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Abstract. Let f(z,k,d) =z(x+d)---(x + (k—1)d) be a polynomial with
k>2,d>1. We consider the Diophantine equation [];_, f(zs, ki, d) = y?, which
is inspired by a question of Erdds and Graham [4, p. 67]. Using the theory of
Pellian equation, we give infinitely many (nontrivial) positive integer solutions of
the above Diophantine equation for some cases.

1. Introduction

Let us define the polynomial
F@,kyd) = (@ +d) -+ (2 + (k- 1)d)

with £ > 2, d > 1. Many authors have studied the Diophantine equation

(1'1) Hf(xla ki, d) = y2>

1=1

where r > 1, with z; + (k; — 1)d < zj41 fori=1,...,r— 1, and 2 < ky < ko
< .-+ <k,. When r =1, there are many results about Eq. (1.1) and the
more general Diophantine equation

flz,k,d) = by,

where b > 0, [ > 3 and the greatest prime factor of b does not exceed k, we
can refer to [2,5-9,12,13].
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(1) The case r > 2, d=1. When r = 2, k; = 3, Sastry [6] showed that
Eq. (1.1) has infinitely many positive integer solutions (z1, z2,y), where x,
x9 satisfying x9 = 221 — 1 and (27 + 1)(221 — 1) is a square.

Erdés and Graham [4, p. 67] asked if Eq. (1.1) has, for fixed » > 1 and
ki, ko, ..., k. with k; > 4 for i =1,2,...,r, at most finitely many solu-
tions in positive integers (x1,z2,..., %y, y) with z; + k; — 1 < ;41 for 1 <4
<r —1. Skalba [14] obtained a bound for the smallest solution and esti-
mated the number of solutions below a given bound. Ulas [17] answered
the above question of Erdds and Graham in the negative when either r = 4,
(k1, ko, ks, ke) = (4,4,4,4) or r > 6 and k; = 4, 1 < i < r. Bauer and Bennett
[1] extended this result to the cases r = 3 and r = 5.

For the case (r,ki,ke) =(2,4,4), Eq. (1.1) has an integer solution
(z1,x2,y) = (33,1680,3361826160). Luca and Walsh [11] studied this case
by using the identity (z — 1)z(xz +1)(x +2) = (2? + 2 —1)? — 1 to reduce the
original problem to a Pellian equation (2% + 2 — 1)? — dy? = 1, where d > 1
is a squarefree integer. Tengely [15] provided an upper bound for the size of
the solutions and determined all solutions up to some bounds for this case.

Bennett and Van Luijk [3] constructed an infinite family of » > 5 non-
overlapping blocks of five consecutive integers such that their product is
always a perfect square. Tengely and Ulas [16] studied Eq. (1.1) in further
cases, and gave a partial answer to Question 3.2 in [18].

At the end of [1], Bauer and Bennett stated that it is easy to show that
Eq. (1.1) has infinitely many positive integer solutions with r = 2, k; = 3,
ko =4, and d =1. Now we give a proof of this result and show the re-
sults for d = 1. Noting that the k; are different, we replace the condition
x;+ (ki —1) < wjpq for i =1,...,r — 1 with the blocks of consecutive inte-
gers are disjoint.

THEOREM 1.1. For d =1, if either r =2, k1 =3, ko =4, or r =3,
ki =3, ko=4, ks =4, orr=3, k1 =3, ko =4, ks =5, then Eq. (1.1) has
infinitely many positive integer solutions.

Combining Theorem 1.1 and the results of [1,17], we have

COROLLARY 1.2. Ford=1,ifr>2, k1 =3, k;=4,1i=2,...,r, then
Eq. (1.1) has infinitely many positive integer solutions.

Moreover, we have

THEOREM 1.3. Ford=1,ifr >3, k1 =3, ko=5k;>25,1=3,...,r,
then Eq. (1.1) has infinitely many positive integer solutions.

(2) The case r > 2, d > 2. We are looking for the positive integer solu-
tions of Eq. (1.1) which satisfy d 1 x; for some 7. If the solutions (z1,...,%;,y)
satisfy d | x;, i = 1,...,r, we call them trivial. For r = 2, k; = 3, Zhang and
Cai [18] have proved that when r = 2, k; = 3, for even number d, Eq. (1.1)
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has infinitely many nontrivial positive integer solutions. For r =2, k; = 3,
Katayama [10] showed that Eq. (1.1) also has infinitely many nontrivial pos-
itive integer solutions when the integer d is divisible by a prime p (= £1
(mod 8)).

In the following, we study Eq. (1.1) with r > 2, k; >2,i=2,...,r, and
d > 2 as [1]. Noting that the k; are different, we replace the condition z; +
(k; — 1)d < x;41 for i =1,...,r — 1 with the blocks of disjoint arithmetic
progressions. Using the theory of Pellian equation, we prove

THEOREM 1.4. Forr>2 k1 =2, k;>2,i=2,...,r,andd > 2, Eq. (1.1)
has infinitely many nontrivial positive integer solutions.

THEOREM 1.5. Forr>2, ki=ko =3,k >3,1=3,...,r, and d > 2,
Eq. (1.1) has infinitely many nontrivial positive integer solutions.

THEOREM 1.6. For r=3, k; =4, i =1,2,3, and even number d > 2,
Eq. (1.1) has infinitely many nontrivial positive integer solutions, i.e., the
Diophantine equation
(1.2)
z(z+d)(z+2d)(x+3d)y(y+d) (y+2d) (y +3d) 2(2 4+ d) (2 + 2d) (2 + 3d) = w?

has infinitely many nontrivial positive integer solutions.

For an even number d > 2, the Diophantine equation
z(z + d)(x + 2d)(z + 3d)y(y + d)(y + 2d) (y + 3d) = 2*

has integer solutions
_(d 4 3d 4
(z,y,2) = (2,5d,105d ) ( ) +5d,315d )

Since each number r > 5 is of the form 3s + 2, 3s, 3s + 4, we have

COROLLARY 1.7. Forr >5,k;=4,i=1,...,r, and even number d > 2,
Eq. (1.1) has infinitely many nontrivial positive integer solutions, i.e., the
Diophantine equation

H zi(x; + d) (x5 + 2d) (x5 + 3d) = 3>
i=1

has infinitely many nontrivial positive integer solutions for even number
d>2andr > 5.

For d = 3, we have
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THEOREM 1.8. The Diophantine equation
(1.3) z(z+3)(z+6)(z+9)y(y+3)(y+6)(y+9)2(z+3)(2+6) (2 +9) = w?

has infinitely many nontrivial positive integer solutions.

The Diophantine equation
z(z + 3)(z +6)(z+ 9y(y + 3)(y + 6)(y +9) = 2°
has integer solutions

(z,y,2) = (2,24,23760), (4,36,98280),
(7,36,196560), (99,5040,272307918960).

Since each number r > 5 is of the form 3s + 2, 3s, 3s + 4, we have

COROLLARY 1.9. For r>5, k;=4,i=1,...,r, and d=3, Eq. (1.1)
has infinitely many nontrivial positive integer solutions, i.e., the Diophantine
equation

[ i@+ 3) (@i + 6) (i + 9) = o
i=1

has infinitely many nontrivial positive integer solutions for r > 5.

2. Proofs

PROOF OF THEOREM 1.1. 1) For r =2, k; =3, ko =4, and d =1,
Eq. (1.1) equals

:E1(131 + 1)(1}1 + Q)ZEQ(JTQ + 1)(172 + 2)(172 + 3) = y2.

Let 29 = u and

3
xr1 = u(u;_ ) )

then we have

u? +3u+4uu+1)(u+2)(u+3)?
2 4
Considering
u? +3u+4 2
2 - )
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it is equivalent to the Pellian equation U? — 2V? = —7, where U = 2u + 3,
V =2v.
All positive integer solutions of U? — 2V? = —7 are given by

Up + ViV'2 = (14+2v2)(3+2V2)", n>0.

Thus

Un = 6Un—l - Un—27 UO = 17 Ul = 11a

Vn:6Vn—1_Vn—2a ‘/0:27 Vi =38
From

U-3 Vv
xTr = v =
2 2’

we have

Up = O6Up_1 — Up_2+6, ug=0, up =4;

Up = 6Up_1 — VUp_2, vg =0, vy =4.
Then

Up (Up, + 1) (up, + 2)(up, + 3)v,

VAR > 1.
P "=

Yn =
So the Diophantine equation

z1(z1 + 1) (21 + 2)xa(zg + 1) (22 + 2) (22 + 3) = o/
has infinitely many positive integer solutions

(un(un +3)

2 7un7yn>7 nZ 17

such that x1(x; + 1)(x1 + 2) and za(z2 + 1) (22 + 2)(z2 + 3) are disjoint.
2) Forr =3, k1 =3, ko = ks =4, and d = 1, Eq. (1.1) reduces to

x1(x1+1) (214 2)z2(22+ 1) (22 +2) (22 + 3)23(23+ 1) (23 +2) (234 3) = 2.

Let 3 = u and

2
To = 2u + 3, xl:u( u3—|—5)7

then we have

2u® +5u +6 [2u(u+1)(u+2)(u+3)(2u+3)(2u+5)* _ ,
3 9 '
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Considering
2u' +5u+6 _ ,
3 - )
it is equivalent to the Pellian equation U? — 6V? = —23, where U = 4u + 5,

V = 2w.
All positive integer solutions of U2 — 6V2 = —23 are given by

Up 4+ VoV6 = (14 2V6)(5+2V6)", n>0.

Thus
U, =10U,-1 — Un—?a UO = 17 U= 29;
Vi =10V, — Vo, Vo=2, V1 =12.
From
" U-5 v Vv
4 27
we have
Up = 10Up_1 — uUp_9 + 10, ug =0, u; = 6;
U = 1001 — Up_9, vg =0, v = 6.
Then
= 2 (Up, + 1) (up, + 2)(up, + 3)(2upn + 3)(2uy + 5)vy, €7t >l

3
Therefore, the Diophantine equation

z1 (21 4+ 1) (21 4+2) 22 (22 + 1) (224 2) (w2 +3)x3(z3 4+ 1) (23 +2) (234 3) = 3/
has infinitely many positive integer solutions

(un(Qun +5)
3
such that x1(z1 + 1) (1 + 2), x2(z2 + 1) (22 + 2) (22 + 3) and x3(zs + 1)(x3+

2)(xz3 + 3) are disjoint.
3) Forr =3,k =3, kg =4, k3 =5, and d =1, Eq. (1.1) leads to

72un+3aunayn>7 n>1,

zi(x14+1)(x1+2)z2(22+1) (224 2) (224 3)
x x3(z3+1)(234+2) (234 3) (23 + 4) = >
Let 3 = 2 and x5 = u, 1 = u(u + 3), then we have
5(u? + 3u+ 1) [12u(u+ 1) (u + 2)(u + 3)]* = y*.
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Considering u? 4+ 3u 4+ 1 = 502, it is equivalent to the Pellian equation U? —
5V2 =5, where U = 2u+ 3, V = 2v.
All positive integer solutions of U2 — 5V?2 = 5 are given by

Up 4+ VoV5 = (54+2V5)(9+4V5)", n>0.

Thus
Un = 18Un—l - Un—27 UO = 57 Ul = 857
Vi =18V1 — Vn—2> VYO = 2> Vi =38.
From
U-3 \%4
u = v =
2 2’
we have
Up = 18Up_1 — Up_o + 24, ug =1, u; = 41;
U, = 1801 — Up_9, vo =1, vy = 19.
Then

Yn = 60wy, (uy + 1) (up + 2)(up + 3)v, € ZT, n>0.
So the Diophantine equation
x1(z1 + 1) (21 + 2)x2(x0 + 1) (22 4+ 2) (22 + 3)
x x3(x3 + 1)(z3 + 2)(z3 + 3) (23 + 4) = 3/

has infinitely many positive integer solutions (u,(u, + 3), un,2,yn), n > 1,
such that x1(z1 + 1) (21 +2), x2(z2 + 1) (22 + 2) (22 + 3) and x3(zs + 1)(x3 +
2)(z3 + 3)(z3 +4) are disjoint. O

PROOF OF THEOREM 1.3. Ford=1,r>3, k1 =3, ko=5,k; >5,1=
3,...,r, let

r1 = u, Hwi(:pi+l)---(xi—|—ki—1):A.
i=3

Choose z; € Z*, k; > 5,4 =3,...,r such that z;(z; + 1) -+ (x; + k; — 1) are
disjoint, 24 is not a perfect square, and the Pellian equation U? —24V? =1
has a positive integer solution (U’,V’). By the transformation xo = 2z, =
2u, Eq. (1.1) leads to

Su?(u—+1)%(u+2)%(2u+ 1)(2u + 3)A = 2.
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Let
2(2u + 1)(2u + 3) = Av?,

then U? — 2AV? =1, where U =2u+ 2,V = 5
If (U’, V') is a fundamental solution of the Pellian equation U? —2AV? =1,
then all positive integer solutions of it are given by

Uy +VoV2A = (U +V'V2A)", n>0.

Thus
Un = 2U,Un—l - Un—27 UO = 17 Ul = U,;
V=20 V1 —Vp_a, Vo=0, V1 =V"
From
U-2
U = 5 v =2V,
we have

-2

Un = 20"t 1 — U+ 2(U" = 1), wg=—1, up = V5L
vy, = 2U"0p_1 — Up—2, vg =0, vy = 2V".

From U”? —2AV'? =1, we get U’ is an odd number. By the recurrence
relation of w,,, we have uo, 11 € Z", vop11 € ZT, and

Yont+1 = 2Auon11(Uoni1 + 1) (Uzni1 + 2)vant1 € ZT, n > 0.

Then ford=1,r>3, k1 =3, ko =5, k; >5,i=3,...,r, Eq. (1.1) has in-
finitely many positive integer solutions

(u2n+l7 2u2n+17 .'1}'3, [ 7xT7 92n+1)7

where n > 0, such that z;(x; +1) -+ (x; + k; —1),i =1,...,r are disjoint.
Il

ExXAMPLE 2.1. When r=3, k1 =3, ko =5, k3 =05, let x3 =1, then
A = 120. Noting that (31,2) is the fundamental solution of the Pellian equa-
tion U? — 240V? = 1, then (u,v) satisfying

Up = 62Up_1 — Up—9 + 60, ug = —%, up = 15;
Uy = 620, 1 — Up_9, v =0, v1 = 6.

Then ug,11 € ZT, vgpp1 € ZT, and
Yon+1 = 240u2n+1(u2n+1 + 1)(u2n+l + 2)'0271—!—1 € ZJ’_; n > 0.
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The Diophantine equation
x1(x1 + 1) (21 + 2)xo (22 + 1) (22 + 2) (22 + 3) (22 + 4)
x x3(z3 + 1) (23 + 2) (23 + 3) (23 + 4) = o
has infinitely many positive integer solutions (w21, 2u2n+1, 1, Y2n+1), 7 > 0.

PROOF OF THEOREM 1.4. Let
H(L‘Z((EZ + d) cee ((L‘Z + (kl — 1)d) = A.
i=2

Choose w; € Zt, k; > 2,4 =2,...,7, such that z;(z; + d) - - - (z; + (k; — 1)d)
are disjoint, d { x2, and A is not a perfect square, then Eq. (1.1) reduces to
r1(xy + d)A = y?. Let 21 = u and consider u(u + d) = Av?, then we get a
Pellian equation U? — AV? = 1, where

_2u+d 2v

U .
d ’ d

If (U’, V') is a fundamental solution of U? — AV?2 = 1, then all positive
integer solutions of it are given by

Up+VoVA= (U +V'VA)", n>0.

Thus

Un = 2U,Un—l - Un—27 UO = 17 Ul = U,;

Vn = 2Uv/vvn—l - Vn—27 ‘/O = 07 ‘/1 =V
From

(U-1)d Vd
U= , U= ,
2 2

we have

/ v'd
Un = 2U Un—1 — Un—2, Vo = 07 U1 = o

{un =2U"up—1 — up—o+ (U —1)d, up=0, ug = (U/gl)d;
By the recurrence relation of u,, we can get wus, € Z, v9, € ZT, and
Yon = Avg, € ZT, n>1. Then for r > 2, k1 =2, k; >2,i=2,...,r, and
d > 2, Eq. (1.1) has infinitely many nontrivial positive integer solutions
(uon, X2y - .., Tr,Yon), where n > 1, such that x;(z; +d)--- (x; + (k; — 1)d),
1=1,...,r are disjoint. [
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EXAMPLE 2.2. Whenr =2,k =ko=2,d=2,let x1 =1, x93 = u. Then
Eq. (1.1) leads to 3u(u+2) = y2. Let u(u+2)=3v%, we get (u+1)?—3v%=1.
Noting that (2,1) is the fundamental solution of the Pellian equation
U? —3V? =1, then (u,v) satisfy

Up = 4Up—1 — Up—2+2, up=0, up =1;
U = 4vp1 — Un—2; Vo = 07 v = 3.

So ¥, = 3v, € Z™, n > 1. The Diophantine equation
z1(zy + 2)xo(zg + 2) = 3
has infinitely many nontrivial positive integer solutions (1, uy,yy), n > 2.

PROOF OF THEOREM 1.5. Let
HQTZ(:EZ + d) cee (l’z =+ (k‘z — 1)d) = A.
i=3

Choose x; € Zt, k; > 3,i=3,...,7 such that z;(z; + d) - - (z; + (k; — 1)d)
are disjoint, d { x3, 24 is not a perfect square and the Pellian equation U? —
2AV? =1 has a fundamental solution (U’, V') with even number V’. Let
x1 = u and x9 = 2u, then Eq. (1.1) reduces to

4u?(u + d)*(u+ 2d) (2u + d)A = 2.

Considering (u + 2d)(2u + d) = Av?, then we get a Pellian equation U? —
2AV? =1, where U = /54 v = 2.

If (U, V") is a fundamental solution of U? — 2AV? = 1, then all positive
integer solutions of it are given by

Un + VaV2A = (U +V'V24)", n>0.

Thus
Up=20'Uy 1 —Upa, Upg=1, U =U';
Vi = 2U/Vn—1 - Vn—2a VYO = 07 Vi = V.
From
" — (3U —5)d v—3Vd
- 4 ) - 2 bl
we have
= Wty — 4 T, g = g = OV,
Vp = 2U vp_1 — V2, vp =0, v1 = 3‘2 .
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From U —2AV"? =1, we get U’ is an even number. By the recurrence
relation of u,, and V' is an even number, we have uy, 12 € ZT, v4p12 € ZT,
and

Yant2 = 2Auspio(Uant2 + d)vani2 € ZT, n > 0.

Then for r > 2, ky =ko=3, k;>3,i=3,...,r, and d > 2, Eq. (1.1) has
infinitely many nontrivial positive integer solutions

(UQn, 2u2n7 TL3yewey Ly, y2n)7

where n > 1, such that z;(x; +d) - - - (z; + (ki — 1)d),i = 1,...,r are disjoint.
]

EXaMPLE 2.3. Whenr =3, ki =ko=ks=3,d=2,letz1 =1, 29 = u,
x3 = 2u, then Eq. (1.1) reduces to

1200 (u + 2)*(u + 4) (u + 1) = y*.
Let (u+4)(u+ 1) = 3002, we have

2u +5\2 2v\ 2
-30(%, ) =1.
(M) 30
Noting that (11,2) is the fundamental solution of the Pellian equation U? —

30V2 =1, then (u,v) satisfying

Uy = 22Up—1 — Up—9 + 50, ug=—1, ug = 14;
Up = 22Up_1 — Up_2, vg =0, v1 =6,
and
Yn = 30U (up + 2)v, €ZT, n > 1.
The Diophantine equation
z1(z1 + 2) (21 + 4)xo(20 + 2) (29 + 4)z3(23 + 2) (23 + 4) = 92

has infinitely many nontrivial positive integer solutions (1,y,, 2y, Yn),
n > 1.

PrROOF OF THEOREM 1.6. For an even number d > 2, let d = 2b and
z =2z + 3d = 2z + 6b. From Eq. (1.2) we have
(2.1)
16(x 4 4b)2(z + 6b) %z (2 + 2b) (x + 3b) (= + 5b)y(y + 2b) (y + 4b) (y + 6b) = w?.

Using the same method as Bauer and Bennett [1], if we let

3
y(y + 6b),

(2.2) x(x + 5b) = A

Acta Mathematica Hungarica 156, 2018



ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS. II 251

then
3
4 (y + 20)(y + 4b),

and Eq. (2.1) has positive integer solutions.
Eq. (2.2) is equivalent to the Pellian equation X? — 3Y? = —2b%, where
X =2x+5b,Y = y+3b. An infinity of positive integer solutions are given by

(z + 2b)(z + 3b) =

Xp+YV3=(b+bV3) (24+V3)", n>o0.

Thus

X,=4X,_1— X2, Xog=0b, X1 =05b X5 =190,

Yn = 4Yn—1 - Yn—27 }/0 = b) }/1 = 3b7 }/2 = 11b.
From

X —5b
T = , y=Y —3b,
2

we have

{xn =4xp,_1 — Tp_o +5b, 9= —2b, x1 =0, x9 = Tb;
Yn =4Yn—1 — Yn—2 +6b, yo = —2b, y1 =0, y2 = 8b.
It is easy to prove that d = 2bt x4,42, n > 0. Then
Zan+4+2 = 2%4n4o + 6b € Zt, n>0,
and
Wan+2 = 3(Tanto + 4b)(x4n+2 + 6b)
X Yant2(Yant2 + 2) (Yant2 + 4b) (Yant2 +60) € ZF, n > 0.

Therefore, Eq. (1.2) has infinitely many nontrivial positive integer solutions

(Tan+2, Yan+2, 2Tant2 + 6D, Wap12),
where n > 0. 0O
PROOF OF THEOREM 1.8. Let z = 3z + 9, from Eq. (1.3) we have
(2.3) 81(x +3)*(x 4 6)%x(x +4)(z +5)(x +9)y(y +3)(y + 6)(y + 9) = w*.

If we let

10

(2.4) z(x+9) = 9

y(y +9),
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then

10

(e + 9@ +5) = o (y+3)(y+6),

and Eq. (2.3) has positive integer solutions.
Eq. (2.4) is equivalent to the Pellian equation X2 — 10Y?2 = —81, where
X =6x+27,Y = 2y+9. An infinity of positive integer solutions are given by

X+ YoV/10 = (3 +3v10) (19 +6V10)", n>0.

Thus
X,=38X,,_1— X0, Xog=3, X1 =237, X5 =9003;
Y, =38Y,_1— Y, o, Yo =3, Y1 =75, Yo = 2847.
From
X =27 Y-9
:L‘ - 6 b y - 2 b
we have

{xn — 3821 — Tn_o + 162, x0 = —4, x1 = 35, xo = 1496;
Yn = 38Yn—1 — Yn—2 + 162,  yo = =3, y1 = 33, y2 = 1419.
It is easy to prove that 31 x,, n > 1. Then
3tz =3x,+9, n>1,
and
Win+2 = 10(xn + 3)(@n + 6)Yn(Yn +3)(yn + 6)(yn +9) €ZT, n>1.
Therefore, Eq. (1.3) has infinitely many nontrivial positive integer solutions
(Tny Y, 3Ty, + 9, w5),

wheren >1. O

3. Some related questions

By searching on computer, we find that the Diophantine equation
w(e+ 1)z +2)y(y + 1)y +2)(y +3)(y +4) = 2°
has some positive integer solutions, such as

(z,y,2) = (8,2,720), (14,6,10080), (64,9,205920), (168, 14,2227680),
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(169, 16, 3023280), (1680, 6,11985120), (1804,41,928536840),
(2209, 64, 3674505120), (2540, 123,22372396200),

and the Diophantine equation
2(z+1)(z +2)(z +3)y(y + 1)y +2)(y + 3)(y +4) = 2°
has a nontrivial positive integer solution
(z,y,2) = (120,242, 13726888560)

in the range 1 < x,y < 1000. But it seems difficult to give a positive answer
to the following question.

QUESTION 3.1. Do the Diophantine equations
z(e+1)(z+2y(y+ Dy +2)(y +3)(y +4) = 2°
and
(e +1)(z +2)(x +3)y(y + )y +2)(y + 3)(y +4) = 2°
have infinitely many positive integer solutions?

When d > 1, we have

QUESTION 3.2. For an even number d > 2, r =4, k; =4, 1=1,2,3,4,
does Eq. (1.1) have infinitely many nontrivial positive integer solutions, i.e.,
does the Diophantine equation

4
H zi(x; + d) (x5 + 2d) (x5 + 3d) = 3>
i=1

have infinitely many nontrivial positive integer solutions?

QUESTION 3.3. For odd number d>5, r=3, k; =4, i=1,2,3, does
Eq. (1.1) have infinitely many nontrivial positive integer solutions, i.e., does
the Diophantine equation

3
[ =i+ d) (i + 2d) (2 + 3d) = 3
=1

have infinitely many nontrivial positive integer solutions?

Bennett and Van Luijk [3] constructed an infinite family of » > 5 non-
overlapping blocks of five consecutive integers such that their product is
always a perfect square. Similarly, we can ask
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QUESTION 3.4. Ford>2,r>5,k;=5,i=1,...,r, does Eq. (1.1) have
infinitely many nontrivial positive integer solutions, i.e., does the Diophan-
tine equation

ﬁ xi(x; + d)(z; + 2d)(x; + 3d) (z; + 4d) = Y2
i=1

have infinitely many nontrivial positive integer solutions?
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