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Abstract. It is known that
∑

∞

i=1
1/i2 = π2/6. We can ask what is the

smallest ε such that all the squares of sides of length 1, 1/2, 1/3, . . . can be
packed into a rectangle of area π2/6 + ε. A packing into a rectangle of the right
area is called perfect packing. Chalcraft [4] packed the squares of sides of length
1, 2−t, 3−t, . . . and he found perfect packings for 1/2 < t ≤ 3/5. We generalize
this problem and pack the 3-dimensional cubes of sides of length 1, 2−t, 3−t, . . .
into a right rectangular prism of the right volume. Moreover we show that there
is a perfect packing for all t in the range 0.36273 ≤ t ≤ 4/11.

1. Introduction

Meir and Moser [10] originally noted that since
∑∞

i=2 1/i
2 = π2/6− 1, it

is reasonable to ask whether the set of squares with sides of length 1/2, 1/3,
1/4, . . . can be packed into a rectangle of area π2/6− 1. Failing that, find
the smallest ε such that the squares can be packed into a rectangle of area
π2/6− 1 + ε. The problem also appears in [4], [3], [6].

A packing into a rectangle of the right (resp. not the right) area is called
perfect (resp. imperfect) packing. In [10], [7], [2], [11] can be found better
and better imperfect packings.

Chalcraft [5] generalized this question. He packed the squares of side
n−t for n ∈ {1,2, . . .} into a square of the right area. He proved that for all t
in the range [0.5964, 0.6] there is a perfect packing of the squares.

Wästlund [12] proved if 1/2 < t < 2/3, then the squares of side n−t for
n ∈ {1, 2, . . .} can be packed into some finite collection of square boxes of
the same area ζ(2t) as the total area of the tiles.

We can find several papers in this topic e.g. [9], [1], [8].
Very little is known about the generalizations of the above problem to

higher-dimensional spaces. We generalize this to the 3-dimensional space in
the following way.
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Since
∑∞

i=1 i
−3t = ζ(3t), it is reasonable to ask whether the set of cubes

with sides of length 1, 2−t, 3−t, . . . can be packed into a right rectangular
prism of volume ζ(3t). Failing that, find the smallest ε such that the cubes
can be packed into a right rectangular prism of volume ζ(3t) + ε.

2. Notation

We use the constants 1/3 < t < 1/2. As usual, ζ(t) =
∑∞

i=1 i
−t.

Let Ct
n denote the cube of side length n−t. A 3-box B is a right rectan-

gular prism of sides x, y and z, where x > 0, y > 0 and z > 0. If (without
loss of generality we may assume) x ≤ y ≤ z, then we define its volume
v(B) = xyz, its first width w1(B) = x, its second width w2(B) = y, its third
width w3(B) = z and its partial surface s(B) = w2(B)w3(B).

Given a set of boxes B = {B1, . . . , Bn}, we define

v(B) =
n
∑

i=1

v(Bi), s(B) =
n
∑

i=1

s(Bi), w1(B) = max
i=1,2...,n

w1(Bi).

Let v(∅) = s(∅) = w1(∅) = 0.

3. The results

Theorem 1. For t = 4/11, the cubes Ct
n (n ≥ 1) can be packed perfectly

into the right rectangular prism of dimensions 1× 1× ζ(3t).

Theorem 2. For all t in the range t0 ≤ t ≤ 4/11, the cubes Ct
n (n ≥ 1)

can be packed perfectly into the right rectangular prism of dimensions 1× 1
× ζ(3t) where t0 = 0.36272 . . . is the unique solution of the equation

ζ(3t)− 1 =
3

1− 2t

in the interval (1/3, 4/11].

4. The algorithm

We generalize the algorithm of Chalcraft [5].
Algorithm b3d

Input: An integer n ≥ 1 and a 3-box B, where w1(B) = n−t.
Output: If the algorithm terminates, then it defines an integer mb3d =

mb3d(n,B) > n and a set of 3-boxes Bb3d = Bb3d(n,B).
Action: If the algorithm terminates, then it packs the cubes Ct

n, . . . ,
Ct
mb3d−1 into B, and Bb3d is the set of 3-boxes containing the remaining
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volume. If it does not terminate, then it packs the cubes Ct
n, Ct

n+1, . . .
into B.
(b3d1) We may assume B = w1(B)× w2(B)× w3(B) = n−t × w2(B)×

w3(B). If w3(B) > n−t, then split B into two boxes: one called D
with dimensions n−t×w2(B)×n−t, and the other called E1 which
is the remainder of B with dimensions n−t × w2(B)× (w3(B)−
n−t).

(b3d2) Let n1 = n+ 1, y1 = w2(B)− n−t, D1 = ∅.
(b3d3) Put the cube Ct

n snugly at one end of D.
(b3d4) If y1 > 0, then let D1 be the remainder of D so that D1 has di-

mensions n−t × y1 × n−t (Fig. 1).
(b3d5) For i = 1, 2, . . .
(b3d6) (Note: At stage i, we have packed Ct

n, . . . , C
t
ni−1 into D. The re-

maining boxes are Di, which we never use again in this algorithm,
and Di (as long as yi > 0), which has dimensions n−t× yi×n−t.)

(b3d7) If yi = 0, then D = Di and terminate the For loop.
(b3d8) If yi < n−t

i , then D = Di ∪ {Di} and terminate the For loop.

(b3d9) Let yi+1 = yi − n−t
i .

(b3d10) If yi+1 = 0, then let D1
i = Di.

(b3d11) If yi+1 > 0, then split Di into two boxes: one called D1
i with

dimensions n−t × n−t
i × n−t, and the other called Di+1 with di-

mensions n−t × yi+1 × n−t (Fig. 2).
(b3d12) Apply algorithm b3d recursively with inputs ni and D1

i . If this
terminates, let ni+1 = mb3d(ni,D

1
i ) and D1

i = Bb3d(ni,D
1
i ).

(b3d13) Let Di+1 = Di ∪D1
i .

(b3d14) End For.
(b3d15) Let N1 = ni, B1 = D and E1 = n−t × Y1 × Z1.
(b3d16) For j = 1, 2, . . .
(b3d17) (Note: At stage j, we have packed Ct

n, . . . , C
t
Nj−1 into B. The

remaining boxes are Bj , which we never use again in this algo-
rithm, and Ej (as long as Yj > 0 and Zj > 0), which has dimen-
sions n−t × Yj × Zj .)

(b3d18) If Yj=0 orZj=0, then terminatewithmb3d=Nj andBb3d=Bj .
(b3d19) If Yj < N−t

j or Zj < N−t
j , then terminate with mb3d = Nj and

Bb3d = Bj ∪ {Ej}.
(b3d20) If Yj ≥ Zj , then
(b3d21) Let Yj+1 = Yj −N−t

j and Zj+1 = Zj .

(b3d22) Split Ej into two boxes: one called E1
j with dimensions n−t

×N−t
j × Zj , and the other called Ej+1 with dimensions n−t

× Yj+1 × Zj+1 (Fig. 3).
(b3d23) Else
(b3d24) Let Zj+1 = Zj −N−t

j and Yj+1 = Yj .
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(b3d25) Split Ej into two boxes: one called E1
j with dimensions n−t

× Yj ×N−t
j , and the other called Ej+1 with dimensions n−t

× Yj+1 × Zj+1 (Fig. 4).
(b3d26) End If.
(b3d27) Apply algorithm b3d recursively with inputs Nj and E1

j . If this

terminates, let Nj+1 = mb3d(Nj, E
1
j ) and E 1

j = Bb3d(Nj, E
1
j ).

(b3d28) Let Bj+1 = Bj ∪ E 1
j .

(b3d29) End For.

Fig. 1: The 3-box D1 at step (b3d4) Fig. 2: The 3-box D1

1 at step (b3d11)

Fig. 3: The 3-boxes at step (b3d22) Fig. 4: The 3-boxes at step (b3d25)

Figs. 6 and 5 show the result of running algorithm b3d for t = 0.4, n = 1
and B a 3-box of dimensions 1× 2.15× 2.2. These parameters illustrate the
algorithm b3d′s behavior. Observe n1 = 2, n2 = 3 and y2 = 2.15− 1− 2−t <
n−t
2 thus the first for loop terminated. We have N1 = 3, N2 = 4, N3 = 6,

N4 = 9, N5 = 11, N6 = 13 and Z6 = 2.2− 1− 6−t − 11−t < N−t
6 thus the

algorithm b3d terminated.
The subroutine b3d is used in the algorithm c3d.
Algorithm c3d
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Fig. 5: Algorithm b3d with t = 0.4,
n = 1 and a 1× 2.15× 2.2 box

Fig. 6: Algorithm b3d with t = 0.4,
n = 1 and a 1× 2.15 × 2.2 box

Input: An integer n ≥ 1 and a set of 3-boxes B.
Action: If the algorithm does not fail, then it packs the cubes Ct

n, C
t
n+1,

. . . into B.
(c3d1) Let n1 = n+ 1 and B1 = B.
(c3d2) For i = 1, 2, . . .
(c3d3) (Note: At stage i, we have packed Ct

n, . . . , C
t
ni−1 into B. The

remaining 3-boxes are Bi.)
(c3d4) If w1(Bi) < n−t

i , then fail.
(c3d5) Let wi1 = min{w1(C) | C ∈ Bi, w1(C) ≥ n−t

i }.
(c3d6) Let wi2 = min{w2(C) | C ∈ Bi, w1(C) = wi1}.
(c3d7) Let wi3 = min{w3(C) | C ∈ Bi, w1(C) = wi1, w2(C) = wi2}.
(c3d8) Choose any Bi ∈ Bi which satisfies w1(Bi) = wi1, w2(Bi) = wi2

and w3(Bi) = wi3.
(c3d9) If wi1 = wi2 = wi3 = n−t

i , then
(c3d10) Pack Ct

ni
into Bi.

(c3d11) Let Bi+1 = Bi \ {Bi}.
(c3d12) Let ni+1 = ni + 1.
(c3d13) Else
(c3d14) We may assume that B = wi1 × wi2 × wi3. Cut Bi into two

3-boxes: one called Ci of dimensions wi1 × wi2 × n−t
i and the

other called Di of dimensions wi1 × wi2 × (wi3 − n−t
i ).

(c3d15) Call algorithm b3d with inputs ni and Ci. If this terminates,
then let ni+1 = mb3d(ni, Ci) and Ci = Bb3d(ni, Ci).

(c3d16) Let Bi+1 = Bi \ {Bi} ∪ Ci ∪ {Di}.
(c3d17) End If.
(c3d18) End For.
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5. The proof

We use the following lemmas.

Lemma 1. If B = {B1, . . . , Bn} (n ≥ 1), then v(B) ≤ w1(B)s(B).

Proof. We have

v(B) =
n
∑

i=1

v(Bi) =
n
∑

i=1

w1(Bi)s(Bi) ≤
n
∑

i=1

w1(B)s(Bi)

= w1(B)

n
∑

i=1

s(Bi) = w1(B)s(B). �

Lemma 2. Suppose w1(B) = n−t and algorithm b3d with inputs n and B
terminates with mb3d = mb3d(n,B) and Bb3d = Bb3d(n,B). Then

s(Bb3d) < 3

mb3d−1
∑

j=n

j−2t.

Proof. The proof is by induction on the number of cubes packed. Of
course, if b3d terminates with mb3d = n+ 1, then

s(Bb3d) < 3n−2t = 3
mb3d−1
∑

j=n

j−2t.

Thus the first step is true.

Fig. 7: The boxes EJ−1 and EJ

We can assume that the lemma is true for all the recursive calls to al-
gorithm b3d. We can also assume that b3d and all the recursive calls to
b3d terminated. Suppose algorithm b3d terminates when i = I and j = J ,
so mb3d = NJ . Since algorithm b3d terminated without placing the next
cube, the following statements are true

Acta Mathematica Hungarica

A. JOÓS380



Acta Mathematica Hungarica 156, 2018

PERFECT PACKING OF CUBES 7

• yI < n−t
I < n−t and

• (YJ < N−t
J < n−t or ZJ < N−t

J < n−t).
If YJ−1 ≥ ZJ−1 (the opposite case is similar) (see Fig. 7), then n−t >

N−t
J > YJ = YJ−1 −N−t

J−1 and ZJ = ZJ−1. If ZJ ≤ 2n−t, then

s(EJ) = max(n−tYJ , n
−tZJ , YJZJ) ≤ 2n−2t.

If we assume ZJ > 2n−t, then

2n−t < ZJ = ZJ−1 ≤ YJ−1 = YJ +N−t
J−1 < N−t

J +N−t
J−1 < 2n−t,

a contradiction. Thus s(EJ) < 2n−2t. Observe, s(DI) = n−2t. Now by in-
duction,

s(D1
i ) ≤ 3

ni+1−1
∑

k=ni

k−2t for i < I, s(E 1
j ) ≤ 3

Nj+1−1
∑

k=Nj

k−2t for j < J,

s(Bb3d) =
I−1
∑

m=1

s(D1
m) +

J−1
∑

m=1

s(E 1
m) + s(DI) + s(EJ)

≤ 3

NJ−1
∑

k=n1

k−2t + 3n−2t = 3

mb3d−1
∑

k=n

k−2t. �

Lemma 3. We have

(b+ 1)1−2t − a1−2t < (1− 2t)
b

∑

k=a

k−2t < b1−2t − (a− 1)1−2t,(1)

a1−3t − (b+ 1)1−3t < (3t− 1)

b
∑

k=a

k−3t < (a− 1)1−3t − b1−3t.(2)

Proof. Routine. �

Lemma 4. Consider step (c3d4) for some value of i. Suppose the fol-
lowing conditions hold.

v(Bi) ≥
∞
∑

k=ni

k−3t,(3)

s(Bi) ≤
n1−2t
i

3t− 1
.(4)

Then step (c3d4) will not fail for this value of i.
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Proof. We assume that the algorithm fail. Therefore we have w1(Bi) <
n−t
i . By Lemma 1, (4) and (2),

v(Bi) ≤ w1(Bi)s(Bi) <
n1−3t
i

3t− 1
≤

∞
∑

k=ni

k−3t ≤ v(Bi),

a contradiction, which completes the proof of the lemma. �

Lemma 5. Given an integer n ≥ 1 and a non-empty set of boxes B, sup-
pose the following conditions hold for t ≤ 4

11 :

v(B) ≥
∞
∑

k=n

k−3t,(5)

s(B) ≤
3

1− 2t
(n− 1)1−2t.(6)

If we run algorithm c3d with the inputs n and B, then the following
conditions hold at step (c3d4) for all i ≥ 1 for which step (c3d4) is executed.
The conditions are

v(Bi) ≥
∞
∑

k=ni

k−3t,(7)

s(Bi) ≤ s(B) + 3
ni−1
∑

k=n

k−2t.(8)

Moreover, the algorithm will never fail.

Proof. First, we will show that (7) and (8) ensure that the algorithm
will not fail. By (8), (1), and (6),

s(Bi) ≤ s(B) + 3
ni−1
∑

k=n

k−2t

< s(B) +
3

1− 2t
((ni − 1)1−2t − (n− 1)1−2t) ≤

3

1− 2t
(ni − 1)1−2t.

Since t ≤ 4/11,
3

1− 2t
≤

1

3t− 1
.

Thus

s(Bi) <
3

1− 2t
(ni − 1)1−2t ≤

1

3t− 1
(ni − 1)1−2t <

n1−2t
i

3t− 1
.

By Lemma 4, (c3d4) will not fail.
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Now we prove (7) and (8) by induction on i. Of course they hold for
i = 1 and (7) holds for all i. Let i > 1 be the smallest i for which (8) is not
true.

If the condition in (c3d9) was true for i− 1, then s(Bi) = s(Bi−1)−
3n−2t

i−1 and ni = ni−1 + 1. Thus by induction,

s(Bi) = s(Bi−1)− 3n−2t
i−1 ≤ s(B) + 3

ni−1−1
∑

k=n

k−2t − 3n−2t
i−1

< s(B) + 3

ni−1−1
∑

k=n

k−2t = s(B) + 3
ni−2
∑

k=n

k−2t < s(B) + 3
ni−1
∑

k=n

k−2t.

If the condition in (c3d9) was not true for i− 1, then

s(Bi) = s(Bi−1) + s(Ci−1)− s(Bi−1) + s(Di−1) < s(Bi−1) + s(Ci−1).

By induction and Lemma 2,

s(Bi) < s(Bi−1) + s(Ci−1)

≤ s(B) + 3

ni−1−1
∑

k=n

k−2t + 3
ni−1
∑

k=ni−1

k−2t = s(B) + 3
ni−1
∑

k=n

k−2t. �

Proof of Theorem 1. If the cube Ct
1 is packed in the 3-box B =

1× 1× ζ(3t) snugly at one end of B, then the remaining 3-box is

B =
{

1× 1× (ζ(3t)− 1)
}

and

s(B) = ζ(3t)− 1 = 10.58 < 11 =
3

1− 2t
(2− 1)1−2t.

By Lemma 5, the algorithm c3d packs perfectly the cubes Ct
n (n ≥ 2) intoB.

�

Proof of Theorem 2. If the cube Ct
1 is packed in the 3-box B =

1× 1× ζ(3t) snugly at one end of B, then the remaining 3-box is

B =
{

1× 1× (ζ(3t)− 1)
}

.

Let f(t) = s(B). We have ζ(3t)− 1 > 1 if t ∈ [t0,4/11]. Thus s(B) = f(t) =
ζ(3t)− 1. Since g(t) = 3

1−2t is an increasing, f(t) is a decreasing function

on the interval [t0, 4/11] and f(t0) = g(t0), by Lemma 5, the algorithm c3d

pack perfectly the cubes Ct
n (n ≥ 2) into B. �
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6. Discussion

If we increase the number of the packed cubes before we start the al-
gorithm c3d, then we can probably decrease the constant t0. The more
interesting challenge, however, seems to be to increase the bound 4/11.
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