, we refer the reader to [8,9,22] for the details of Lorentz–Karamata
spaces.

We need to use the following indices in our study. The Boyd’s indices
give control on the operator norm of the dilation operators.

For any s ≥ 0 and f ∈ M(0,∞), define (Dsf)(t) = f(st), t ∈ (0,∞). Let
�Ds�X̄→X̄ be the operator norm of Ds on X̄ . We recall the definition of
Boyd’s indices for r.i.q.B.f.s. from [14, Definition 2.2].

Definition 2.4. Let X be a r.i.q.B.f.s. on R
n. Define the lower Boyd

index of X , pX , and the upper Boyd index of X , qX , by

pX = sup{p > 0 : ∃C > 0 such that ∀s ∈ [0, 1), �Ds�X̄→X̄ ≤ Cs−1/p},

qX = inf {q > 0 : ∃C > 0 such that ∀s ∈ [1,∞), �Ds�X̄→X̄ ≤ Cs−1/q},

respectively.

It is easy to see that the Boyd’s index for the Lebesgue space Lp, 0 <
p < ∞, is p. Furthermore, according to [15, Proposition 6.1], we have

(2.4) pLp,q,b = qLp,q,b = p.

The other index is related to the triangle inequality satisfied by the quasi-
norm � ·�X . LetX be a r.i.q.B.f.s. The Aoki–Rolewicz theorem [17, Theorem
1.3] offers a constant 0 < κX ≤ 1 such that ρκX

X is sub-additive. That is,

ρκX

X (f + g) ≤ ρκX

X (f) + ρκX

X (g).

Next, we restate the p-convexification of r.i.q.B.f.s. in the following.
Let X be a r.i.q.B.f.s. For any 0 < p < ∞, the p-convexification of X ,
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Xp is defined by Xp = {f : |f |p ∈ X}. We equip Xp with the quasi-norm

�f�Xp = �|f |p�
1/p
X , see [20, Vol. II, p. 53].

Since for any 0 < p < ∞, (|f |p)∗ = (f∗)p [1, Ch. 1, (1.20)], we have

ρXp(f∗) = ρX(|f∗|p)
1

p .
We recall the definition of sublinear operators, see [16].

Definition 2.5. Let (R0, µ0) and (R1, µ1) be totally σ-finite measure
spaces. Let T be an operator with domain being a linear subspace of M0(µ0)
and taking values in M(µ1) where M(µi), i = 0, 1 denote the sets of µi-
measurable functions. We say that T is sublinear if

|T (f + g)| ≤ (|Tf |+ |Tg|), |T (λf)| = |λ||T (f)| µ1 a.e.

for all f and g in the domain of T and all scalar λ.

3. Main result

We obtain the extended Boyd’s interpolation theorem in this section.
As applications of this theorem, we establish the mapping properties of the
Bochner–Riesz means, the Hankel multipliers, the rough singular integral
operators, the universal maximal operator and the directional operators on
rearrangement-invariant quasi-Banach function spaces.

For any r.i.q.B.f.s. X , define

Xrad =
{

f ∈ X : f(x) = f(y), |x| = |y|, x, y ∈ R
n
}

.

We call Xrad a radial rearrangement-invariant quasi-Banach function space.
In particular, Lp

rad consists of radial functions f belonging to Lp.
We first establish an estimate on the decreasing rearrangement of T (f).

Proposition 3.1. Let 0 < p0 < p1 < ∞ and X be a r.i.q.B.f.s. Suppose
that T is sublinear and T : Lpi

rad → Lpi , i = 0, 1, are bounded. If p0 < pX
≤ qX < p1, then there exist constants C0, C1 > 0 such that for any f ∈ Xrad,

(Tf)∗(t) ≤ C0

(
∫ 1

0
(f∗(tu))p0 du

)
1

p0

+ C1

(
∫ ∞

1
(f∗(tu))p1 du

)
1

p1

, t > 0.

Proof. Let f ∈ Xrad. For any t > 0, define

f1,t(x) = min(|f(x)|, f∗(t)) sgn f(x),

f0,t(x) = (|f(x)| − f∗(t))+ sgn f(x) = f(x)− f1(x)

where sgn f(x) = f(x)
|f(x)| when f(x) �= 0 and sgn f(x) = 0 otherwise.
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For any s > 0,

f∗
1,t(s) = min(f∗(s), f∗(t)), f∗

0,t(s) = (f∗(s)− f∗(t))+.

Since f∗ is non-increasing,

�f1,t�
p1

Lp1
=

∫ ∞

0
(f∗

1,t(s))
p1 ds =

∫ t

0
(f∗

1,t(s))
p1 ds+

∫ ∞

t
(f∗

1,t(s))
p1 ds

= t(f∗(t))p1 +

∫ ∞

t
(f∗(s))p1 ds.

Consequently, there is a constant C > 0 such that for any fixed t > 0

(3.1) �f1,t�Lp1 ≤ C

(

t
1

p1 f∗(t) +

(
∫ ∞

t
(f∗(s))p1 ds

)
1

p1

)

.

By using the inequality (a− b)p0 ≤ ap0 − bp0 , a ≥ b ≥ 0, we obtain

�f0,t�
p0

Lp0
=

∫ ∞

0
(f∗

0,t(s))
p0 ds =

∫ t

0
(f∗

0,t(s))
p0 ds =

∫ t

0
(f∗(s)− f∗(t))p0 ds

≤

∫ t

0
(f∗(s))p0 ds−

∫ t

0
(f∗(t))p0 ds =

∫ t

0
(f∗(s))p0 ds− t(f∗(t))p0.

The inequality (a− b)
1

p0 ≤ 2a
1

p0 − b
1

p0 , a ≥ b ≥ 0 yields

(3.2) �f0,t�Lp0 ≤ 2

(
∫ t

0
(f∗(s))p0 ds

)
1

p0

− t
1

p0 (f∗(t)).

Obviously, when |x| = |y|, f0,t(x) = f0,t(y) and f1,t(x) = f1,t(y), (3.1)
and (3.2) assure that f1,t ∈ Lp1

rad and f0,t ∈ Lp0

rad.
Since T is sublinear, according to [1, Ch. 1, (1.16)], we have

(Tf)∗(t) ≤ (Tf0,t)
∗(t/2) + (Tf1,t)

∗(t/2).

As T : Lpi

rad → Lpi , i = 0, 1 are bounded and fi,t ∈ Lpi

rad, i = 0, 1, we have

(Tf)∗(t) ≤ (t/2)
− 1

p0 M0�f0,t�Lp0 + (t/2)
− 1

p1 M1�f1,t�Lp1(3.3)

for some M0,M1 > 0.
Consequently, (3.1) and (3.2) yield C0, C1 > 0 such that

(Tf)∗(t) ≤ C0t
− 1

p0

(
∫ t

0
(f∗(s))p0 ds

)
1

p0

+ C1t
− 1

p1

(
∫ ∞

t
(f∗(s))p1 ds

)
1

p1
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= C0

(
∫ 1

0
(f∗(tu))p0 du

)
1

p0

+ C1

(
∫ ∞

1
(f∗(tu))p1 du

)
1

p1

where we use the substitution s = tu at the last equality. �

Theorem 3.2. Let 0 < p0 < p1 < ∞ and X be a r.i.q.B.f.s. Suppose
that T is sublinear and T : Lpi

rad → Lpi , i = 0, 1 are bounded. If p0 < pX
≤ qX < p1, then, T : Xrad → X is bounded.

Proof. The Aoki–Rolewicz theorem yields κ0 and κ1 so that ρκi

X
1
pi

(·),

i = 0, 1 are sub-additive.
Since ρX is a quasi-norm, in view of Proposition 3.1, we have

ρX((Tf)∗(t)) ≤ CρX

(
∫ 1

0
(f∗(tu))p0 du

)
1

p0

+ CρX

(
∫ ∞

1
(f∗(tu))p1 du

)
1

p1

= I + II

for some C > 0.
Since f∗ is non-increasing and ρκ0

X
1
p0

(·) is sub-additive, we get

Ip0κ0 = Cρκ0

X
1
p0

(
∫ 1

0
(f∗(tu))p0 du

)

≤ Cρκ0

X
1
p0

( 0
∑

j=−∞

2j−1(f∗(2j−1t))p0

)

≤ C
0

∑

j=−∞

2(j−1)κ0ρκ0

X
1
p0

((f∗(2j−1t))p0)

= C
0

∑

j=−∞

2(j−1)κ0ρκ0

X
1
p0

((D2j−1f∗(t))p0) = C
0

∑

j=−∞

2(j−1)κ0ρX(D2j−1f∗(t))p0κ0

Select an ε > 0 so that p0 < pX − ε, the definition of Boyd’s indices yields
a constant C > 0 such that

I ≤ C

( 0
∑

j=−∞

2(j−1)κ02
−

(j−1)p0κ0
pX−ε ρX(f∗(t))p0κ0

)
1

p0κ0

(3.4)

≤ CρX(f∗(t)) = C�f�X .

Similarly, as f∗ is non-increasing and ρκ1

X
1
p1

(·) is sub-additive, we obtain

IIp1κ1 ≤

∞
∑

j=0

2jκ1ρX(D2jf∗(t))p1κ1 .
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Take an ε > 0 so that qX + ε < p1. The definition of Boyd’s indices guar-
antees that

II ≤ C

( ∞
∑

j=0

2jκ12
−

jp1κ1
qX+ε ρX(f∗(t))p1κ1

)
1

p1κ1

≤ CρX(f∗(t)) = C�f�X(3.5)

for some C > 0. Therefore, (3.4) and (3.5) yield the boundedness of T : Xrad

→ X . �

If Tf is a radial function whenever f is radial, then the above theorem
shows that T is bounded on Xrad.

3.1. Disc multipliers and spherical means. For any f ∈ S ′(Rn),

the Fourier transform of f is denoted by f̂ .
For any R > 0 and f ∈ L2, define

SRf(x) = (2π)−n/2

∫

|ξ|<R
f̂(ξ)eix·ξ dξ

and

S∗f(x) = sup
R>0

|SRf(x)|, x ∈ R
n.

Write S = S1. In view of [10], we find that when n ≥ 2, S is bounded on Lp

if and only if p = 2.
On the other hand, Herz [12] obtained the following boundedness result

for S on the radial Lebesgue spaces.

Theorem 3.3. Let n ≥ 2. If 2n
n+1 < p < 2n

n−1 , then S is bounded on Lp
rad.

This result has been extended to S∗ in [18].

Theorem 3.4. Let n ≥ 2. If 2n
n+1 < p < 2n

n−1 , then S∗ is bounded

on Lp
rad.

Theorem 3.2 gives the subsequent boundedness result for S and S∗ on
radial rearrangement-invariant quasi-Banach function spaces.

Theorem 3.5. Let n ≥ 2 and X be a r.i.q.B.f.s. on R
n. If 2n

n+1 < pX
≤ qX < 2n

n−1 , then S and S∗ are bounded on Xrad.

Theorems 3.4 and 3.5 have also been generalized to the Bochner–Riesz
means and the Hankel multipliers.

Let 0 < α < n−1
2 . For any R > 0, the Bochner–Riesz mean is defined as

Sα
Rf(x) = (2π)−n/2

∫

|ξ|<R

(

1−
|ξ|2

R2

)α
f̂(ξ)eix·ξ dξ, f ∈ S ′(Rn), x ∈ R

n,
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and the corresponding maximal operator is given by

Sα
∗ f(x) = sup

R>0
|S∗

Rf(x)|.

Theorem 3.6 (Kanjin [19]). Let n ≥ 2 and 0 < α < n−1
2 . If 2n

n+1+2α <

p < 2n
n−1−2α , then Sα

∗ is bounded on Lp
rad.

Therefore, Theorem 3.2 yields the corresponding result for radial rear-
rangement-invariant quasi-Banach function spaces.

Theorem 3.7. Let n ≥ 2, 0 < α < n−1
2 and X be a r.i.q.B.f.s. on R

n.

If 2n
n+1+2α < pX ≤ qX < 2n

n−1−2α , then Sα
∗ is bounded on Xrad.

We now turn to the Hankel multipliers. Let K ∈ S ′(Rn) be a radial con-
volution kernel. For any t > 0, write Kt(x) = t−nK(t−1x), x ∈ R

n. Define
the Hankel multiplier associated with K, TK by TKf = K ∗ f .

Theorem 3.8 (G. Garrigós and A. Seeger [11]). Let n > 1, 1 < p < 2n
n+1

and K be a radial convolution kernel. Suppose that K̂ is locally square inte-

grable. If

(3.6) sup
t>0

�Φ ∗Kt�Lp < ∞

for a radial Schwartz function Φ whose Fourier transform is compactly sup-

ported in R
n\{0}, then TK is bounded on Lp

rad.

By using Theorem 3.2, we obtain the mapping properties for the Han-
kel multipliers TK on radial rearrangement-invariant quasi-Banach function
spaces.

Theorem 3.9. Let n > 1, K be a radial convolution kernel and X be a

r.i.q.B.f.s. on R
n. Suppose that K̂ is locally square integrable. If K satisfies

(3.6) for some p0, p1 with 1 < p0 < pX ≤ qX < p1 <
2n
n+1 , then the Hankel

multiplier TK is bounded from Xrad to Xrad.

In view of (2.4), we have the following result for the disc multiplier, the
Bochner–Riesz mean and the Hankel multipliers on Lp,q,b.

Corollary 3.10. Let n ≥ 2, 0 < α < n−1
2 , 1 ≤ p, q < ∞ and b be a

slowly varying function.

(1) If 2n
n+1 < p < 2n

n−1 , then S and S∗ are bounded on Lp,q,b
rad .

(2) If 2n
n+1+2α < p < 2n

n−1−2α , then Sα
∗ is bounded on Lp,q,b

rad .

(3) If 1 < p < 2n
n+1 and K satisfies (3.6) and K̂ is locally square inte-

grable, then TK is bounded on Lp,q,b
rad .
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3.2. Rough singular integrals. Let Ω∈L1(Sn−1) with
∫

Sn−1 Ω(ω)dω
= 0. The rough singular integral operator is defined as

TΩf(x) = lim
ε→0
R→∞

∫

ε<|y|<R

Ω(y)

|y|n
f(x− y) dy.

The corresponding maximal singular integral operator is given by

T ∗
Ωf(x) = sup

0<ε<R<∞

∣

∣

∣

∣

∫

ε<|y|<R

Ω(y)

|y|n
f(x− y)dy

∣

∣

∣

∣

.

[24, Theorem 2] asserts the boundedness of the TΩ and T ∗
Ω on radial

Lebesgue spaces.

Theorem 3.11. Let 1 < p < ∞ and Ω ∈ L1(Sn−1) with
∫

Sn−1 Ωdω = 0.
The rough singular integral operator TΩ and the maximal singular integral

operator T ∗
Ω are bounded from Lp

rad to Lp.

The boundedness of the rough singular integral operator on the entire
Lp requires some extra conditions imposed on Ω, see [5,23].

Theorem 3.2 assures the boundedness of TΩ and T ∗
Ω on radial rearrange-

ment-invariant quasi-Banach function spaces.

Theorem 3.12. Let Ω ∈ L1(Sn−1) with
∫

Sn−1 Ω(ω) dω = 0 and X be a

r.i.g.B.f.s. on R
n. If 1 < pX ≤ qX < ∞, then the rough singular integral

operator TΩ and the maximal singular integral operator T ∗
Ω are bounded from

Xrad to X .

In particular, if 1 < p, q < ∞, b be a slowly varying function and Ω ∈

L1(Sn−1) with
∫

Sn−1 Ω(ω) dω = 0, then TΩ : L
p,q,b
rad → Lp,q,b and T ∗

Ω : Lp,q,b
rad →

Lp,q,b are bounded.

3.3. Universal maximal operator. Let f be a locally integrable
function. The universal maximal operator M is defined as

Mf(x) = sup
R

1

|R|

∫

R
|f(y)| dy

where the supremum is taken over all rectangles R in R
n containing x with

arbitrary directions.

Theorem 3.13. Let p > n. The universal maximal operator M is

bounded on Lp
rad.

For the proof of the above result, the reader is referred to [3,4]. From
[3,4], it is also known that M is not bounded on Lp for all 1 ≤ p < ∞. The
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reader is referred to [7] for some extensions of the above result on lq radial
functions.

The preceding theorem and Theorem 3.2 yields the boundedness of the
universal maximal operator on radial rearrangement-invariant quasi-Banach
function spaces.

Theorem 3.14. Let X be a r.i.q.B.f.s. If n < pX ≤ qX < ∞, then the

universal maximal operator M is bounded from Xrad to X .

As a consequence of the preceding theorem, the universal maximal op-

erator M is bounded from Lp,q,b
rad to Lp,q,b when n < p < ∞, 1 ≤ q < ∞ and

b is a slowing varying function.

3.4. Directional operators. We recall the definitions of directional
operators from [6]. Let 0 < θ < 2π. For any f ∈ L2(R2) and x ∈ R

2 we
define

Mθf(x) = sup
h>0

1

2h

∫ h

−h
|f(x− teiθ)| dt,

Hθf(x) = lim
ε→0

1

π

∫

|t|>ε

f(x− teiθ)

t
dt = lim

ε→0
Hε,θf(x),

H∗
θ f(x) = sup

ε>0
|Hε,θf(x)|.

Let S1 be the unit circle in R
2 and E be a closed subset of S1. The

maximal directional operators associated with E are defined by

MEf(x) = sup
θ∈E

|Mθf(x)|,

HEf(x) = sup
θ∈E

|Hθf(x)|, H∗
Ef(x) = sup

θ∈E
|H∗

θ f(x)|.

Whenever E has positive Lebesgue measure, ME is unbounded on Lp(R2), 1
≤ p < ∞. If E = {θj}j∈N is a lacunary set, then ME is bounded on Lp(R2),
1 < p ≤ ∞, see [21].

For any E ⊂ S1, define

d(E) = lim
δ→0+

sup
logN(δ)

− log δ

where N(δ) is the minimum number of closed intervals of length δ needed

to cover E. For instance, when E is a Cantor ternary set, then d(E) = log 2
log 3 .

In view of [6], we have the following boundedness result for Lp
rad(R

2).
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Theorem 3.15. Let p > 1 + d(E). Then
(1) ME is bounded on Lp

rad(R
2).

(2) If d(E) < 1, then HE and H∗
E is bounded on Lp

rad(R
2).

Theorem 3.2 gives the corresponding result for radial rearrangement-
invariant quasi-Banach function spaces.

Theorem 3.16. Let X be a r.i.q.B.f.s. on R
2 with 1 + d(E) < pX ≤

qX < ∞. Then
(1) ME : Xrad → X is bounded.
(2) If d(E) < 1, then HE : Xrad → X and H∗

E : Xrad → X are bounded.

When E is a Cantor ternary set, the preceding theorem assures that

ME : Lp,q,b
rad → Lp,q,b, HE : Lp,q,b

rad → Lp,q,b andH∗
E : Lp,q,b

rad → Lp,q,b are bounded

provided that 1 + log 2
log 3 < p < ∞, 1 ≤ q < ∞ and b is a slowly varying func-

tion.
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