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Abstract. Let (Ω, µ) be a σ-finite measure space, and let X ⊂ L1(Ω) +
L∞(Ω) be a fully symmetric space of measurable functions on (Ω, µ). If µ(Ω) = ∞,
necessary and sufficient conditions are given for almost uniform convergence in X

(in Egorov’s sense) of Cesàro averagesMn(T )(f) =
1

n

∑
n−1

k=0
T k(f) for all Dunford–

Schwartz operators T in L1(Ω) + L∞(Ω) and any f ∈ X. If (Ω, µ) is quasi-non-
atomic, it is proved that the averages Mn(T ) converge strongly in X for each
Dunford–Schwartz operator T in L1(Ω) + L∞(Ω) if and only if X has order con-
tinuous norm and L1(Ω) is not contained in X.

1. Introduction

Let (Ω,A, µ) be a complete σ-finite measure space. Denote by L0 =
L0(Ω) the algebra of equivalence classes of almost everywhere (a.e.) finite
real-valued measurable functions on Ω. Let Lp = Lp(Ω) ⊂ L0, 1 ≤ p ≤ ∞,
be the Lp-space equipped with the standard norm � · �p.

Let T : L1 + L∞ → L1 + L∞ be a Dunford–Schwartz operator (writing
T ∈ DS), that is, T is linear and

�T (f)�1 ≤ �f�1 for all f ∈ L1 and �T (f)�∞ ≤ �f�∞ for all f ∈ L∞.

If T ∈ DS is positive, that is, T (f) ≥ 0 whenever f ≥ 0, then we shall write
T ∈ DS+.

∗Corresponding author.
Key words and phrases: symmetric function space, Dunford–Schwartz operator, individual

ergodic theorem, almost uniform convergence, mean ergodic theorem.
Mathematics Subject Classification: 46E30, 37A30, 47A35.
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The Dunford–Schwartz individual ergodic theorem states that for every
T ∈ DS and f ∈ Lp, 1 ≤ p < ∞, the averages

(1) Mn(T )(f) =
1

n

n−1∑

k=0

T k(f)

converge a.e. to some f̂ ∈ Lp (see, for example, [6, Ch. VIII, §6, Theorem
VIII.6.6]).

In the case µ(Ω) < ∞, it follows from Egorov’s theorem that a.e. con-
vergence coincides with the almost uniform (a.u.) convergence, thus, the
Dunford–Schwartz individual ergodic theorem asserts a.u. convergence of
the averages Mn(T )(f) for each f ∈ Lp, 1 ≤ p < ∞, and all T ∈ DS. If
µ(Ω) = ∞, then it is clear that a.u. convergence (in Egorov’s sense) is gen-
erally stronger than a.e. convergence, so it is interesting to see if there exist
functions f ∈ L1 + L∞ such that the ergodic averages (1) converge a.u. for
every T ∈ DS.

Thus, if µ(Ω) = ∞, there is the problem of describing the largest sub-
space of L1 + L∞ for which a.u. convergence in the Dunford–Schwartz indi-
vidual ergodic theorem holds. To this end, let

(2) Rµ =
{
f ∈ L1 + L∞ : µ{|f | > λ} < ∞ for all λ > 0

}
.

In Section 3 we prove (Theorem 3.1) that for each f ∈ Rµ and any T ∈ DS

the averages Mn(T )(f) converge a.u. to some f̂ ∈ Rµ. It should be pointed
out that, by virtue of Lemma 3.1, the proof of a.u. convergence in the
Dunford–Schwartz ergodic theorem is noticeably simpler than the proof of
a.e. convergence. We also show that Rµ is the largest subspace of L1 + L∞

for which the convergence takes place: if f ∈ (L1 + L∞) \ Rµ, then there
exists T ∈ DS such that the sequence {Mn(T )(f)} does not converge a.u.
(Theorem 3.5).

A well-known mean ergodic theorem asserts (see, for example, [6,
Ch. VIII, §5]) that the averages Mn(T ) converge strongly in a reflexive
Banach space (X, � · �X) for every linear contraction T of X , that is, given
x ∈ X , there exists x̂ ∈ X such that

∥∥∥∥
1

n

n−1∑

k=0

T k(x)− x̂

∥∥∥∥
X

→ 0 as n → ∞.

Important examples illustrating this ergodic theorem are the reflexive spaces
Lp, 1 < p < ∞. In particular, the averages Mn(T ) converge strongly in Lp

for any T ∈ DS. For the spaces L1 and L∞, the mean ergodic theorem is
false, in general.
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It is known that if T ∈ DS, then T (X) ⊂ X for any exact interpolation
(for the Banach pair (L1, L∞)) symmetric space X of real-valued measur-
able functions on (Ω, µ). In addition, �T�X→X ≤ 1 (see, for example, [11,
Ch. II, §4, Sec. 2]). Recall also that the class of exact interpolation sym-
metric spaces for the Banach pair (L1, L∞) coincides with the class of fully
symmetric spaces on (Ω, µ) [11, Ch. II, §4, Theorem 4.3]. Therefore, there
is the problem of describing the class of fully symmetric spaces X for which
the mean ergodic theorem with respect to the action of an arbitrary T ∈ DS
is valid.

If X is a separable symmetric space on the non-atomic measure space
((0, a), ν), where 0 < a < ∞ and ν is the Lebesgue measure, then the aver-
ages Mn(T ) converge strongly in X for every T ∈ DS (see [21,22]; also [23,
Ch. 2, §2.1, Theorem 2.1.3]). At the same time, if X is a non-separable fully

symmetric space, then for each f ∈ X \L∞(0, a)
�·�X

there exist T ∈ DS and

a function f̃ , equimeasurable with f , such that the sequence {An(T )(f̃)}
does not converge strongly in X [22]. Note also that, for the separable
symmetric space L1((0,∞), ν), there exists T ∈ DS such that the averages
Mn(T ) do not converge strongly in L1((0,∞), ν).

The main result of Section 4 is Theorem 4.5, which gives a criterion for
a fully symmetric space X to satisfy the following: the averages Mn(T )(f)
converge strongly in X for every f ∈ X and T ∈ DS.

In Section 5 we discuss some (classes of) fully symmetric spaces for which
Dunford–Schwartz-type ergodic theorems hold/fail.

2. Preliminaries

Let (Ω,A, µ) be a σ-finite measure space and let L0 = L0(Ω) be the al-
gebra of (classes of) a.e. finite real-valued measurable functions on (Ω,A, µ).
Let L0

µ be the subalgebra in L0 consisting of the functions f ∈ L0 such that
µ{|f | > λ} < ∞ for some λ > 0.

In what follows tµ will stand for the measure topology in L0, that is, the
topology given by the following system of neighborhoods of zero:

N (ε, δ) =
{
f ∈ L0 : µ{|f | > δ} ≤ ε

}
, ε > 0, δ > 0.

It is well-known (see, for example, [7, Ch. IV, §27, Theorem 5]) that (L0, tµ)
is a complete metrizable vector space. Since L0

µ is a closed linear subspace

of (L0, tµ) (see, for example, [11, Ch. II, §2]), (L0
µ, tµ) is also a complete

metrizable vector space.
Denote by Lp = Lp(Ω) ⊂ L0

µ, 1 ≤ p ≤ ∞, the classical Banach space
equipped with the standard norm � · �p.
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If f ∈ L0
µ, then the non-increasing rearrangement of f is defined as

f∗(t) = inf
{
λ > 0 : µ{|f | > λ} ≤ t

}
, t > 0,

(see [11, Ch. II, §2]).
Consider the σ-finite measure space ((0,∞), ν), where ν is the Lebesgue

measure. A non-zero linear subspace X ⊂ L0
ν with a Banach norm � · �X is

called symmetric (fully symmetric) on ((0,∞), ν) if

f ∈ X, g ∈ L0
ν , g∗(t) ≤ f∗(t) for all t > 0

respectively,

f ∈ X, g ∈ L0
ν ,

∫ s

0
g∗(t) dt ≤

∫ s

0
f∗(t) dt for all s > 0 (writing g ≺≺ f)

implies that g ∈ X and �g�X ≤ �f�X .
Let (X, � · �X) be a symmetric (fully symmetric) space on ((0,∞), ν).

Define

X(Ω) =
{
f ∈ L0

µ : f∗(t) ∈ X
}

and set

�f�X(Ω) = �f∗(t)�X , f ∈ X(Ω).

It is shown in [10] (see also [17, Ch. 3, Section 3.5]) that (X(Ω),� · �X(Ω)

is a Banach space and the conditions f ∈ X(Ω), g ∈ L0
µ, g∗(t) ≤ f∗(t)

for every t > 0 (respectively, g ≺≺ f) imply that g ∈ X(Ω) and �g�X(Ω)

≤ �f�X(Ω). In such a case, we say that (X(Ω), � · �X(Ω)) is a symmetric
(fully symmetric) space on (Ω,A, µ) generated by the symmetric (fully sym-
metric) space (X, � · �X). It is clear that if f, g ∈ X(Ω) and f∗ = g∗, then
�f�X(Ω) = �g�X(Ω).

In what follows, if it does not cause confusion, we will write (X, � · �X),
or simply X , instead of (X(Ω), � · �X(Ω).

Immediate examples of fully symmetric spaces are L1 ∩ L∞ with the
norm

�f�L1∩L∞ = max
{
�f�L1, �f�L∞

}

and L1 + L∞ with the norm

�f�L1+L∞ = inf {�g�1 + �h�∞ : f = g+h, g ∈ L1, h ∈ L∞}=
∫ 1

0
f∗(t) dt

(see [11, Ch. II, §4]).
It is known that a symmetric space X is fully symmetric if and only

if X is an exact interpolation space for the Banach couple (L1, L∞) (see,
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for example, [1, Ch. 3, §2, Theorem 2.2], [11, Ch. II, §4, Theorem 4.3]).
Consequently, T (X) ⊂ X and �T�X→X ≤ 1 for any T ∈ DS.

We need the following property of embeddings of symmetric spaces [20,
Ch. 6, §6.1, Proposition 6.1.1].

Proposition 2.1. If (X1,� ·�X1
) and (X2,� ·�X2

) are symmetric spaces
with X1 ⊂ X2, then there is a constant c > 0 such that �f�X2

≤ c�f�X1
for

all f ∈ X1.

It follows from Proposition 2.1 that if (X, � · �1) and (X, � · �2) are sym-
metric spaces, then the norms � · �1 and � · �2 are equivalent.

Given a symmetric space (X, � · �X), in view of the embeddings

L1 ∩ L∞ ⊂ X ⊂ L1 + L∞

[1, Ch. 2, §6, Theorem 6.6], it follows from Proposition 2.1 that there
exist constants c1 > 0 and c2 > 0 such that �f�X ≤ c1�f�L1∩L∞ for all
f ∈ L1 ∩ L∞ and �f�L1+L∞ ≤ c2�f�X for all f ∈ X .

A symmetric space (X, � · �X) is said to have order continuous norm if
�fα�X ↓ 0 whenever fα ∈ X and fα ↓ 0. It is clear that a symmetric space X
has (respectively, has no) order-continuous norm if and only if a symmetric
space on ((0,∞), ν), that generates X , has (respectively, has no) order-
continuous norm. Besides, a symmetric space on ((0,∞), ν) has order con-
tinuous norm if and only if it is separable [20, II, Ch. 6, §6.5, Theorem 6.5.3.].
In addition, by [11, Ch. II, §4, Theorem 4.10] and [20, II, Ch. 6, §6.5, The-
orem 6.5.3], every separable symmetric space X on ((0,∞), ν) is an exact
interpolation space for the Banach pair (L1, L∞). Hence, in this case, X is
a fully symmetric space [11, Ch. II, §4, Theorem 4.3].

If (X, � · �X) is a symmetric space on ((0,∞), ν), then the Köthe dual
X× is defined as

X× =
{
f ∈ L0

ν : fg ∈ L1 for all g ∈ X
}
,

and

�f�X× = sup

{∣∣∣∣
∫ ∞

0
fg dν

∣∣∣∣ : g ∈ X, �g�X ≤ 1

}
if f ∈ X×.

It is known that (X×, � · �X×) is a fully symmetric space (see, for exam-
ple, [11, Ch. II, §4, Theorem 4.9], [20, II, Ch. 7, §7.2, Theorem 7.2.2]). In
addition,

X ⊂ X××, (L1)× = L∞, (L∞)× = L1;

(L1 + L∞, � · �L1+L∞)× = (L1 ∩ L∞, � · �L1∩L∞);

(L1 ∩ L∞, � · �L1∩L∞)× = (L1 + L∞, � · �L1+L∞)

(see [20, II, Ch. 7]).
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Note that

X×(Ω) =
{
f ∈ L0

µ : fg ∈ L1(Ω) for all g ∈ X(Ω)
}
,

and

�f�X×(Ω) = sup

{∣∣∣∣
∫

Ω
fg dµ

∣∣∣∣ : g ∈ X(Ω), �g�X(Ω) ≤ 1

}
, f ∈ X×(Ω).

The fully symmetric space (X×(Ω),� · �X×(Ω)) is called the Köthe dual space
of the symmetric space (X(Ω), � · �X(Ω)).

A symmetric space (X,� · �X) is said to possess the Fatou property if the
conditions

0 ≤ fn ∈ X, fn ≤ fn+1 for all n, and sup
n

�fn�X < ∞

imply that f = supn fn ∈ X and �f�X = supn �fn�X exist.
If X = X××, then the symmetric space X possesses the Fatou property

(see, for example, [14, Vol.II, Ch. I, §1b]); in particular, the fully symmetric
space (L1+L∞,� · �L1+L∞) possesses the Fatou property. In addition, in any
symmetric space (X, � · �X) with the Fatou property the conditions fn ∈ X ,
supn �fn�X ≤ α, f ∈ L0 and fn → f in tµ imply that f ∈ X and �f�X ≤ α
(see, for example, [9, Ch. IV, §3, Lemma 5]).

Define

Rµ =
{
f ∈ L1 + L∞ : f∗(t) → 0 as t → ∞

}
.

It is clear that Rµ admits a more direct description (2).
Note that if µ(Ω) < ∞, then Rµ is simply L1. However, we will be

concerned with infinite measure spaces.
By [11, Ch. II, §4, Lemma 4.4], (Rµ, � · �L1+L∞) is a symmetric space.

In addition, Rµ is the closure of L1 ∩ L∞ in L1 + L∞ (see [11, Ch. II, §3,
Section 1]). In particular, (Rµ, � · �L1+L∞) is a fully symmetric space.

Let χE be the characteristic function of a set E ∈ A. Denote 1 = χΩ.
The following gives a necessary and sufficient condition for the embedding
of a symmetric space into Rµ.

Proposition 2.2. If µ(Ω) = ∞, then a symmetric space X ⊂ L0
µ is con-

tained in Rµ if and only if 1 �∈ X .

We will also need the next property of the fully symmetric space Rµ.

Proposition 2.3. For every f ∈ Rµ and ε > 0 there exist gε ∈ L1 and
hε ∈ L∞ such that

f = gε + hε and �hε�∞ ≤ ε.

For proofs of Propositions 2.2 and 2.3, see [2, Propositions 2.1, 2.2].
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3. Almost uniform convergence in the Dunford–Schwartz
pointwise ergodic theorem

A sequence {fn} ⊂ L0 is said to converge almost uniformly to f ∈ L0

if for every ε > 0 there exists a set E ⊂ Ω such that µ(Ω \ E) ≤ ε and
�(f − fn)χE�∞ → 0. The main goal of this section is to prove the following
extension of the classical Dunford–Schwartz pointwise ergodic theorem.

Theorem 3.1. Assume that (Ω,A, µ) is an arbitrary measure space, and
let X be a fully symmetric space on (Ω,A, µ) such that 1 �∈ X . If T ∈ DS

and f ∈ X , then the averages (1) converge a.u. to some f̂ ∈ X . In particular,

Mn(T )(f) → f̂ ∈ Rµ a.u. for all f ∈ Rµ.

Remark 3.1. In proving Theorem 3.1, we can and will assume that
(Ω,A, µ) is σfinite. Indeed, if f ∈ X and 1 �∈ X , then f ∈ Rµ by Propo
sition 2.2, which implies that {T k(f)}∞k=0 ⊂ Rµ. Therefore, the set Ωf =⋃

k{T
k(f) �= 0} is σfinite, and one can replace Ω by Ωf .

In view of Propositions 2.2 and 2.3, the proof of Theorem 3.1 can be
easily reduced to the case X = L1, so we shall treat this case first.

Let (X, � · �X) be a Banach space, and let Mn : X → L0 be a sequence
of linear maps. Denote

M⋆(f) = sup
n

|Mn(f)|,

the maximal function of f ∈ X . If M⋆(f) ∈ L0 for all f ∈ X , then the func
tion

M⋆ : X → L0, f ∈ X,

is called the maximal operator of the sequence {Mn}.

Remark 3.2. (1) If µ(Ω) < ∞, then the Banach principle implies that
if M⋆(f) ∈ L0 for all f ∈ X , then M⋆ : (X, � · �X) → (L0, tµ) is continuous
at zero, which is not the case when µ is not finite; see [16, Sec. 2].

(2) If f ∈ X and E ∈ A are such that {Mn(f)χE} ⊂ L∞, then it is easy
to see that

�M⋆(f)χE�∞ = sup
n

�Mn(f)χE�∞

[15, Proposition 1.1]. Therefore, the continuity of M⋆ : (X, � · �X) → (L0, tµ)
at zero can be expressed as follows: given ε > 0, δ > 0, there exists a γ > 0
such that for every f ∈ X with �f�X ≤ γ it is possible to find E ⊂ Ω satis
fying the conditions

µ(Ω \ E) ≤ ε and sup
n

�Mn(f)χE�∞ ≤ δ.
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Proposition 3.1. The algebra L0
µ is complete with respect to a.u. con-

vergence.

Proof. Assume that {fn}⊂L0
µ is a.u. Cauchy. Then it is clearly Cauchy

with respect to tµ. Since L
0
µ is complete relative to tµ, there exists an f ∈ L0

µ

such that fn → f in measure.
To show that fn → f a.u., fix ε > 0. Since fn ∈ L0

µ for every n and {fn}
is a.u. Cauchy, it is possible to construct E ⊂ Ω such that µ(Ω \E) ≤ ε,
fnχE ∈ L∞ for every n, and

�(fm − fn)χE�∞ → 0 as m,n → ∞.

This implies that there exists an f̂ ∈ L∞ such that �f̂ − fnχE�∞ → 0, hence

fnχE → f̂ in measure. But fn → f in measure implies that fnχE → fχE in

measure, hence f̂ = fχE and so

�(f − fn)χE�∞ = �f̂ − fnχE�∞ → 0.

Therefore, the sequence {fn} is a.u. convergent in L0
µ, that is, L0

µ is a.u.
complete. �

Lemma 3.1. If the maximal operator M⋆ : (X, � · �X) → (L0, tµ) of a se-
quence Mn : X → L0

µ of linear maps is continuous at zero, then the set

Xc =
{
f ∈ X : {Mn(f)} converges a.u.

}

is closed in X .

Proof. Let Xc ∋ fk → f in the norm � · �X . Fix ε > 0, δ > 0. In view
of Remark 3.2(2) and since M⋆ is continuous at zero, there exist fk0

and
E0 ⊂ Ω such that

µ(Ω \ E0) ≤
ε

2
and sup

n

∥∥Mn(f − fk0
)χE0

∥∥
∞

≤
δ

3
.

Next, since the sequence {Mn(fk0
)} converges a.u., there exist E1 ⊂ Ω and

N ∈ N such that

µ(Ω \ E1) ≤
ε

2
and

∥∥ (Mm(fk0
)−Mn(fk0

))χE1

∥∥
∞

≤
δ

3
for all m,n ≥ N.

Therefore, setting E = E0 ∩E1, we arrive at µ(Ω \ E) ≤ ε and
∥∥(Mm(f)−Mn(f))χE

∥∥
∞

≤
∥∥Mm(f − fk0

)χE

∥∥
∞

+
∥∥Mn(f − fk0

)χE

∥∥
∞

+
∥∥(Mm(fk0

)−Mn(fk0
))χE

∥∥
∞

≤ δ
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for all m,n ≥ N . This means that the sequence {Mn(f)} is a.u. Cauchy,
which, by Proposition 3.1, entails that {Mn(f)} converges a.u., hence
f ∈ Xc, and we conclude that Xc is closed in (X, � · �X). �

Therefore, since T (L1) ⊂ L1 ⊂ L0
µ for a given T ∈ DS, in order to prove

that the averages (1) converge a.u. for every f ∈ X = L1, it is sufficient to
show that

(A) the maximal operator M(T )⋆ : (L1, � · �1) → (L0, tµ) is continuous at
zero;

(B) there exists a dense subsetD of L1 such that the sequence {Mn(T )(f)}
converges a.u. whenever f ∈ D.

Here is our main tool, Hopf’s maximal ergodic theorem [8]; see also [19,
Theorem 1.1, p.75]:

Theorem 3.2. If T : L1 → L1 is a positive linear contraction and
f ∈ L1, then

∫

{M(T )⋆(f)>0}
f dµ ≥ 0.

We shall prove the following maximal inequality for T ∈ DS acting in Lp,
1 ≤ p < ∞. Note that, in order to establish Theorem 3.1, we will only need
it for p = 1 and p = 2.

Theorem 3.3. If T ∈ DS and 1 ≤ p < ∞, then

(3) µ{M(T )⋆(|f |) > λ} ≤
(
2
�f�p
λ

)p

for all f ∈ Lp, λ > 0.

Proof. Assume first that T ∈ DS+. Fix f ∈ L1 and λ > 0. Pick F ⊂ Ω
such that µ(F ) < ∞ and let fλ,F = |f | − λχF . Then, since λχF ∈ L∞, we
have �T (λχF )�∞ ≤ λ, hence T (λχF ) ≤ λ · 1. Therefore

T (fλ,F ) ≥ T (|f |)− λ · 1,

and we derive

M(T )⋆(fλ,F ) ≥ M(T )⋆(|f |)− λ · 1.

By Theorem 3.2,
∫

{M(T )⋆(fλ,F )>0}
fλ,F ≥ 0,

implying that

�f�1 ≥

∫

{M(T )⋆(fλ,F )>0}
|f | =

∫

{M(T )⋆(fλ,F )>0}
(fλ,F + λχF )
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≥

∫

{M(T )⋆(fλ,F )>0}
λχF = λµ

(
{M(T )⋆(fλ,F ) > 0} ∩ F

)

≥ λµ
(
{M(T )⋆(|f |) > λ} ∩ F

)
.

Therefore, we have

µ
(
{M(T )⋆(|f |) > λ} ∩ F

)
≤

�f�1
λ

for every F ⊂ Ω with µ(F ) < ∞. Since (Ω, µ) is σ-finite, we arrive at the
following maximal inequality for T ∈ DS+ acting in L1:

(4) µ
{
M(T )⋆(|f |) > λ

}
≤

�f�1
λ

for all f ∈ L1, λ > 0.

Now, fix 1 < p < ∞, f ∈ Lp, and λ > 0. Since t ≥ λ
2 implies t ≤ ( 2

λ
)p−1tp,

we have

|f(ω)| ≤
(2
λ

)p−1
|f(ω)|p whenever |f(ω)| ≥

λ

2
.

Then, denoting Aλ = {|f | < λ/2} and gλ = |f |χAλ
, we obtain

|f | ≤ gλ +
(2
λ

)p−1
|f |p.

Since gλ ∈ L∞, we have �T (gλ)�∞ ≤ �gλ�∞ ≤ λ
2 , and it follows that

M(T )⋆(|f |) ≤
λ

2
· 1+

( 2

λ

)p−1
M(T )⋆(|f |p).

As |f |p ∈ L1, employing (4), we obtain a maximal inequality for T ∈ DS+

acting in Lp, 1 ≤ p < ∞:

µ
{
M(T )⋆(|f |) > λ

}
≤ µ

{(2
λ

)p−1
M(T )⋆(|f |p) >

λ

2

}
(5)

= µ
{
(M(T )⋆(|f |p) >

(λ
2

)p}
≤

(
2
�f�p
λ

)p

, f ∈ Lp, λ > 0.

Finally, let T ∈ DS. If |T | : Lp → Lp is the linear modulus of T : Lp → Lp,
then |T | ∈ DS+ and |T k(f)| ≤ |T |k(|f |) for all f ∈ Lp and 1 ≤ p ≤ ∞,
k = 0, 1, . . . (see, for example, [18, Ch. 1, §1.3], [13, Ch. 4, §4.1, Theorem
1.1]). Therefore, given f ∈ Lp, 1 ≤ p < ∞, we have

|Mn(T )(|f |)| ≤
1

n

n−1∑

k=0

|T k(|f |)| ≤
1

n

n−1∑

k=0

|T |k(|f |) = Mn(|T |)(|f |).
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Thus, applying inequality (5) to |T | ∈ DS+, we obtain (3):

µ{M(T )⋆(|f |)>λ} ≤ µ{M(|T |)⋆(|f |)>λ} ≤
(
2
�f�p
λ

)p

, f ∈ Lp, λ > 0. �

Proof of Theorem 3.1. Show first that the sequence {Mn(f)} con-
verges a.u. whenever f ∈ L1. In view of Theorem 3.3, the maximal operator
M(T )⋆ : (Lp,� ·�)→ (L0, tµ) is continuous at zero for every 1 ≤ p < ∞. This,
by Lemma 3.1, implies that the set

Cp =
{
f ∈ Lp : {Mn(f)} converges a.u.

}

is closed in Lp, 1 ≤ p < ∞.
In particular, the sets C1 and C2 are closed in L1 and L2, respectively.

Therefore, taking into account that the set L1 ∩ L2 is dense in L1, it is suf-
ficient to show that the sequence {Mn(T )(f)} converges a.u. for each f in a
dense subset of L2.

Denote by (·, ·) the standard inner product in L2. Let

N =
{
T (h)− h : h ∈ L2 ∩ L∞

}
.

If L2 ∋ g ∈ N⊥, then, as L2 ∩ L∞ is dense in L2, we have

0 = (g, T (h)− h) = (T ∗(g)− g, h), h ∈ L2,

so T ∗(g) = g. Recalling that T is a contraction in L2, we obtain

�T (g)− g�22 = (T (g)− g, T (g)− g) =(6)

�T (g)�22 − (g, T ∗(g))− (T ∗(g), g) + �g�22 = �T (g)�22 − �g�22 ≤ 0,

so T (g) = g as well, hence N⊥ ⊂ L = {g ∈ L2 : T (g) = g}. Conversely, if
g ∈ L, then, since T ∗ is also a contraction in L2, replacing T by T ∗ in (6),
we obtain T ∗(g) = g, which implies that g ∈ N⊥. Therefore N⊥ = L, hence
N ⊕ L = L2, and we conclude that the set

D =
{
g + (T (h)− h) : g ∈ L2, T (g) = g; h ∈ L2 ∩ L∞

}

is dense in L2. Because h ∈ L∞, it is clear that the sequence {Mn(f)} con-
verges a.u. for every f ∈ D, and we conclude that this sequence converges
a.u. for all f ∈ L1.

Now, let X ⊂ L1 +L∞ be a fully symmetric space such that 1 �∈ X , and
let f ∈ X . By Proposition 2.2, f ∈ Rµ. Fix ε > 0 and δ > 0. In view of
Proposition 2.3, there exist g ∈ L1 and h ∈ L∞ such that

f = g + h, g ∈ L1, and �h�∞ ≤
δ

3
.
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Since g ∈ L1, there exist E ⊂ Ω and N ∈ N satisfying the conditions

µ(Ω \ E) ≤ ε and
∥∥ (Mm(g)−Mn(g))χE

∥∥
∞

≤
δ

3
for all m,n ≥ N.

Then, given m,n ≥ N , we have
∥∥(Mm(f)−Mn(f))χE

∥∥
∞

=
∥∥(Mm(g)−Mn(g))χE

∥∥
∞

+
∥∥(Mm(h)−Mn(h))χE

∥∥
∞

≤
δ

3
+ �Mm(h)�∞ + �Mn(h)�∞ ≤

δ

3
+ 2�h�∞ ≤ δ,

implying, by Proposition 3.1, that the sequence {Mn(f)} converges a.u. to

some f̂ ∈ L0
µ.

Since L1 + L∞ possesses the Fatou property and

Mn(f) ∈ L1 + L∞, sup
n

�Mn(f)�L1+L∞ ≤ �f�L1+L∞ , Mn(f) → f̂ in tµ,

it follows that f̂ ∈ L1 + L∞ [9, Ch. IV, §3, Lemma 5]. In addition,

Mn(f)
∗(t) → f̂ ∗(t) a.e. on (0,∞)

(see, for example, [11, Ch. II, §2, Property 11◦]). Since T ∈ DS, it fol-
lows that Mn(f)

∗(t) ≺≺ f∗(t) for all n (see, for example, [11, Ch. II, §3,
Section 4]). Consequently, by the Fatou Theorem,

∫ s

0
f̂ ∗(t) dt ≤ sup

n

∫ s

0
Mn(f)

∗(t) dt ≤

∫ s

0
f∗(t) dt for all s > 0,

that is, f̂ ∗(t) ≺≺ f∗(t). Since X is a fully symmetric space and f ∈ X , it

follows that f̂ ∈ X . �

Now we shall show that, for a σ-finite measure space (Ω,A, µ), the space
E = Rµ is the largest fully symmetric subspace of L1 + L∞ for which The-
orem 3.1 is valid. We will utilize the following result obtained recently by
Kunszenti-Kovács [12] (cf. [3, Theorem 4.1]).

Theorem 3.4. Let (Ω,A, µ) be σ-finite infinite measure space. If f ∈
(L1+L∞)\Rµ, then there exists T ∈ DS such that the sequence Mn(T )(f)(ω)
fails to converge for almost every ω ∈ Ω.

Theorem 3.5. Let (Ω,A, µ) be a σ-finite infinite measure space. Given
a fully symmetric space X ⊂ L1 + L∞, the following conditions are equiva-
lent :
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(i) X ⊆ Rµ.
(ii) 1 �∈ X .
(iii) For every f ∈ X and T ∈ DS the averages (1) converge a.u. to some

f̂ ∈ X .

Proof. Implications (i) ⇔ (ii) is Proposition 2.2, while (ii) ⇒ (iii)
is Theorem 3.1. By Theorem 3.4, given f ∈ (L1 + L∞) \ Rµ, there exists
T ∈ DS such that the averages (1) do not converge a.e., hence a.u., and
implication (iii) ⇒ (i) follows. �

Now we shall present some examples of fully symmetric spaces X such
that 1 �∈ X or 1 ∈ X . Recall that it is assumed that µ(Ω) = ∞.

1. Let Φ be an Orlicz function, that is, Φ: [0,∞) → [0,∞) is a left-
continuous, convex, increasing function such that Φ(0) = 0 and Φ(u) > 0 for
some u �= 0 (see, for example [4, Ch. 2, §2.1]). Let

LΦ =

{
f ∈ L0

µ :

∫

Ω
Φ
( |f |

a

)
dµ < ∞ for some a > 0

}

be the corresponding Orlicz space, and let

�f�Φ = inf

{
a > 0 :

∫

Ω
Φ
( |f |

a

)
dµ ≤ 1

}

be the Luxemburg norm in LΦ. It is well-known that (LΦ, � · �Φ) is a fully
symmetric space.

Since µ(Ω) = ∞, if Φ(u) > 0 for all u �= 0, then
∫
ΩΦ( 1

a
· 1) dµ = ∞ for

each a > 0, hence 1 �∈ LΦ. If Φ(u) = 0 for all 0 ≤ u < u0, then 1 ∈ LΦ.
2. If X is a symmetric space with order continuous norm, then µ{|f | > λ}

< ∞ for all f ∈ X and λ > 0, so X ⊂ Rµ; in particular, 1 �∈ X .
3. Let ϕ be a concave function on [0,∞) with ϕ(0) = 0 and ϕ(t) > 0 for

all t > 0, and let

Λϕ =

{
f ∈ L0

µ : �f�Λϕ
=

∫ ∞

0
f∗(t) dϕ(t) < ∞

}

be the corresponding Lorentz space.
It is well-known that (Λϕ, � · �Λϕ

) is a fully symmetric space; in addition,
if ϕ(∞) = ∞, then 1 �∈ Λϕ and if ϕ(∞) < ∞, then 1 ∈ Λϕ.

Let ϕ be as above, and let

Mϕ =

{
f ∈ L0

µ : �f�Mϕ
= sup

0<s<∞

1

ϕ(s)

∫ s

0
f∗(t) dt < ∞

}

be the corresponding Marcinkiewicz space. It is known that (Mϕ, � · �Mϕ
) is

a fully symmetric space such that 1 �∈ Mϕ if and only if limt→∞
ϕ(t)
t

= 0.
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4. On strong convergence of Cesàro averages

In this section we give a characterization of fully symmetric spaces for
which the mean ergodic theorem is valid.

Let (Ω,A, µ) be a σ-finite measure space. If we consider the complete
Boolean algebra∇µ = {e = [E] : E ∈ A} of equivalence classes of µ-a.e. equal
sets in A (that is, when E,G ∈ A and µ(E∆G) = 0), then µ(e) := µ(E) is
a strictly positive measure on ∇µ. Denote by ∇ν(0, a) = {[E] : E ∈ Aν}
the complete Boolean algebra of equivalence classes of ν-a.e. equal sets in
((0, a), ν), 0 < a ≤ ∞.

A Boolean subalgebra ∇0 in ∇µ is called regular if supD ∈ ∇0 for
every subset D ⊆ ∇0. If ∇0 is a regular subalgebra in ∇µ, then clearly
A0 = {E ∈ A : [E] ∈ ∇0} is a σ-subalgebra in A and ∇0 = {[E] : E ∈ A0}.

It is known that there exists e ∈ ∇µ such that e · ∇µ is non-atomic, that
is, the Boolean algebra e · ∇µ has no atoms, and (1− e) · ∇µ is a totally
atomic Boolean algebra, that is, 1− e = supn qn, where {qn} is the set of
atoms in the Boolean algebra ∇µ (see, for example, [24, I, Ch. 2, §2]).

Let ∇µ be a non-atomic Boolean algebra. In view of [1, Ch. 2, Corollary
7.6], we have the following.

Proposition 4.1. There exist a regular subalgebra ∇0 in ∇µ and a
Boolean isomorphism ϕ : ∇ν(0, µ(Ω)) → ∇0 onto such that µ(ϕ(e)) = ν(e)
for all e ∈ ∇ν(0, µ(Ω)).

Utilizing Proposition 4.1 and [3, Theorem 2.4], we obtain the following.

Corollary 4.1. Let 0 �= e0 ∈ ∇µ be such that e0 ·∇µ is non-atomic, and
let ∇0 and ϕ be as in Proposition 4.1 (with respect to the Boolean algebra
e0 ·∇µ). Then there exists a unique algebraic isomorphism Φ: L0((0, µ(Ω)), ν)
→ L0(Ω,A0, µ) such that

(i) Φ(e) = ϕ(e) for all e ∈ ∇ν(0, µ(Ω));
(ii) Φ: L1((0, µ(Ω)), ν)→ L1(Ω,A0, µ) and Φ: L∞((0, µ(Ω)), ν)→ L∞(Ω,

A0, µ) are bijective linear isometries.

In what follows, T ∈ DS(Ω,A, µ) will mean that T is a Dunford–
Schwartz operator in L1(Ω,A, µ) + L∞(Ω,A, µ).

If E ∈ A and AE = {A ∩E : A ∈ A}, then it is clear that (E,AE , µ) is
a σ-finite measure space. The next property of Dunford–Schwartz operators
can be found in [3, Corollary 2.1].

Theorem 4.1. Let 0 �= e = [E] ∈ ∇µ, and let ∇0 be a regular subalgebra
in e ·∇µ such that (Ω,A0, µ) is a σ-finite measure space. If T ∈DS(E,A0, µ),

then there exists T̂ ∈ DS(Ω,A, µ) such that

T̂ (g) = T (g) and Mn(T̂ )(g) = Mn(T )(g)

for all g ∈ L1(E,A0, µ) + L∞(E,A0, µ) and n ∈ N.
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We say that a fully symmetric space X possesses the mean ergodic theo-
rem property (writing X ∈ (MET)) if the averages Mn(T ) converge strongly
in X for any T ∈ DS. A measure space will be called quasi-non-atomic if it
has finitely many atoms or its atoms have equal measures.

Theorem 4.2. If (Ω,A, µ) is quasi-non-atomic, µ(Ω) = ∞, and X is a
fully symmetric space such that X ⊂ L1, then X �∈ (MET).

Proof. Assume first (Ω,A, µ) = ((0,∞), ν) and consider the operator
T ∈ DS defined by

T (f)(t) =

{
f(t− 1) if t > 1,

0 if t ∈ (0, 1].

Since
∥∥M2n(T )(χ(0,1])−Mn(T )(χ(0,1])

∥∥
1

=
∥∥∥ 1

2n
χ(0,2n] −

1

n
χ(0,n]

∥∥∥
1
= n

(1
n
−

1

2n

)
+ n

1

2n
= 1,

it follows that the averages Mn(T )(χ(0,1])) do not converge in the norm � · �1.

Therefore L1 �∈ (MET).
Using the inclusion X ⊂ L1 and Proposition 2.1, we conclude that there

is a constant c > 0 such that �f�1 ≤ c�f�X for all f ∈ X . Consequently, the
sequence {Mn(T )(χ(0,1])} cannot converge strongly in X , henceX �∈ (MET).

Assume now that (Ω,A, µ) is non-atomic. By Corollary 4.1, there exist a
regular subalgebra ∇0 in ∇µ and an algebraic isomorphism Φ: L0((0,∞), ν)
→ L0(Ω,A0, µ) such that µ(Φ(e)) = ν(e) for all e ∈ ∇ν(0, µ(Ω)) and Φ :
L1((0,∞), ν) → L1(Ω,A0, µ) and Φ: L∞((0,∞), ν) → L∞(Ω,A0, µ) are bi-

jective linear isometries. Therefore T̃ = Φ ◦T ◦Φ−1 ∈ DS(Ω,A0, µ), and the

sequence {Mn(T̃ )(Φ(χ(0,1]))} does not converge in the space
(
X(Ω,A0, µ),

� · �X(Ω,A0,µ)

)
. Note that (Ω,A0, µ) is a σ-finite measure space.

By Theorem 4.1, there exists T̂ ∈ DS(Ω,A, µ) such that T̂ (g) = T̃ (g) and

Mn(T̂ )(g) = Mn(T̃ )(g) for all g ∈ L1(Ω,A0, µ) + L∞(Ω,A0, µ) and n ∈ N.
Thus, the sequence {Mn(T̂ )(Φ(χ(0,1]))} does not converge in the space
X = X(Ω,A, µ), hence X �∈ (MET).

Next, let (Ω,A, µ) be a totally atomic infinite measure space with the
atoms of equal measures. In this case L1(Ω) = l1, L∞(Ω) = l∞ and l1 ⊂
X ⊂ l∞, which, by the assumption, implies that X = l1. Consequently, by
Proposition 2.1, the norms � · �X and � · �1 are equivalent.

Define T ∈ DS by T ({ξn}
∞
n=1) = {0, ξ1, ξ2, . . . } if {ξn}

∞
n=1 ∈ l∞. If e1 =

{1, 0, 0, . . .}, then we have
∥∥M2n(T )(e1)−Mn(T )(e1)

∥∥
1
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=
∥∥∥ 1

2n
{1, 1, . . . , 1︸ ︷︷ ︸

2n

, 0, 0, . . .} −
1

n
{1, 1, . . . , 1︸ ︷︷ ︸

n

, 0, 0, . . .}
∥∥∥
1
= 1,

implying that the sequence {Mn(T )(e1)} does not converge in the norm
� · �1. Since the norms � · �X and � · �1 are equivalent, it follows that the
sequence {Mn(T )(e1)} is not convergent in � · �X as well, hence X �∈ (MET).

Assume now that (Ω,A, µ) is an arbitrary quasi-non-atomic infinite mea-
sure space. As noted above, there exists e = [E] ∈ ∇µ such that e · ∇µ is a
non-atomic and (1− e) · ∇µ is a totally atomic Boolean algebra.

Let µ(E) < ∞. Since µ(Ω) = ∞, it follows that (Ω \ E,AΩ\E , µ) is a
totally atomic σ-finite infinite measure space with the atoms of the same
measure. According to what has been proved above, we have

(
(Ω \ E,AΩ\E , µ), � · �X

)
�∈ (MET).

Further, by Theorem 4.1, there exists T̂ ∈ DS(Ω,A, µ) such that T̂ (g) =

T (g) and Mn(T̂ )(g) = Mn(T )(g) for all g ∈ L1(Ω \E,AΩ\E , µ) +L∞(Ω \E,
AΩ\E, µ) and n ∈ N. Therefore X(Ω,A, µ) �∈ (MET).

If µ(E) = ∞, then, as we have shown, (X(E,AE , µ), � · �X) �∈ (MET).
In particular, there exist T ∈ DS(E,AE , µ) and f ∈ X(E,AE , µ) such
that the sequence {Mn(T )(f)} is not convergent in the norm � · �X . By

Theorem 4.1, there exists T̂ ∈ DS(Ω,A, µ) such that T̂ (g) = T (g) and

Mn(T̂ )(g) = Mn(T )(g) for all g ∈ L1(E,AE , µ) + L∞(E,AE , µ) and n ∈ N.
Therefore X(Ω,A, µ) �∈ (MET). �

The next theorem gives another condition under which a fully symmetric
space X(Ω,A, µ) does not belong to (MET).

Theorem 4.3. Let (Ω,A, µ) be a quasi-non-atomic σ-finite infinite mea-
sure space. If X is a fully symmetric space generated by a non-separable fully
symmetric space X(0,∞), then X �∈ (MET).

Proof. Assume first that (Ω,A, µ) = ((0,∞), ν). Since (X(0,∞),
� · �X(0,∞)) is not separable, it follows that there exists a > 0 such that

the symmetric space (X(0, a), � · �X(0,a)) also is not separable [11, Ch. II,
§4, Theorem 4.8]. Therefore, by [23, Theorem 2.5.1], there exist a func-

tion f0 ∈ X(0, a) \ L∞(0, a)
�·�X(0,a)

and a Dunford–Schwartz operator T0

∈ DS((0, a), ν) such that the averages Mn(T0)(f0) do not converge in the
norm � · �X(0,a).

Define a Dunford–Schwartz operator T ∈ DS((0,∞), ν) by

T (g) = T0(g · χ(0,a)), g ∈ L1(0,∞) + L∞(0,∞).

Acta Mathematica Hungarica

V. CHILIN and S. LITVINOV244



Acta Mathematica Hungarica 157, 2019

ERGODIC THEOREMS FOR SYMMETRIC SPACES 17

If we set f = f0 · χ(0,a) + 0 · χ[a,∞), then f ∈ X(0,∞) and Mn(T )(f) =
Mn(T0)(f0) for every n. Consequently, the sequence {Mn(T )(f)} does not
converge strongly in X(0,∞).

Next, let (Ω,A, µ) be non-atomic. By Corollary 4.1, there exist a reg-
ular subalgebra ∇0 in ∇µ and an algebraic isomorphism Φ: L0((0,∞), ν)
→ L0(Ω,A0, µ) such that

µ(Φ(e)) = ν(e) for all e ∈ ∇ν(0, µ(Ω))

and Φ: L1((0,∞), ν) → L1(Ω,A0, µ) and Φ: L∞((0,∞), ν) → L∞(Ω,A0, µ)
are bijective linear isometries. In particular, (Ω,A0, µ) is σ-finite. According
to what has been proved above, there exists T ∈ DS((0,∞), ν) such that the
averages Mn(T ) do not converge strongly in X(0,∞). It is clear then that

T̃ = Φ ◦ T ◦ Φ−1 ∈ DS(Ω,A0, µ) and the averages Mn(T̃ ) do not converge
strongly in X(Ω,A0, µ).

By Theorem 4.1, there exists T̂ ∈ DS(Ω,A, µ) such that T̂ (g) = T̃ (g) and

Mn(T̂ )(g) = Mn(T̃ )(g) for all g ∈ L1(Ω,A0, µ) + L∞(Ω,A0, µ) and n ∈ N.
It follows then that the averages Mn(T̂ ) do not converge strongly in X =
X(Ω,A, µ), hence X �∈ (MET).

Now, let (Ω,A, µ) be a totally atomic infinite measure space with all
atoms of equal measure. In this case l1 ⊆ X ⊆ l∞, and Rµ = c0, the fully
symmetric space of sequences f = {ξn}

∞
n=1 of real numbers converging to

zero with respect to the norm �f�∞ = supn∈N |ξn|.
If there exists an f ∈ X \ c0, then f∗ ≥ α1 for some α > 0, where

1 = {1, 1, . . .}, hence 1 ∈ X and X = l∞. Therefore, if X is a symmetric
sequence space, then either X ⊂ c0 or X = l∞. Since a.u. convergence in
l∞ and c0 coincides with the convergence in the norm � · �∞, Theorem 3.5
implies that l∞ �∈ (MET).

Let now X ⊂ c0. Recall that a fully symmetric space X on (Ω,A, µ)
generated by a fully symmetric space X(0,∞) has order-continuous norm
if and only if the space (X(0,∞), � · �X(0,∞)) is separable. Consequently,
a symmetric sequence space X has no order-continuous norm. Thus, there
exists f = {ξn}

∞
n=1 = {ξ∗n}

∞
n=1 ∈ X such that

(7) ξn ↓ 0 and �{ 0, 0, . . . , 0︸ ︷︷ ︸
n

, ξn+1, ξn+2, . . . }�X
↓ α > 0.

Let T ∈ DS be defined as T ({ηn}
∞
n=1) = {0, η1, η2, . . . } whenever {ηn} ∈ l∞.

Then T k(f) = {0, 0, . . . , 0︸ ︷︷ ︸
k

, ξ1, ξ2, . . .}, so

{η(n)m }∞m=1 :=
n−1∑

k=0

T k(f) = {ξ1, ξ1 + ξ2, . . . , ξ1 + ξ2 + . . . ξn, ξ2 + ξ3 + . . .

+ξn+1, ξ3 + ξ4 + · · · + ξn+2, . . . , ξm−n+1 + ξm−n+2 + · · · + ξm, . . .},
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that is,

η(n)m = ξm−n+1 + ξm−n+2 + · · · + ξm if m ≥ n

and

η(n)m = ξ1 + ξ2 + . . . ξm if 1 ≤ m < n.

Since ξn ↓ 0, it follows that 1
n

∑n−1
k=0 ξk → 0 as n → ∞. Consequently,

0 ≤
1

n
η(n)m =

1

n
(ξm−n+1 + ξm−n+2 + · · · + ξm) ≤

1

n

m∑

k=0

ξk → 0

as n → ∞ for any fixed m ∈ N. Therefore, the sequence {Mn(T )(f)} con-
verges to zero coordinate-wise.

Suppose that there exists f̂ ∈ X such that �Mn(T )(f)− f̂�X → 0. Then

the sequence {Mn(T )(f)} converges to f̂ coordinate-wise, implying that

f̂ = 0. On the other hand, as ξn ↓ 0, we have

Mn(T )(f) =
{ 1

n
ξ1,

1

n
(ξ1 + ξ2), . . . ,

1

n
(ξ1 + ξ2 + · · · + ξn),

1

n
(ξ2 + ξ3 + · · · + ξn+1),

1

n
(ξ3 + ξ4 + · · · + ξn+2), . . . ,

1

n
(ξm−n+1 + ξm−n+2 + · · · + ξm), . . .

}
≥ { 0, 0, . . . , 0︸ ︷︷ ︸

n

, ξn+1, ξn+2, . . .} ≥ 0.

Thus, by (7),
∥∥Mn(T )(f)

∥∥
X

≥ �{0, 0, . . . , 0︸ ︷︷ ︸
n

, ξn+1, ξn+2, . . .}�X
≥ α > 0,

implying that the sequence {Mn(T )(f)} is not convergent in the norm � · �X ,
that is, X �∈ (MET).

Repeating the ending of the proof of Theorem 4.2, we conclude that X
�∈ (MET) for any quasi-non-atomic σ-finite infinite measure space (Ω,A, µ).
�

Let X be a symmetric space on ((0,∞), ν). The fundamental function
of X is defined by ϕX(t) = �χ(0,t]�X . It is known that ϕX(t) is a quasi-
concave function (see [11, Ch. II, §4, Theorem 4.7]); in particular, ϕX(t)

increases, while the function ϕX(t)
t

decreases [11, Ch. II, §1, Definition 1.1].
Consequently, the limits

α(X) = lim
t→∞

ϕX(t)

t
and β(X) = lim

t→0+
ϕX(t) = ϕX(+0)
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exist. Note that

α(L1) = 1, β(L∞) = 1, α(Lp) = 0, 1 < p ≤ ∞, β(Lp) = 0, 1 ≤ p < ∞.

We need the following necessary and sufficient conditions for an embedding
of a symmetric space X into L∞ or L1.

Proposition 4.2. Let (Ω,A, µ) be a σ-finite infinite measure space.
If X is the symmetric space generated by a symmetric space X(0,∞) on
((0,∞), ν), then

(i) X ⊆ L∞ if and only if β(X) > 0;
(ii) X ⊆ L1 if and only if α(X) > 0;
(iii) X ⊆ L1 if and only if L∞ ⊆ X×, where X× is the Köthe dual of X .

Proof. It is clear that X(Ω) ⊆ Y (Ω) if and only if X(0,∞) ⊆ Y (0,∞),
where Y (0,∞) is a symmetric space on ((0,∞), ν) that generated Y (Ω).
Consequently, it is sufficient to prove the proposition in the case (Ω,A, µ) =
((0,∞), ν).

(i) If X ⊆ L∞(0,∞), then there exists a c0 > 0 such that �f�∞ ≤ c0�f�X
for all f ∈ X (see Proposition 2.1). Therefore

ϕX(t) = �χ(0,t]�X ≥
�χ(0,t]�∞

c0
=

1

c0
and β(X) = lim

t→0+
ϕX(t) ≥

1

c0
> 0.

If X � L∞(0,∞), then there exists a positive unbounded function f in
X(0,∞) \ L∞(0,∞); in particular, ν(An) > 0, where An = {f ≥ n}, n ∈ N.
Choose a sequence Bn ⊆ An such that Bn ⊇ Bn+1, 0 < ν(Bn) < ∞, and
limn→∞ ν(Bn) = 0. Then we have

n · β(X) ≤ n�χBn
�X = �n · χBn

�X ≤ �f�X < ∞ ∀n ∈ N,

hence β(X) = 0.
(ii) If X ⊆ L1(0,∞), then there exists a c1 > 0 such that �f�1 ≤ c1�f�X

for all f ∈ X (see Proposition 2.1). Consequently,

ϕX(t)

t
=

�χ(0,t]�X

t
≥

�χ(0,t]�1

c1 · t
=

1

c1

and

α(X) = lim
t→∞

ϕX(t)

t
≥

1

c1
> 0.

Assume now that α(X) > 0. By [11, Ch. II, §4, inequality (4.6)], we have

�f∗ · χ(0,t]�1 ≤
t

ϕX(t)
· �f∗ · χ(0,t]�X
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for all f ∈ X, t > 0. Since ϕX(t)
t

≥ α(X) > 0, t > 0, it follows that t
ϕX(t)

≤ 1
α(X) , implying that

�f∗ · χ(0,t]�1 ≤
�f∗ · χ(0,t]�X

α(X)
�

�f∗�X
α(X)

,

so �f�1 ≤
�f�X

α(X) < ∞ for all f ∈ X , that is, X ⊆ L1(0,∞).

(iii) If X ⊆ L1(0,∞), then
∫∞
0 |1 · f |dν = �f�1 < ∞ for all f ∈ X . Thus

1 ∈ X× and L∞(0,∞) ⊆ X×.
Conversely, if L∞(0,∞) ⊆ X×, then 1 ∈ X×, that is, the linear func-

tional

ϕ(f) =

∫ ∞

0
1 · f dν, f ∈ X,

is bounded on X . Then it follows that

�f�1 =

∫ ∞

0
1 · |f |dµ = ϕ(|f |) ≤ �ϕ� · �f�X < ∞

for every function f ∈ X , hence X ⊆ L1(0,∞). �

Corollary 4.2. Let (Ω,A, µ) and X be as in Proposition 4.2. Then
the following are equivalent :

(i) X � L1;
(ii) L∞ � X×;
(iii) 1 �∈ X×.

Let (Ω,A, µ) be a σ-finite infinite measure space. Let f ∈ Rµ and

T ∈ DS. By Theorem 3.1, there exists f̂ ∈ Rµ such that the sequence

{Mn(T )(f)} converges a.u. to f̂ . Define the mapping P : Rµ → Rµ by set-
ting

P (f) = f̂ = (a.u.)- lim
n→∞

Mn(T )(f), f ∈ Rµ.

It is clear that P is linear. Since (L1, � · �1) possesses the Fatou property
and �Mn(T )(f)�1 ≤ �f�1 for all f ∈ L1, it follows that �P (f)�1 ≤ �f�1 for
every f ∈ L1 [9, Ch. IV, §3, Lemma 5], that is, �P�L1→L1 ≤ 1.

Similarly, if f ∈ L1 ∩ L∞, then �Mn(T )(f)�∞ � �f�∞. Therefore, a.u.
convergence Mn(T )(f) → P (f) implies that �P (f)�∞ ≤ |f�∞.

According to [2, Theorem 3.1], there exists a unique operator P̂ ∈ DS

such that P̂ (f) = P (f) for all f ∈ Rµ; in particular, �P�Rµ→Rµ
≤ 1.

Additionally, by the classical mean ergodic theorem in the space L2, we
have �Mn(T )(f)− P (f)�2 → 0 as n → ∞ for any f ∈ L2.
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The next theorem is a version of the mean ergodic theorem for the fully
symmetric space (Rµ, � · �L1+L∞).

Theorem 4.4. If T ∈ DS, then

(8)
∥∥Mn(T )(f)− P (f)

∥∥
L1+L∞

→ 0 for all f ∈ Rµ.

Proof. We have

sup
n

�Mn(T )�L1+L∞→L1+L∞ ≤ 1 and �P�Rµ→Rµ
≤ 1.

Since �Mn(T )(f)− P (f)�2 → 0, it follows that �Mn(T )(f)− P (f)�L1+L∞

→ 0 for any f ∈ L1 ∩L∞ ⊂ L2. Using the density of L1 ∩L∞ in the Banach
space (Rµ, � · �L1+L∞) and the principle of uniform boundedness, we arrive
at (8). �

Now we can establish the following important property of the operator P .

Proposition 4.3. P 2 = P and

TP (f) = P (f) = PT (f) for all f ∈ Rµ.

Proof. Since

(I − T )Mn(T ) =
I − Tn

n
=

I

n
+Mn(T )−

n+ 1

n
Mn+1(T ),

it follows that

P (f)− PT (f) = (a.u.) lim
n→∞

(I − T )Mn(T )(f) = 0,

hence PT (f) = P (f), for all f ∈ Rµ.
Denote � · �L1+L∞ by � · �. Then, By Theorem 4.4,

∥∥Mn(T )(f)− P (f)
∥∥

→ 0 for each f ∈ Rµ. Consequently,

TP (f) = T(� · � − lim
n→∞

Mn(T )(f))

= � · � − lim
n→∞

1

n

n∑

k=1

T k(f) = � · � − lim
n→∞

(
1

n

n∑

k=0

T k(f)−
f

n

)

= � · � − lim
n→∞

(n+ 1

n
Mn+1(T )(f)−

f

n

)
= P (f).

Therefore TP (f)=P (f) = PT (f), f ∈ Rµ, henceMn(T )P = P , n=1,2, . . . ,
implying that P 2 = P . �

We will also need the following property of symmetric spaces [5, Propo
sition 2.2].
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Proposition 4.4. Let (Ω,A, µ) be a σ-finite infinite measure space. Let
(X,� · �X) be a separable symmetric space on ((0,∞), ν) such that X× ⊆ Rν .
If {fn} ⊂ X(Ω) and g ∈ X(Ω) are such that fn ≺≺ g for all n, then fn → 0
in measure implies that �fn�X(Ω) → 0 as n → ∞.

Theorem 4.5. Let X be a fully symmetric space on a σ-finite measure
space (Ω,A, µ). If the norm � · �X is order continuous and L1 � X , then the
averages Mn(T ) converge strongly in X for each T ∈ DS.

If (Ω,A, µ) is quasi-non-atomic, then strong convergence of the averages
Mn(T ) for every T ∈ DS implies that the norm � · �X is order continuous
and L1 � X .

Proof. Since the symmetric space (X(0,∞), � · �X(0,∞)) is separable,

it follows that X(0,∞) ⊆ Rν , hence X = X(Ω) ⊆ Rµ. As L1 � X , we
have L1(0,∞) � X(0,∞). Therefore, by Corollary 4.2, 1 �∈ X×(0,∞), so
X×(0,∞) ⊆ Rν by Proposition 2.2.

Since X is a fully symmetric space and P̂ ∈ DS, it follows that g = f −
P (f) ∈ X ⊂ Rµ for any f ∈ X . By Proposition 4.3, P (g) = 0. Therefore, in
view of Theorem 3.5, Mn(T )(g) → P (g) = 0 in measure. Since Mn(T )(g) ≺
≺ g ∈ X for every n, Proposition 4.4 entails that �Mn(T )(g)�X → 0. Next,
by Proposition 4.3,

Mn(T )(g) = Mn(T )(f)−Mn(T )(P (f)) = Mn(T )(f)− P (f),

implying that �Mn(T )(f)− P (f)�X → 0.
If (Ω,A, µ) is quasi-non-atomic and the averagesMn(T ) converge strongly

for every T ∈ DS, then Theorems 4.2 and 4.3 entail that the norm � · �X is
order continuous and L1 � X . �

Utilizing Theorem 4.5 and Proposition 4.2, we can now state the follow-
ing.

Corollary 4.3. Let (X,� · �X) be a fully symmetric space on a σ-finite
measure space (Ω,A, µ). If the norm �·�X is order continuous and α(X) = 0,
then the averages Mn(T ) converge strongly in X for each T ∈ DS.

If (Ω,A, µ) is quasi-non-atomic, then strong convergence of the averages
Mn(T ) for every T ∈ DS implies that the norm � · �X is order continuous
and α(X) = 0.

5. Ergodic theorems in Orlicz, Lorentz and Marcinkiewicz spaces

In this section we give applications of Theorems 3.1, 3.5, and 4.5, to
Orlicz, Lorentz and Marcinkiewicz spaces.

1. Let Φ be an Orlicz function, and let LΦ = (LΦ(Ω), � · �Φ) be the cor-
responding Orlicz space. As noted in Section 3, if Φ(u) > 0 for all u �= 0,
then 1 �∈ LΦ; if Φ(u) = 0 for all 0 ≤ u < u0, then 1 ∈ LΦ.
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Therefore, Theorems 3.1 and 3.5 imply the following.

Theorem 5.1. Let (Ω,A, µ) be an arbitrary measure space, and let Φ
be an Orlicz function. If Φ(u) > 0 for all u > 0, T ∈ DS, and f ∈ LΦ, then

there exists f̂ ∈ LΦ such that the averages (1) converge a.u. to f̂ .
If Φ(u) = 0 for all 0 ≤ u < u0, then there exist T ∈ DS and f ∈ LΦ such

that the averages (1) do not converge a.e., hence a.u.

It is said that an Orlicz function Φ satisfies the (∆2)-condition at 0
(at ∞) if there exist u0 ∈ (0,∞) and k > 0 such that Φ(2u) < k ·Φ(u) for all
0 < u < u0 (respectively, u > u0). An Orlicz function Φ satisfies the (∆2)-
condition at 0 and at ∞ if and only if (LΦ(0,∞),� · �Φ) has order continuous
norm [4, Ch. 2, §2.1, Theorem 2.1.17].

By [4, Ch. 2, §2.2, Theorem 2.2.3], LΦ(0,∞) ⊆ L1(0,∞) if and only if

lim sup
u→0

Φ(u)

u
> 0 and lim sup

u→∞

Φ(u)

u
= 0.

Therefore, Theorem 4.5 yields the following.

Theorem 5.2. Let (Ω,A, µ) be a σ-finite measure space, and let an Or-

licz function Φ satisfy the (∆2)-condition at 0 and at ∞. If limu→0
Φ(u)
u

= 0

or lim supu→∞
Φ(u)
u

> 0, then the averages Mn(T ) converge strongly in LΦ

for all T ∈ DS.
If (Ω,A, µ) is a quasi-non-atomic measure space, then strong convergence

of the averages Mn(T ) for every T ∈ DS implies that the Orlicz function Φ

satisfies the (∆2)-condition at 0 and at ∞; in addition, limu→0
Φ(u)
u

= 0 or

lim supu→∞
Φ(u)
u

> 0.

2. Let ϕ be a concave function on [0,∞) with ϕ(0) = 0 and ϕ(t) > 0 for
all t > 0, and let Λϕ = (Λϕ(Ω), � · �Λϕ

) be the corresponding Lorentz space.
As noted in Section 3, ϕ(∞) = ∞ if and only if 1 �∈ Λϕ. Therefore, Theorems
3.1 and 3.5 imply the following.

Theorem 5.3. If (Ω,A, µ) is an arbitrary measure space and ϕ(∞) =

∞, then for all T ∈ DS and f ∈ Λϕ there exists f̂ ∈ Λϕ such that the aver-

ages (1) converge a.u. to f̂ .
If ϕ(∞) < ∞, then there exist T ∈ DS and f ∈ Λϕ such that the averages

(1) do not converge a.e., hence a.u.

It is well-known that the space (Λϕ(0,∞), � · �Λϕ
) is separable if and only

if ϕ(+0) = 0 and ϕ(∞) = ∞ (see, for example, [11, Ch. II, §5, Lemma 5.1],
[20, Ch. 9, §9.3, Theorem 9.3.1]). In addition, the fundamental function
satisfies ϕΛϕ

(t) = ϕ(t). Therefore, Corollary 4.3 entails the following.
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Theorem 5.4. Let (Ω,A, µ) be σ-finite, and let ϕ be a concave function
on [0,∞) with ϕ(0) = 0, and ϕ(t) > 0 for all t > 0. If ϕ(+0) = 0, ϕ(∞) =

∞, and α(Λϕ) = limt→∞
ϕ(t)
t

= 0, then the averages Mn(T ) converge strongly
in Λϕ for each T ∈ DS.

If (Ω,A, µ) is quasi-non-atomic, then strong convergence of averages
Mn(T ) for every T ∈ DS implies that ϕ satisfies conditions ϕ(+0) = 0,

ϕ(∞) = ∞, and limt→∞
ϕ(t)
t

= 0.

3. Let ϕ be as above, and let Mϕ = (Mϕ(Ω), � · �Mϕ
) be the cor-

responding Marcinkiewicz space. As noted in Section 3, 1 �∈ Mϕ if and

only if limt→∞
ϕ(t)
t

= 0. Thus, the corresponding version of Theorem 5.3
holds for the Marcinkiewicz space Mϕ if we replace condition ϕ(∞) = ∞ by

limt→∞
ϕ(t)
t

= 0.

If ϕ(+0) > 0 and ϕ(∞) < ∞, then Mϕ = L1 as the sets. In this case, if
(Ω,A, µ) is quasi-non-atomic, it follows from Theorem 4.2 thatMϕ �∈ (MET).

Let ϕ(+0) = 0 and ϕ(∞) = ∞. If limt→0
ϕ(t)
t

= ∞, then Mϕ is non-
separable [11, Ch. II, §5, Lemma 5.4]. Consequently, if (Ω,A, µ) is quasi-
non-atomic, then, by Theorem 4.3, Mϕ �∈ (MET).
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