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In addition, it is worth mentioning that Hua [1] also proved that all suffi-
ciently large odd positive integers are sums of nine cubes of primes. After-
wards, the classical result of Hua (1.1) has been improved to

Es(N) ≪ N1−̺s ,

where ̺s > 0 (5 ≤ s ≤ 8). And over the years, a lot of specialists were en-
gaged in improving the values of ̺s, and the following results have been
achieved,

Ren [11], ̺5 =
1

153 − ε,

Wooley [16], ̺5 =
1
36 − ε, ̺6 =

1
18 − ε, ̺7 =

13
36 − ε, ̺8 =

25
36 − ε,

Kumchev [5], ̺5 =
5
84 , ̺6 =

4
35 , ̺7 =

11
28 , ̺8 =

61
84 ,

Kawada and Wooley [3], ̺6 =
5
28 , ̺7 =

19
42 , ̺8 =

11
14 ,

Zhao [18], ̺5 =
1
12 − ε, ̺6 =

1
4 − ε, ̺7 =

1
2 − ε, ̺8 =

5
6 − ε.

Hua’s theorem concerning nine cubes of prime integers has also been de-
veloped by Leung [7], Liu [9], and Zhao [19], who investigated the small
prime solutions of the cubic equation a1p

3
1 + · · · + a9p

3
9 = b, where a1, . . . ,

a9, b represent integers satisfying certain necessary conditions. In par-
ticular, Zhao [19] proved that the above cubic equation is solvable with
pj ≪ max{|a1|, . . . , |a9|}

2 + |b|1/3.
Throughout, we assume that N is a large natural number, and define

xs = (N/s)
1

3 , ys = xθss ,(1.2)

where 0 < θs < 1 is a constant and 5 ≤ s ≤ 8. We shall explore the number of
natural numbers n that satisfy the above congruence conditions respectively
and make the expression

(1.3) n = p31 + · · · + p3s, |pj − xs| ≤ ys (j = 1, · · · , s)

fail. As usual, let Es(xs, ys) denote the set of integers n satisfying the con-
gruence condition Ns, with |n−N | ≤ sx2sys, such that (1.3) has no solutions.
And we use Es(xs, ys) to represent the cardinality of Es(xs, ys). Our purpose
of this paper is to show that

Es(xs, ys) ≪ x2−ε
s ys,(1.4)

for any ε > 0 and θs is as small as possible.
In this topic, the first breakthrough was made by Liu and Sun [10]. Soon

afterwards, Wang [14] and Li [8] reduced these bounds successively. Ren and
Yao [12] by applying new estimates on the minor arcs in Zhao [18] improved
this result. Wei and Wooley [15] gave a substitute for a Weyl-type estimate
in [4] and used Vinogradov’s mean value theorem to give an analogue of
Hua’s lemma. This made it possible for them to improve θ7 and θ8. Huang
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Abstract. We investigate the exceptional sets of natural number n which
can be represented as sums of five and six cubes of almost equal primes, i.e. n =
p31 + · · ·+ p3s (s=5,6). It is established that almost all natural numbers n subject

to certain congruence conditions have the above representation with |pj − (n/s)
1

3 |

≤ nθs/3+ε (1 ≤ j ≤ s), where θ5 = 8/9 + ε and θ6 = 5/6 + ε.

1. Introduction

The Waring–Goldbach problem is to study the representation of positive
integers as sums of powers of prime numbers. In this paper, we shall focus on
the cubic Waring–Goldbach problem. This topic can be traced back to the
work of Hua [1]. He proved that almost all integers satisfying certain con-
gruence conditions can be written as s cubes of primes, where s = 5, 6, 7, 8,
and the above-mentioned congruence conditions are

N5 =
{

n ∈ N : n ≡ 1 (mod 2), n �≡ 0,±2 (mod 9), n �≡ 0 (mod 7)
}

,

N6 =
{

n ∈ N : n ≡ 0 (mod 2), n �≡ ±1 (mod 9)
}

,

N7 =
{

n ∈ N : n ≡ 1 (mod 2), n �≡ 0 (mod 9)
}

,

N8 =
{

n ∈ N : n ≡ 0 (mod 2)
}

.

If Es(N) denotes the number of positive numbers n not exceeding N , satis-
fying the above congruence conditions but cannot be represented as s cubes
of primes, Hua showed that for any A > 0,

Es(N) ≪ N(logN)−A.(1.1)
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And we use Es(xs, ys) to represent the cardinality of Es(xs, ys). Our purpose
of this paper is to show that
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for any ε > 0 and θs is as small as possible.
In this topic, the first breakthrough was made by Liu and Sun [10]. Soon

afterwards, Wang [14] and Li [8] reduced these bounds successively. Ren and
Yao [12] by applying new estimates on the minor arcs in Zhao [18] improved
this result. Wei and Wooley [15] gave a substitute for a Weyl-type estimate
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[2] made further efforts on Weyl sums in short intervals, so that he further
reduced the bounds for θ7 and θ8. Recently, Kumchev and Liu [6] obtained
improvement on the bounds for θ7 and θ8 by making use of a sieve method.
The above mentioned θs (5 ≤ s ≤ 8) such that (1.4) holds are listed as fol-
lows,

Liu and Sun [10], θ5 =
33
34 + ε, θ6 =

17
18 + ε, θ7 =

35
38 + ε, θ8 =

9
10 + ε,

Wang [14], θ5 =
24
25 + ε, θ6 =

14
15 + ε, θ7 =

32
35 + ε, θ8 =

9
10 + ε,

Li [8], θ5 =
15
16 + ε, θ6 =

11
12 + ε, θ7 =

10
11 + ε, θ8 =

19
21 + ε,

Ren and Yao [12], θ5 =
80
87 + ε, θ6 =

48
53 + ε, θ7 =

100
111 + ε, θ8 =

168
187 + ε,

Wei and Wooley [15], θ7 = θ8 =
4
5 + ε,

Huang [2], θ7 = θ8 =
19
24 + ε,

Kumchev and Liu [6], θ7 = θ8 =
31
40 + ε.

In this paper we shall improve θ5 and θ6 in [12].

Theorem 1.1. Let θ5 = 8/9+ ε and θ6 = 5/6 + ε. Then (1.4) holds for

s = 5, 6.

We shall prove Theorem 1.1 by means of the Hardy–Littlewood method.
The treatment of the integrals on the major arcs is standard, and we will
focus on the treatment of the integrals on the minor arcs. As usual, an
argument of Wooley [16] yields an upper bound for Es(xs, ys) which involves
the integrals of 2s-th powers of the generating function on the minor arcs.
Unlike [12], we apply the idea of [18] for the above integrals directly. Besides,
we apply an estimate appeared in [15] to substitute the traditional use of
Hua’s lemma when we consider the case of s = 6.

Notation. Throughout the paper, ε denotes a sufficiently small posi-
tive number, and c denotes a positive constant. We need to point out that
both ε and c are allowed to change at different occurrences. With or without
subscript, p denotes a prime number. And as usual, we write L for logN ,
e(x) for e2πix.

2. Preliminaries

As usual, when n is a natural number with |n−N | ≤ sx2sys, where xs
and ys are defined in (1.2) and θs is given in Theorem 1.1, we denote by
Rs(n) the weighted number of solutions of n = p31 + · · · + p3s with |pj − xs|
≤ ys (1 ≤ j ≤ s) given by

Rs(n) =
∑

n=p3

1
+···+p3

s

|pj−xs|≤ys

(log p1) · · · (log ps).
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In order to apply the Hardy–Littlewood method, we define the generating
function as

fs(α) =
∑

xs−ys≤p≤xs+ys

(log p)e(p3α).

Then it follows from orthogonality that

Rs(n) =

∫ 1

0
fs(α)

se(−nα) dα.

For the purpose of introducing the major arcs and the minor arcs, we write

Ps = y2sx
−19/12−ε
s and Qs = x31/12+ε

s .(2.1)

Then we denote by Ms and ms the major arcs and minor arcs respectively
as follows

Ms =
⋃

q≤Ps

⋃

1≤a≤q
(a,q)=1

{α : |qα− a| ≤ Q−1
s }(2.2)

and

ms = [0, 1)/Ms.(2.3)

In the remaining part of this section we shall introduce some useful lem-
mas. To begin with, we define the multiplicative function w(q) by

w(p3u+v) =

{

3p−u− 1

2 , u ≤ 0, v = 1,

p−u−1, u ≤ 0, v = 2, 3.
(2.4)

Lemma 2.1 ([4, Lemma 2.2] or [17, Lemma 2]). Assume that 0 < ρ ≤
1/4, y ≤ x, x3 ≤ y4−2ρ and ℓ is a subinterval of (x, x+ y]. Then either

∑

n∈ℓ

e(n3α) ≪ y1−ρ+ε,

or there exist integers a and q such that

1 ≤ q ≤ y3ρ, (a, q) = 1, |qα − a| ≤ x−2y3ρ−1

and
∑

n∈ℓ

e(n3α) ≪
yw(q)

1 + x2y|α− a/q|
+ x3/2+εy−1.
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Combining [17, Lemma 1] and [17, Lemma 3] we get the following result.

Lemma 2.2. Suppose that x, y and ρ satisfy the conditions of Lemma 2.1.
Denote by M the union of the intervals

M(q, a) = {α : |qα− a| ≤ x−2y3ρ−1}

with 1 ≤ a ≤ q ≤ y3ρ and (a, q) = 1. Assume that G(α) and h(α) are inte-
grable functions of period one and define

g(α) =
∑

n∈A

(logn)e(n3α),

where A is any subinterval of (x, x+ y]. Then for any measurable set m ⊆
[0, 1), one finds that

∫

m

G(α)h(α)g(α) dα

≪ y5/4x−1/2+ε

(
∫

m

|G(α)|2 dα

)1/4

J (m)1/2 + y1−ρ/2+εJ (m),

where

J (m) =

∫

m

|G(α)h(α)| dα.

At the end of this section, we are going to expound the major arcs con-
tribution in the form of a proposition.

Proposition 2.3 [12, Proposition 1]. Let Ps and Qs be defined by (2.1)
and let Ms be defined by (2.2). When n belongs to [N − sx2sys,N + sx2sys]
∩Ns, for any A > 0 we have

∫

Ms

fs(α)
se(−nα) dα =

1

3s
Ss(n)Js(n) + O(ys−1

s x−2
s L−A),

where

Ss(n) =
∞
∑

q=1

Φ(q)−s
∑

1≤a≤q
(a,q)=1

(

∑

1≤h≤q(h,q)=1

e
(ah3

q

)

)s

e
(

−
an

q

)

is the singular series which is absolutely convergent and satisfies Ss(n)≫1,
and

Js(n) =
∑

m1+···+ms=n
(xs−ys)3≤mj≤(xs+ys)3

(m1 · · ·ms)
−2/3 ≍ ys−1

s x−2
s

is the singular integral.
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3. Proof of Theorem 1.1

For the purpose of proving Theorem 1.1, we firstly introduce Kumchev’s
result [4, Theorem 2] in estimates for exponential sums over primes in short
intervals.

Lemma 3.1. Let θ be a real number with 4/5 < θ ≤ 1 and assume that

0 < µ ≤ min
(

(2θ− 1)/14, (14θ− 11)/30, (5θ− 4)/6
)

.

For a given positive number P , we suppose that

M(P ) =
⋃

q≤P

⋃

1≤a≤q
(a,q)=1

{

|qα− a| ≤ x−3+2(1−θ)P
}

,

and write m(P ) = [0, 1) \M(P ) for the complementary set to the set M(P ).
Then for any fixed ε > 0, we have

sup
α∈m(P )

∣

∣

∣

∣

∑

x<n≤x+y

Λ(n)e(n3α)

∣

∣

∣

∣

≪ xθ−µ+ε + xθ+εP−1/2.

In order to proceed further, we need to define some symbols. Let

ρ5 = 1/4 and ρ6 = 1/5.(3.1)

Lemma 3.2. Assume that

I(t) =

∫

m5

|f5(α)|
t dα.

Then we have

I(10) ≪ y
63/8
5 x−1+ε

5 + y
27/4+ε
5 .

Proof. By taking x = x5 and y = y5 then applying Lemma 2.2 with
G(α) = |f5(α)|

8, g(α) = f5(α), h(α) = f5(−α) and ρ = ρ5 which is defined
in (3.1), one finds that

I(10) ≪ y
5/4
5 x

−1/2+ε
5 I(16)1/4I(9)1/2 + y

7/8+ε
5 I(9).(3.2)

We next take Cauchy’s inequality to I(9) to obtain

I(9) ≤ I(8)1/2I(10)1/2.

An argument similar to the proof of Hua’s lemma (e.g., see [13, Lemma 2.5])
yields

I(8) ≤

∫ 1

0
|f5(α)|

8 dα ≪ y5+ε
5 .(3.3)
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Thus it follows from the above two inequalities that

I(9) ≪ y
5/2+ε
5 I(10)1/2.(3.4)

On the other hand, one can find that

I(16) ≤ sup
α∈m5

|f5(α)|
6I(10).(3.5)

Now denote P =P5, x=x5 and xθ=y5 in Lemma 3.1. Then m(P )=m5 and

sup
α∈m5

|f5(α)| ≪ y5x
−µ+ε
5 + y1+ε

5 P
−1/2
5 .

By taking µ = 1/27, (1.2), (2.1) and θ5 = 8/9 + ε which is defined in Theo-
rem 1.1 yields that

(3.6) sup
α∈m5

|f5(α)| ≪ y5x
−1/27+ε
5 + x

19/24+ε
5 ≪ y

23/24+ε
5 .

Combining (3.5) and (3.6), we can obtain

I(16) ≪ y
23/4+ε
5 I(10).(3.7)

We therefore deduce from (3.2), (3.4) and (3.7) that

I(10)≪ y
63/16
5 x

−1/2+ε
5 I(10)1/2+y

27/8+ε
5 I(10)1/2 ≪ y

63/8
5 x−1+ε

5 +y
27/4+ε
5 . �

Lemma 3.3. Assume that

K(t) =

∫

m6

|f6(α)|
t dα.

Then we have

K(12) ≪ y
107/10
6 x

−7/4+ε
6 + y

52/5
6 x

−3/2+ε
6 .

Proof. Setting x = x6, y = y6, G(α) = |f6(α)|
10, g(α) = f6(α), h(α) =

f6(−α) and recalling ρ6 = 1/5 in (3.1), Lemma 2.2 yields

K(12) ≪ y
5/4
6 x

−1/2+ε
6 K(20)1/4K(11)1/2 + y

9/10+ε
6 K(11).(3.8)

An application of Hölder’s inequality leads to the bound

K(11) ≪ K(8)1/4K(12)3/4.(3.9)
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Similarly to (3.3) we can obtain

K(8) ≪ y5+ε
6 .

Besides, [15, Propositon 2.2] yields

K(12) ≪ y116 x−2+ε
6 .(3.10)

We therefore substitute the above two bounds into (3.9) to get

K(11) ≪ y
19/2
6 x

−3/2+ε
6 .(3.11)

Now we turn to the contribution from K(20). Indeed,

K(20) ≪ sup
α∈m6

|f6(α)|
8K(12).(3.12)

It follows from Lemma 3.1 with µ = 1/48, P = P6, x = x6 and xθ = y6 that

sup
α∈m6

|f6(α)| ≪ y6x
−1/48+ε
6 + x

19/24+ε
6 .

Recalling that y6 = xθ66 in (1.2) and θ6 = 5/6 + ε, one obtains

sup
α∈m6

|f6(α)| ≪ y
39/40+ε
6 .(3.13)

Substitute (3.10) and (3.13) into (3.12), one has

K(20) ≪ y
94/5
6 x−2+ε

6 .(3.14)

Thus, it follows from (3.8), (3.11) and (3.14) that

K(12) ≪ y
5/4
6 x

−1/2+ε
6 (y

94/5
6 x−2+ε

6 )1/4(y
19/2
6 x

−3/2+ε
6 )1/2 + y

9/10+ε
6 y

19/2
6 x

−3/2+ε
6

≪ y
107/10
6 x

−7/4+ε
6 + y

52/5
6 x

−3/2+ε
6 . �

We shall finish our proof by means of an argument of Wooley (see [16]),
Lemma 3.2 and Lemma 3.3.

Proof of Theorem 1.1. On recalling the definition of Es(xs, ys) in
Section 1, one finds that

0 =
∑

n∈Es(xs,ys)

∫ 1

0
fs(α)

se(−nα) dα
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K(8) ≪ y5+ε
6 .

Besides, [15, Propositon 2.2] yields

K(12) ≪ y116 x−2+ε
6 .(3.10)

We therefore substitute the above two bounds into (3.9) to get

K(11) ≪ y
19/2
6 x

−3/2+ε
6 .(3.11)

Now we turn to the contribution from K(20). Indeed,

K(20) ≪ sup
α∈m6

|f6(α)|
8K(12).(3.12)

It follows from Lemma 3.1 with µ = 1/48, P = P6, x = x6 and xθ = y6 that

sup
α∈m6

|f6(α)| ≪ y6x
−1/48+ε
6 + x

19/24+ε
6 .

Recalling that y6 = xθ66 in (1.2) and θ6 = 5/6 + ε, one obtains

sup
α∈m6

|f6(α)| ≪ y
39/40+ε
6 .(3.13)

Substitute (3.10) and (3.13) into (3.12), one has

K(20) ≪ y
94/5
6 x−2+ε

6 .(3.14)

Thus, it follows from (3.8), (3.11) and (3.14) that

K(12) ≪ y
5/4
6 x

−1/2+ε
6 (y

94/5
6 x−2+ε

6 )1/4(y
19/2
6 x

−3/2+ε
6 )1/2 + y

9/10+ε
6 y

19/2
6 x

−3/2+ε
6

≪ y
107/10
6 x

−7/4+ε
6 + y

52/5
6 x

−3/2+ε
6 . �

We shall finish our proof by means of an argument of Wooley (see [16]),
Lemma 3.2 and Lemma 3.3.

Proof of Theorem 1.1. On recalling the definition of Es(xs, ys) in
Section 1, one finds that

0 =
∑

n∈Es(xs,ys)

∫ 1

0
fs(α)

se(−nα) dα

Acta Mathematica Hungarica

EXCEPTIONAL SETS FOR SUMS OF FIVE AND SIX ALMOST EQUAL PRIME CUBES 431



Acta Mathematica Hungarica 156, 2018

EXCEPTIONAL SETS FOR SUMS OF FIVE AND SIX ALMOST EQUAL PRIME CUBES 9

=
∑

n∈Es(xs,ys)

∫

Ms

fs(α)
se(−nα) dα+

∑

n∈Es(xs,ys)

∫

ms

fs(α)
se(−nα) dα

=
∑

n∈Es(xs,ys)

∫

Ms

fs(α)
se(−nα) dα+

∫

ms

fs(α)
s

∑

n∈Es(xs,ys)

e(−nα) dα,

and it follows that
∣

∣

∣

∣

∫

ms

fs(α)
s

∑

n∈Es(xs,ys)

e(−nα) dα

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

n∈Es(xs,ys)

∫

Ms

fs(α)
se(−nα) dα

∣

∣

∣

∣

.(3.15)

By applying Proposition 2.3, one has

∣

∣

∣

∣

∑

n∈Es(xs,ys)

∫

Ms

fs(α)
se(−nα) dα

∣

∣

∣

∣

≫ x−2
s ys−1

s Es,(3.16)

where we use Es to represent Es(xs, ys), and thus we deduce from (3.15),
(3.16) and the triangle inequality that

∫

ms

∣

∣

∣

∣

fs(α)
s

∑

n∈Es(xs,ys)

e(−nα)

∣

∣

∣

∣

dα ≫ x−2
s ys−1

s Es.(3.17)

By taking Cauchy’s inequality to the lefthand side of (3.17), we obtain

∫

ms

∣

∣

∣

∣

fs(α)
s

∑

n∈Es(xs,ys)

e(−nα)

∣

∣

∣

∣

dα(3.18)

≤

(
∫

ms

|fs(α)|
2s dα

)1/2(∫ 1

0

∣

∣

∣

∣

∑

n∈Es(xs,ys)

e(−nα)

∣

∣

∣

∣

2

dα

)1/2

≤

(
∫

ms

|fs(α)|
2s dα

)1/2

E1/2
s .

Consequently, the estimates (3.17) and (3.18) together lead to

Es ≪ x4sy
2(1−s)
s

∫

ms

|fs(α)|
2s dα.(3.19)

We consider the case s = 5 firstly. Indeed, (3.19) with s = 5 yields

E5 ≪ x45y
−8
5 I(10).
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Then by applying Lemma 3.2 one has

E5 ≪ x3+ε
5 y

−1/8
5 + x4+ε

5 y
−5/4
5 .

On recalling θ5 = 8/9 + ε, we therefore obtain

E5 ≪ x2−ε
5 y5.

We secondly calculate the case s = 6. One can deduce from (3.19) with s = 6
that

E6 ≪ x46y
−10
6 K(12).

We substitute Lemma 3.3 into the above expression to get

E6 ≪ x
9/4+ε
6 y

7/10
6 + x

5/2+ε
6 y

2/5
6 .

Thus our choice of θ6 = 5/6 + ε yields to

E6 ≪ x2−ε
6 y6. �
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Then by applying Lemma 3.2 one has

E5 ≪ x3+ε
5 y

−1/8
5 + x4+ε

5 y
−5/4
5 .

On recalling θ5 = 8/9 + ε, we therefore obtain

E5 ≪ x2−ε
5 y5.

We secondly calculate the case s = 6. One can deduce from (3.19) with s = 6
that

E6 ≪ x46y
−10
6 K(12).

We substitute Lemma 3.3 into the above expression to get

E6 ≪ x
9/4+ε
6 y

7/10
6 + x

5/2+ε
6 y

2/5
6 .

Thus our choice of θ6 = 5/6 + ε yields to

E6 ≪ x2−ε
6 y6. �
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