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(1) The case r ≥ 2, d = 1. When r = 2, ki = 3, Sastry [6] showed that
Eq. (1.1) has infinitely many positive integer solutions (x1, x2, y), where x1,
x2 satisfying x2 = 2x1 − 1 and (x1 + 1)(2x1 − 1) is a square.

Erdős and Graham [4, p. 67] asked if Eq. (1.1) has, for fixed r ≥ 1 and
k1, k2, . . . , kr with ki ≥ 4 for i = 1, 2, . . . , r, at most finitely many solu-
tions in positive integers (x1, x2, . . . , xr, y) with xi + ki − 1 < xi+1 for 1 ≤ i
≤ r − 1. Ska�lba [14] obtained a bound for the smallest solution and esti-
mated the number of solutions below a given bound. Ulas [17] answered
the above question of Erdős and Graham in the negative when either r = 4,
(k1, k2, k3, k4) = (4,4,4,4) or r ≥ 6 and ki = 4, 1 ≤ i ≤ r. Bauer and Bennett
[1] extended this result to the cases r = 3 and r = 5.

For the case (r, k1, k2) = (2, 4, 4), Eq. (1.1) has an integer solution
(x1, x2, y) = (33, 1680, 3361826160). Luca and Walsh [11] studied this case
by using the identity (x− 1)x(x+1)(x+2) = (x2+x− 1)2− 1 to reduce the
original problem to a Pellian equation (x2 + x− 1)2 − dy2 = 1, where d > 1
is a squarefree integer. Tengely [15] provided an upper bound for the size of
the solutions and determined all solutions up to some bounds for this case.

Bennett and Van Luijk [3] constructed an infinite family of r ≥ 5 non-
overlapping blocks of five consecutive integers such that their product is
always a perfect square. Tengely and Ulas [16] studied Eq. (1.1) in further
cases, and gave a partial answer to Question 3.2 in [18].

At the end of [1], Bauer and Bennett stated that it is easy to show that
Eq. (1.1) has infinitely many positive integer solutions with r = 2, k1 = 3,
k2 = 4, and d = 1. Now we give a proof of this result and show the re-
sults for d = 1. Noting that the ki are different, we replace the condition
xi + (ki − 1) < xi+1 for i = 1, . . . , r − 1 with the blocks of consecutive inte-
gers are disjoint.

Theorem 1.1. For d = 1, if either r = 2, k1 = 3, k2 = 4, or r = 3,
k1 = 3, k2 = 4, k3 = 4, or r = 3, k1 = 3, k2 = 4, k3 = 5, then Eq. (1.1) has

infinitely many positive integer solutions.

Combining Theorem 1.1 and the results of [1,17], we have

Corollary 1.2. For d = 1, if r ≥ 2, k1 = 3, ki = 4, i = 2, . . . , r, then
Eq. (1.1) has infinitely many positive integer solutions.

Moreover, we have

Theorem 1.3. For d = 1, if r ≥ 3, k1 = 3, k2 = 5, ki ≥ 5, i = 3, . . . , r,
then Eq. (1.1) has infinitely many positive integer solutions.

(2) The case r ≥ 2, d ≥ 2. We are looking for the positive integer solu-
tions of Eq. (1.1) which satisfy d ∤ xi for some i. If the solutions (x1, . . . , xr, y)
satisfy d | xi, i = 1, . . . , r, we call them trivial. For r = 2, ki = 3, Zhang and
Cai [18] have proved that when r = 2, ki = 3, for even number d, Eq. (1.1)

Acta Mathematica Hungarica

Acta Math. Hungar.
DOI: 0

ON PRODUCTS OF CONSECUTIVE

ARITHMETIC PROGRESSIONS. II

Y. ZHANG

School of Mathematics and Statistics, Changsha University of Science and Technology;
Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,

Changsha 410114, People’s Republic of China
email: zhangyongzju@163.com

(Received February 21, 2018; revised March 28, 2018; accepted April 5, 2018)

Abstract. Let f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d) be a polynomial with
k ≥ 2, d ≥ 1. We consider the Diophantine equation

∏
r

i=1
f(xi, ki, d) = y2, which

is inspired by a question of Erdős and Graham [4, p. 67]. Using the theory of
Pellian equation, we give infinitely many (nontrivial) positive integer solutions of
the above Diophantine equation for some cases.

1. Introduction

Let us define the polynomial

f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d)

with k ≥ 2, d ≥ 1. Many authors have studied the Diophantine equation

(1.1)
r
∏

i=1

f(xi, ki, d) = y2,

where r ≥ 1, with xi + (ki − 1)d < xi+1 for i = 1, . . . , r− 1, and 2 ≤ k1 ≤ k2
≤ · · · ≤ kr. When r = 1, there are many results about Eq. (1.1) and the
more general Diophantine equation

f(x, k, d) = byl,

where b > 0, l ≥ 3 and the greatest prime factor of b does not exceed k, we
can refer to [2,5–9,12,13].
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(1) The case r ≥ 2, d = 1. When r = 2, ki = 3, Sastry [6] showed that
Eq. (1.1) has infinitely many positive integer solutions (x1, x2, y), where x1,
x2 satisfying x2 = 2x1 − 1 and (x1 + 1)(2x1 − 1) is a square.

Erdős and Graham [4, p. 67] asked if Eq. (1.1) has, for fixed r ≥ 1 and
k1, k2, . . . , kr with ki ≥ 4 for i = 1, 2, . . . , r, at most finitely many solu-
tions in positive integers (x1, x2, . . . , xr, y) with xi + ki − 1 < xi+1 for 1 ≤ i
≤ r − 1. Ska�lba [14] obtained a bound for the smallest solution and esti-
mated the number of solutions below a given bound. Ulas [17] answered
the above question of Erdős and Graham in the negative when either r = 4,
(k1, k2, k3, k4) = (4,4,4,4) or r ≥ 6 and ki = 4, 1 ≤ i ≤ r. Bauer and Bennett
[1] extended this result to the cases r = 3 and r = 5.

For the case (r, k1, k2) = (2, 4, 4), Eq. (1.1) has an integer solution
(x1, x2, y) = (33, 1680, 3361826160). Luca and Walsh [11] studied this case
by using the identity (x− 1)x(x+1)(x+2) = (x2+x− 1)2− 1 to reduce the
original problem to a Pellian equation (x2 + x− 1)2 − dy2 = 1, where d > 1
is a squarefree integer. Tengely [15] provided an upper bound for the size of
the solutions and determined all solutions up to some bounds for this case.

Bennett and Van Luijk [3] constructed an infinite family of r ≥ 5 non-
overlapping blocks of five consecutive integers such that their product is
always a perfect square. Tengely and Ulas [16] studied Eq. (1.1) in further
cases, and gave a partial answer to Question 3.2 in [18].

At the end of [1], Bauer and Bennett stated that it is easy to show that
Eq. (1.1) has infinitely many positive integer solutions with r = 2, k1 = 3,
k2 = 4, and d = 1. Now we give a proof of this result and show the re-
sults for d = 1. Noting that the ki are different, we replace the condition
xi + (ki − 1) < xi+1 for i = 1, . . . , r − 1 with the blocks of consecutive inte-
gers are disjoint.

Theorem 1.1. For d = 1, if either r = 2, k1 = 3, k2 = 4, or r = 3,
k1 = 3, k2 = 4, k3 = 4, or r = 3, k1 = 3, k2 = 4, k3 = 5, then Eq. (1.1) has

infinitely many positive integer solutions.

Combining Theorem 1.1 and the results of [1,17], we have

Corollary 1.2. For d = 1, if r ≥ 2, k1 = 3, ki = 4, i = 2, . . . , r, then
Eq. (1.1) has infinitely many positive integer solutions.

Moreover, we have

Theorem 1.3. For d = 1, if r ≥ 3, k1 = 3, k2 = 5, ki ≥ 5, i = 3, . . . , r,
then Eq. (1.1) has infinitely many positive integer solutions.

(2) The case r ≥ 2, d ≥ 2. We are looking for the positive integer solu-
tions of Eq. (1.1) which satisfy d ∤ xi for some i. If the solutions (x1, . . . , xr, y)
satisfy d | xi, i = 1, . . . , r, we call them trivial. For r = 2, ki = 3, Zhang and
Cai [18] have proved that when r = 2, ki = 3, for even number d, Eq. (1.1)

Acta Mathematica Hungarica

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS. II 241



Acta Mathematica Hungarica 156, 2018

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS. II 3

has infinitely many nontrivial positive integer solutions. For r = 2, ki = 3,
Katayama [10] showed that Eq. (1.1) also has infinitely many nontrivial pos-
itive integer solutions when the integer d is divisible by a prime p (≡ ±1
(mod 8)).

In the following, we study Eq. (1.1) with r ≥ 2, ki ≥ 2, i = 2, . . . , r, and
d ≥ 2 as [1]. Noting that the ki are different, we replace the condition xi +
(ki − 1)d < xi+1 for i = 1, . . . , r − 1 with the blocks of disjoint arithmetic
progressions. Using the theory of Pellian equation, we prove

Theorem 1.4. For r ≥ 2, k1 = 2, ki ≥ 2, i = 2, . . . , r, and d ≥ 2, Eq. (1.1)
has infinitely many nontrivial positive integer solutions.

Theorem 1.5. For r ≥ 2, k1 = k2 = 3, ki ≥ 3, i = 3, . . . , r, and d ≥ 2,
Eq. (1.1) has infinitely many nontrivial positive integer solutions.

Theorem 1.6. For r = 3, ki = 4, i = 1, 2, 3, and even number d ≥ 2,
Eq. (1.1) has infinitely many nontrivial positive integer solutions, i.e., the

Diophantine equation

(1.2)
x(x+d)(x+2d)(x+3d)y(y+d)(y+2d)(y+3d)z(z+d)(z+2d)(z+3d) = w2

has infinitely many nontrivial positive integer solutions.

For an even number d ≥ 2, the Diophantine equation

x(x+ d)(x+ 2d)(x+ 3d)y(y+ d)(y + 2d)(y + 3d) = z2

has integer solutions

(x, y, z) =
(d

2
, 5d, 105d4

)

,
(3d

2
, 5d, 315d4

)

.

Since each number r ≥ 5 is of the form 3s+ 2, 3s, 3s+ 4, we have

Corollary 1.7. For r ≥ 5, ki = 4, i = 1, . . . , r, and even number d ≥ 2,
Eq. (1.1) has infinitely many nontrivial positive integer solutions, i.e., the

Diophantine equation

r
∏

i=1

xi(xi + d)(xi + 2d)(xi + 3d) = y2

has infinitely many nontrivial positive integer solutions for even number

d ≥ 2 and r ≥ 5.

For d = 3, we have
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Theorem 1.8. The Diophantine equation

(1.3) x(x+3)(x+6)(x+9)y(y+3)(y+6)(y+9)z(z+3)(z+6)(z+9) = w2

has infinitely many nontrivial positive integer solutions.

The Diophantine equation

x(x+ 3)(x+ 6)(x+ 9)y(y + 3)(y + 6)(y + 9) = z2

has integer solutions

(x, y, z) = (2, 24, 23760), (4, 36, 98280),

(7, 36, 196560), (99, 5040, 272307918960).

Since each number r ≥ 5 is of the form 3s+ 2, 3s, 3s+ 4, we have

Corollary 1.9. For r ≥ 5, ki = 4, i = 1, . . . , r, and d = 3, Eq. (1.1)
has infinitely many nontrivial positive integer solutions, i.e., the Diophantine

equation

r
∏

i=1

xi(xi + 3)(xi + 6)(xi + 9) = y2

has infinitely many nontrivial positive integer solutions for r ≥ 5.

2. Proofs

Proof of Theorem 1.1. 1) For r = 2, k1 = 3, k2 = 4, and d = 1,
Eq. (1.1) equals

x1(x1 + 1)(x1 + 2)x2(x2 + 1)(x2 + 2)(x2 + 3) = y2.

Let x2 = u and

x1 =
u(u+ 3)

2
,

then we have

u2 + 3u+ 4

2

[u(u+ 1)(u+ 2)(u+ 3)]2

4
= y2.

Considering

u2 + 3u+ 4

2
= v2,
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Theorem 1.8. The Diophantine equation
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The Diophantine equation

x(x+ 3)(x+ 6)(x+ 9)y(y + 3)(y + 6)(y + 9) = z2

has integer solutions

(x, y, z) = (2, 24, 23760), (4, 36, 98280),
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Since each number r ≥ 5 is of the form 3s+ 2, 3s, 3s+ 4, we have

Corollary 1.9. For r ≥ 5, ki = 4, i = 1, . . . , r, and d = 3, Eq. (1.1)
has infinitely many nontrivial positive integer solutions, i.e., the Diophantine

equation

r
∏

i=1

xi(xi + 3)(xi + 6)(xi + 9) = y2

has infinitely many nontrivial positive integer solutions for r ≥ 5.

2. Proofs

Proof of Theorem 1.1. 1) For r = 2, k1 = 3, k2 = 4, and d = 1,
Eq. (1.1) equals

x1(x1 + 1)(x1 + 2)x2(x2 + 1)(x2 + 2)(x2 + 3) = y2.

Let x2 = u and

x1 =
u(u+ 3)

2
,

then we have

u2 + 3u+ 4

2

[u(u+ 1)(u+ 2)(u+ 3)]2

4
= y2.

Considering

u2 + 3u+ 4

2
= v2,
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it is equivalent to the Pellian equation U2 − 2V 2 = −7, where U = 2u+ 3,
V = 2v.

All positive integer solutions of U2 − 2V 2 = −7 are given by

Un + Vn

√
2 = (1 + 2

√
2)(3 + 2

√
2)n, n ≥ 0.

Thus
{

Un = 6Un−1 − Un−2, U0 = 1, U1 = 11;

Vn = 6Vn−1 − Vn−2, V0 = 2, V1 = 8.

From

x =
U − 3

2
, v =

V

2
,

we have
{

un = 6un−1 − un−2 + 6, u0 = 0, u1 = 4;

vn = 6vn−1 − vn−2, v0 = 0, v1 = 4.

Then

yn =
un(un + 1)(un + 2)(un + 3)vn

2
∈ Z+, n ≥ 1.

So the Diophantine equation

x1(x1 + 1)(x1 + 2)x2(x2 + 1)(x2 + 2)(x2 + 3) = y2

has infinitely many positive integer solutions

(un(un + 3)

2
, un, yn

)

, n ≥ 1,

such that x1(x1 + 1)(x1 + 2) and x2(x2 + 1)(x2 + 2)(x2 + 3) are disjoint.
2) For r = 3, k1 = 3, k2 = k3 = 4, and d = 1, Eq. (1.1) reduces to

x1(x1+1)(x1+2)x2(x2+1)(x2+2)(x2+3)x3(x3+1)(x3+2)(x3+3) = y2.

Let x3 = u and

x2 = 2u+ 3, x1 =
u(2u+ 5)

3
,

then we have

2u2 + 5u+ 6

3

[2u(u+ 1)(u+ 2)(u+ 3)(2u+ 3)(2u+ 5)]2

9
= y2.
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Considering

2u2 + 5u+ 6

3
= v2,

it is equivalent to the Pellian equation U2 − 6V 2 = −23, where U = 4u+ 5,
V = 2v.

All positive integer solutions of U2 − 6V 2 = −23 are given by

Un + Vn

√
6 = (1 + 2

√
6)(5 + 2

√
6)n, n ≥ 0.

Thus
{

Un = 10Un−1 − Un−2, U0 = 1, U1 = 29;

Vn = 10Vn−1 − Vn−2, V0 = 2, V1 = 12.

From

u =
U − 5

4
, v =

V

2
,

we have
{

un = 10un−1 − un−2 + 10, u0 = 0, u1 = 6;

vn = 10vn−1 − vn−2, v0 = 0, v1 = 6.

Then

yn =
2un(un + 1)(un + 2)(un + 3)(2un + 3)(2un + 5)vn

3
∈ Z+, n ≥ 1.

Therefore, the Diophantine equation

x1(x1+1)(x1+2)x2(x2+1)(x2+2)(x2+3)x3(x3+1)(x3+2)(x3+3) = y2

has infinitely many positive integer solutions

(un(2un + 5)

3
, 2un + 3, un, yn

)

, n ≥ 1,

such that x1(x1 +1)(x1+2), x2(x2 +1)(x2 +2)(x2 +3) and x3(x3 +1)(x3+
2)(x3 + 3) are disjoint.

3) For r = 3, k1 = 3, k2 = 4, k3 = 5, and d = 1, Eq. (1.1) leads to

x1(x1+1)(x1+2)x2(x2+1)(x2+2)(x2+3)

× x3(x3+1)(x3+2)(x3+3)(x3 + 4) = y2.

Let x3 = 2 and x2 = u, x1 = u(u+ 3), then we have

5(u2 + 3u+ 1)[12u(u+ 1)(u+ 2)(u+ 3)]2 = y2.
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Considering
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3
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Considering u2 + 3u+ 1 = 5v2, it is equivalent to the Pellian equation U2 −
5V 2 = 5, where U = 2u+ 3, V = 2v.

All positive integer solutions of U2 − 5V 2 = 5 are given by

Un + Vn

√
5 = (5 + 2

√
5)(9 + 4

√
5)n, n ≥ 0.

Thus
{

Un = 18Un−1 − Un−2, U0 = 5, U1 = 85;

Vn = 18Vn−1 − Vn−2, V0 = 2, V1 = 38.

From

u =
U − 3

2
, v =

V

2
,

we have
{

un = 18un−1 − un−2 + 24, u0 = 1, u1 = 41;

vn = 18vn−1 − vn−2, v0 = 1, v1 = 19.

Then

yn = 60un(un + 1)(un + 2)(un + 3)vn ∈ Z+, n ≥ 0.

So the Diophantine equation

x1(x1 + 1)(x1 + 2)x2(x2 + 1)(x2 + 2)(x2 + 3)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4) = y2

has infinitely many positive integer solutions (un(un + 3), un, 2, yn), n ≥ 1,
such that x1(x1 +1)(x1 +2), x2(x2 +1)(x2 +2)(x2 +3) and x3(x3 +1)(x3 +
2)(x3 + 3)(x3 + 4) are disjoint. �

Proof of Theorem 1.3. For d = 1, r ≥ 3, k1 = 3, k2 = 5, ki ≥ 5, i =
3, . . . , r, let

x1 = u,

r
∏

i=3

xi(xi + 1) · · · (xi + ki − 1) = A.

Choose xi ∈ Z+, ki ≥ 5, i = 3, . . . , r such that xi(xi + 1) · · · (xi + ki − 1) are
disjoint, 2A is not a perfect square, and the Pellian equation U2 − 2AV 2 = 1
has a positive integer solution (U ′, V ′). By the transformation x2 = 2x1 =
2u, Eq. (1.1) leads to

8u2(u+ 1)2(u+ 2)2(2u+ 1)(2u+ 3)A = y2.

Acta Mathematica Hungarica

8 Y. ZHANG

Let

2(2u+ 1)(2u+ 3) = Av2,

then U2 − 2AV 2 = 1, where U = 2u+ 2, V = v

2 .

If (U ′, V ′) is a fundamental solution of the Pellian equation U2−2AV 2=1,
then all positive integer solutions of it are given by

Un + Vn

√
2A =

(

U ′ + V ′
√
2A

)n
, n ≥ 0.

Thus
{

Un = 2U ′Un−1 − Un−2, U0 = 1, U1 = U ′;

Vn = 2U ′Vn−1 − Vn−2, V0 = 0, V1 = V ′.

From

u =
U − 2

2
, v = 2V,

we have
{

un = 2U ′un−1 − un−2 + 2(U ′ − 1), u0 = −1
2 , u1 =

U
′−1
2 ;

vn = 2U ′vn−1 − vn−2, v0 = 0, v1 = 2V ′.

From U ′2 − 2AV ′2 = 1, we get U ′ is an odd number. By the recurrence
relation of un, we have u2n+1 ∈ Z+, v2n+1 ∈ Z+, and

y2n+1 = 2Au2n+1(u2n+1 + 1)(u2n+1 + 2)v2n+1 ∈ Z+, n ≥ 0.

Then for d = 1, r ≥ 3, k1 = 3, k2 = 5, ki ≥ 5, i = 3, . . . , r, Eq. (1.1) has in-
finitely many positive integer solutions

(u2n+1, 2u2n+1, x3, . . . , xr, y2n+1),

where n ≥ 0, such that xi(xi + 1) · · · (xi + ki − 1), i = 1, . . . , r are disjoint.
�

Example 2.1. When r = 3, k1 = 3, k2 = 5, k3 = 5, let x3 = 1, then
A = 120. Noting that (31,2) is the fundamental solution of the Pellian equa-
tion U2 − 240V 2 = 1, then (u, v) satisfying

{

un = 62un−1 − un−2 + 60, u0 = −1
2 , u1 = 15;

vn = 62vn−1 − vn−2, v0 = 0, v1 = 6.

Then u2n+1 ∈ Z+, v2n+1 ∈ Z+, and

y2n+1 = 240u2n+1(u2n+1 + 1)(u2n+1 + 2)v2n+1 ∈ Z+, n ≥ 0.
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Let
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(

U ′ + V ′
√
2A

)n
, n ≥ 0.

Thus
{

Un = 2U ′Un−1 − Un−2, U0 = 1, U1 = U ′;

Vn = 2U ′Vn−1 − Vn−2, V0 = 0, V1 = V ′.

From

u =
U − 2

2
, v = 2V,

we have
{

un = 2U ′un−1 − un−2 + 2(U ′ − 1), u0 = −1
2 , u1 =

U
′−1
2 ;

vn = 2U ′vn−1 − vn−2, v0 = 0, v1 = 2V ′.

From U ′2 − 2AV ′2 = 1, we get U ′ is an odd number. By the recurrence
relation of un, we have u2n+1 ∈ Z+, v2n+1 ∈ Z+, and

y2n+1 = 2Au2n+1(u2n+1 + 1)(u2n+1 + 2)v2n+1 ∈ Z+, n ≥ 0.

Then for d = 1, r ≥ 3, k1 = 3, k2 = 5, ki ≥ 5, i = 3, . . . , r, Eq. (1.1) has in-
finitely many positive integer solutions

(u2n+1, 2u2n+1, x3, . . . , xr, y2n+1),

where n ≥ 0, such that xi(xi + 1) · · · (xi + ki − 1), i = 1, . . . , r are disjoint.
�

Example 2.1. When r = 3, k1 = 3, k2 = 5, k3 = 5, let x3 = 1, then
A = 120. Noting that (31,2) is the fundamental solution of the Pellian equa-
tion U2 − 240V 2 = 1, then (u, v) satisfying

{

un = 62un−1 − un−2 + 60, u0 = −1
2 , u1 = 15;

vn = 62vn−1 − vn−2, v0 = 0, v1 = 6.

Then u2n+1 ∈ Z+, v2n+1 ∈ Z+, and

y2n+1 = 240u2n+1(u2n+1 + 1)(u2n+1 + 2)v2n+1 ∈ Z+, n ≥ 0.
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The Diophantine equation

x1(x1 + 1)(x1 + 2)x2(x2 + 1)(x2 + 2)(x2 + 3)(x2 + 4)

× x3(x3 + 1)(x3 + 2)(x3 + 3)(x3 + 4) = y2

has infinitely many positive integer solutions (u2n+1,2u2n+1,1, y2n+1), n ≥ 0.

Proof of Theorem 1.4. Let

r
∏

i=2

xi(xi + d) · · · (xi + (ki − 1)d) = A.

Choose xi ∈ Z+, ki ≥ 2, i = 2, . . . , r, such that xi(xi + d) · · · (xi + (ki − 1)d)
are disjoint, d ∤ x2, and A is not a perfect square, then Eq. (1.1) reduces to
x1(x1 + d)A = y2. Let x1 = u and consider u(u+ d) = Av2, then we get a
Pellian equation U2 −AV 2 = 1, where

U =
2u+ d

d
, V =

2v

d
.

If (U ′, V ′) is a fundamental solution of U2 −AV 2 = 1, then all positive
integer solutions of it are given by

Un + Vn

√
A =

(

U ′ + V ′
√
A
)n

, n ≥ 0.

Thus
{

Un = 2U ′Un−1 − Un−2, U0 = 1, U1 = U ′;

Vn = 2U ′Vn−1 − Vn−2, V0 = 0, V1 = V ′.

From

u =
(U − 1)d

2
, v =

V d

2
,

we have
{

un = 2U ′un−1 − un−2 + (U ′ − 1)d, u0 = 0, u1 =
(U ′−1)d

2 ;

vn = 2U ′vn−1 − vn−2, v0 = 0, v1 = V ′d

2 .

By the recurrence relation of un, we can get u2n ∈ Z+, v2n ∈ Z+, and
y2n = Av2n ∈ Z+, n ≥ 1. Then for r ≥ 2, k1 = 2, ki ≥ 2, i = 2, . . . , r, and
d ≥ 2, Eq. (1.1) has infinitely many nontrivial positive integer solutions
(u2n, x2, . . . , xr, y2n), where n ≥ 1, such that xi(xi + d) · · · (xi + (ki − 1)d),
i = 1, . . . , r are disjoint. �

Acta Mathematica Hungarica

10 Y. ZHANG

Example 2.2. When r = 2, k1 = k2 = 2, d = 2, let x1 = 1, x2 = u. Then
Eq. (1.1) leads to 3u(u+2) = y2. Let u(u+2)=3v2, we get (u+1)2−3v2=1.
Noting that (2, 1) is the fundamental solution of the Pellian equation
U2 − 3V 2 = 1, then (u, v) satisfy

{

un = 4un−1 − un−2 + 2, u0 = 0, u1 = 1;

vn = 4vn−1 − vn−2, v0 = 0, v1 = 3.

So yn = 3vn ∈ Z+, n ≥ 1. The Diophantine equation

x1(x1 + 2)x2(x2 + 2) = y2

has infinitely many nontrivial positive integer solutions (1, un, yn), n ≥ 2.

Proof of Theorem 1.5. Let

r
∏

i=3

xi(xi + d) · · · (xi + (ki − 1)d) = A.

Choose xi ∈ Z+, ki ≥ 3, i = 3, . . . , r such that xi(xi + d) · · · (xi + (ki − 1)d)
are disjoint, d ∤ x3, 2A is not a perfect square and the Pellian equation U2 −
2AV 2 = 1 has a fundamental solution (U ′, V ′) with even number V ′. Let
x1 = u and x2 = 2u, then Eq. (1.1) reduces to

4u2(u+ d)2(u+ 2d)(2u+ d)A = y2.

Considering (u+ 2d)(2u+ d) = Av2, then we get a Pellian equation U2 −
2AV 2 = 1, where U = 4u+5d

3d , V = 2v
3d .

If (U ′, V ′) is a fundamental solution of U2 − 2AV 2 = 1, then all positive
integer solutions of it are given by

Un + Vn

√
2A =

(

U ′ + V ′
√
2A

)n
, n ≥ 0.

Thus
{

Un = 2U ′Un−1 − Un−2, U0 = 1, U1 = U ′;

Vn = 2U ′Vn−1 − Vn−2, V0 = 0, V1 = V ′.

From

u =
(3U − 5)d

4
, v =

3V d

2
,

we have
{

un = 2U ′un−1 − un−2 +
5(U ′−1)d

2 , u0 = −d

2 , u1 =
(3U ′−5)d

4 ;

vn = 2U ′vn−1 − vn−2, v0 = 0, v1 =
3V ′d

2 .
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Example 2.2. When r = 2, k1 = k2 = 2, d = 2, let x1 = 1, x2 = u. Then
Eq. (1.1) leads to 3u(u+2) = y2. Let u(u+2)=3v2, we get (u+1)2−3v2=1.
Noting that (2, 1) is the fundamental solution of the Pellian equation
U2 − 3V 2 = 1, then (u, v) satisfy

{

un = 4un−1 − un−2 + 2, u0 = 0, u1 = 1;

vn = 4vn−1 − vn−2, v0 = 0, v1 = 3.

So yn = 3vn ∈ Z+, n ≥ 1. The Diophantine equation

x1(x1 + 2)x2(x2 + 2) = y2

has infinitely many nontrivial positive integer solutions (1, un, yn), n ≥ 2.

Proof of Theorem 1.5. Let

r
∏

i=3

xi(xi + d) · · · (xi + (ki − 1)d) = A.

Choose xi ∈ Z+, ki ≥ 3, i = 3, . . . , r such that xi(xi + d) · · · (xi + (ki − 1)d)
are disjoint, d ∤ x3, 2A is not a perfect square and the Pellian equation U2 −
2AV 2 = 1 has a fundamental solution (U ′, V ′) with even number V ′. Let
x1 = u and x2 = 2u, then Eq. (1.1) reduces to

4u2(u+ d)2(u+ 2d)(2u+ d)A = y2.

Considering (u+ 2d)(2u+ d) = Av2, then we get a Pellian equation U2 −
2AV 2 = 1, where U = 4u+5d

3d , V = 2v
3d .

If (U ′, V ′) is a fundamental solution of U2 − 2AV 2 = 1, then all positive
integer solutions of it are given by

Un + Vn

√
2A =

(

U ′ + V ′
√
2A

)n
, n ≥ 0.

Thus
{

Un = 2U ′Un−1 − Un−2, U0 = 1, U1 = U ′;

Vn = 2U ′Vn−1 − Vn−2, V0 = 0, V1 = V ′.

From

u =
(3U − 5)d

4
, v =

3V d

2
,

we have
{

un = 2U ′un−1 − un−2 +
5(U ′−1)d

2 , u0 = −d

2 , u1 =
(3U ′−5)d

4 ;

vn = 2U ′vn−1 − vn−2, v0 = 0, v1 =
3V ′d

2 .
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From U ′2 − 2AV ′2 = 1, we get U ′ is an even number. By the recurrence
relation of un and V ′ is an even number, we have u4n+2 ∈ Z+, v4n+2 ∈ Z+,
and

y4n+2 = 2Au4n+2(u4n+2 + d)v4n+2 ∈ Z+, n ≥ 0.

Then for r ≥ 2, k1 = k2 = 3, ki ≥ 3, i = 3, . . . , r, and d ≥ 2, Eq. (1.1) has
infinitely many nontrivial positive integer solutions

(u2n, 2u2n, x3, . . . , xr, y2n),

where n ≥ 1, such that xi(xi+ d) · · · (xi+ (ki− 1)d), i = 1, . . . , r are disjoint.
�

Example 2.3. When r = 3, k1 = k2 = k3 = 3, d = 2, let x1 = 1, x2 = u,
x3 = 2u, then Eq. (1.1) reduces to

120u2(u+ 2)2(u+ 4)(u+ 1) = y2.

Let (u+ 4)(u+ 1) = 30v2, we have

(2u+ 5

3

)2
− 30

(2v

3

)2
= 1.

Noting that (11, 2) is the fundamental solution of the Pellian equation U2 −
30V 2 = 1, then (u, v) satisfying

{

un = 22un−1 − un−2 + 50, u0 = −1, u1 = 14;

vn = 22vn−1 − vn−2, v0 = 0, v1 = 6,

and

yn = 30un(un + 2)vn ∈ Z+, n ≥ 1.

The Diophantine equation

x1(x1 + 2)(x1 + 4)x2(x2 + 2)(x2 + 4)x3(x3 + 2)(x3 + 4) = y2

has infinitely many nontrivial positive integer solutions (1, un, 2un, yn),
n ≥ 1.

Proof of Theorem 1.6. For an even number d ≥ 2, let d = 2b and
z = 2x+ 3d = 2x+ 6b. From Eq. (1.2) we have
(2.1)
16(x+4b)2(x+6b)2x(x+2b)(x+3b)(x+5b)y(y+2b)(y+4b)(y+6b) = w2.

Using the same method as Bauer and Bennett [1], if we let

(2.2) x(x+ 5b) =
3

4
y(y + 6b) ,
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then

(x+ 2b)(x+ 3b) =
3

4
(y + 2b)(y + 4b),

and Eq. (2.1) has positive integer solutions.
Eq. (2.2) is equivalent to the Pellian equation X2 − 3Y 2 = −2b2, where

X = 2x+5b, Y = y+3b. An infinity of positive integer solutions are given by

Xn + Yn

√
3 =

(

b+ b
√
3
)(

2 +
√
3
)n

, n ≥ 0.

Thus
{

Xn = 4Xn−1 −Xn−2, X0 = b, X1 = 5b, X2 = 19b;

Yn = 4Yn−1 − Yn−2, Y0 = b, Y1 = 3b, Y2 = 11b.

From

x =
X − 5b

2
, y = Y − 3b,

we have
{

xn = 4xn−1 − xn−2 + 5b, x0 = −2b, x1 = 0, x2 = 7b;

yn = 4yn−1 − yn−2 + 6b, y0 = −2b, y1 = 0, y2 = 8b.

It is easy to prove that d = 2b ∤ x4n+2, n ≥ 0. Then

z4n+2 = 2x4n+2 + 6b ∈ Z+, n ≥ 0,

and

w4n+2 = 3(x4n+2 + 4b)(x4n+2 + 6b)

× y4n+2(y4n+2 + 2b)(y4n+2 + 4b)(y4n+2 + 6b) ∈ Z+, n ≥ 0.

Therefore, Eq. (1.2) has infinitely many nontrivial positive integer solutions

(x4n+2, y4n+2, 2x4n+2 + 6b, w4n+2),

where n ≥ 0. �

Proof of Theorem 1.8. Let z = 3x+ 9, from Eq. (1.3) we have

(2.3) 81(x+ 3)2(x+ 6)2x(x+ 4)(x+ 5)(x+ 9)y(y+ 3)(y+ 6)(y+ 9) = w2.

If we let

(2.4) x(x+ 9) =
10

9
y(y + 9),
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then

(x+ 2b)(x+ 3b) =
3

4
(y + 2b)(y + 4b),

and Eq. (2.1) has positive integer solutions.
Eq. (2.2) is equivalent to the Pellian equation X2 − 3Y 2 = −2b2, where

X = 2x+5b, Y = y+3b. An infinity of positive integer solutions are given by

Xn + Yn

√
3 =

(

b+ b
√
3
)(

2 +
√
3
)n

, n ≥ 0.

Thus
{

Xn = 4Xn−1 −Xn−2, X0 = b, X1 = 5b, X2 = 19b;

Yn = 4Yn−1 − Yn−2, Y0 = b, Y1 = 3b, Y2 = 11b.

From

x =
X − 5b

2
, y = Y − 3b,

we have
{

xn = 4xn−1 − xn−2 + 5b, x0 = −2b, x1 = 0, x2 = 7b;

yn = 4yn−1 − yn−2 + 6b, y0 = −2b, y1 = 0, y2 = 8b.

It is easy to prove that d = 2b ∤ x4n+2, n ≥ 0. Then

z4n+2 = 2x4n+2 + 6b ∈ Z+, n ≥ 0,

and

w4n+2 = 3(x4n+2 + 4b)(x4n+2 + 6b)

× y4n+2(y4n+2 + 2b)(y4n+2 + 4b)(y4n+2 + 6b) ∈ Z+, n ≥ 0.

Therefore, Eq. (1.2) has infinitely many nontrivial positive integer solutions

(x4n+2, y4n+2, 2x4n+2 + 6b, w4n+2),

where n ≥ 0. �

Proof of Theorem 1.8. Let z = 3x+ 9, from Eq. (1.3) we have

(2.3) 81(x+ 3)2(x+ 6)2x(x+ 4)(x+ 5)(x+ 9)y(y+ 3)(y+ 6)(y+ 9) = w2.

If we let

(2.4) x(x+ 9) =
10

9
y(y + 9),

Acta Mathematica Hungarica

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS. II 251



Acta Mathematica Hungarica 156, 2018

ON PRODUCTS OF CONSECUTIVE ARITHMETIC PROGRESSIONS. II 13

then

(x+ 4)(x+ 5) =
10

9
(y + 3)(y + 6),

and Eq. (2.3) has positive integer solutions.
Eq. (2.4) is equivalent to the Pellian equation X2 − 10Y 2 = −81, where

X = 6x+27, Y = 2y+9. An infinity of positive integer solutions are given by

Xn + Yn

√
10 =

(

3 + 3
√
10

)(

19 + 6
√
10

)n
, n ≥ 0.

Thus
{

Xn = 38Xn−1 −Xn−2, X0 = 3, X1 = 237, X2 = 9003;

Yn = 38Yn−1 − Yn−2, Y0 = 3, Y1 = 75, Y2 = 2847.

From

x =
X − 27

6
, y =

Y − 9

2
,

we have
{

xn = 38xn−1 − xn−2 + 162, x0 = −4, x1 = 35, x2 = 1496;

yn = 38yn−1 − yn−2 + 162, y0 = −3, y1 = 33, y2 = 1419.

It is easy to prove that 3 ∤ xn, n ≥ 1. Then

3 ∤ zn = 3xn + 9, n ≥ 1,

and

w4n+2 = 10(xn + 3)(xn + 6)yn(yn + 3)(yn + 6)(yn + 9) ∈ Z+, n ≥ 1.

Therefore, Eq. (1.3) has infinitely many nontrivial positive integer solutions

(xn, yn, 3xn + 9, wn),

where n ≥ 1. �

3. Some related questions

By searching on computer, we find that the Diophantine equation

x(x+ 1)(x+ 2)y(y + 1)(y + 2)(y + 3)(y + 4) = z2

has some positive integer solutions, such as

(x, y, z) = (8, 2, 720), (14, 6, 10080), (64, 9, 205920), (168, 14, 2227680),

Acta Mathematica Hungarica

14 Y. ZHANG

(169, 16, 3023280), (1680, 6, 11985120), (1804, 41, 928536840),

(2209, 64, 3674505120), (2540, 123, 22372396200),

and the Diophantine equation

x(x+ 1)(x+ 2)(x+ 3)y(y + 1)(y + 2)(y + 3)(y + 4) = z2

has a nontrivial positive integer solution

(x, y, z) = (120, 242, 13726888560)

in the range 1 < x, y < 1000. But it seems difficult to give a positive answer
to the following question.

Question 3.1. Do the Diophantine equations

x(x+ 1)(x+ 2)y(y + 1)(y + 2)(y + 3)(y + 4) = z2

and

x(x+ 1)(x+ 2)(x+ 3)y(y + 1)(y + 2)(y + 3)(y + 4) = z2

have infinitely many positive integer solutions?

When d > 1, we have

Question 3.2. For an even number d ≥ 2, r = 4, ki = 4, i = 1, 2, 3, 4,
does Eq. (1.1) have infinitely many nontrivial positive integer solutions, i.e.,
does the Diophantine equation

4
∏

i=1

xi(xi + d)(xi + 2d)(xi + 3d) = y2

have infinitely many nontrivial positive integer solutions?

Question 3.3. For odd number d ≥ 5, r = 3, ki = 4, i = 1, 2, 3, does
Eq. (1.1) have infinitely many nontrivial positive integer solutions, i.e., does
the Diophantine equation

3
∏

i=1

xi(xi + d)(xi + 2d)(xi + 3d) = y2

have infinitely many nontrivial positive integer solutions?

Bennett and Van Luijk [3] constructed an infinite family of r ≥ 5 non-
overlapping blocks of five consecutive integers such that their product is
always a perfect square. Similarly, we can ask
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(169, 16, 3023280), (1680, 6, 11985120), (1804, 41, 928536840),

(2209, 64, 3674505120), (2540, 123, 22372396200),

and the Diophantine equation

x(x+ 1)(x+ 2)(x+ 3)y(y + 1)(y + 2)(y + 3)(y + 4) = z2

has a nontrivial positive integer solution

(x, y, z) = (120, 242, 13726888560)

in the range 1 < x, y < 1000. But it seems difficult to give a positive answer
to the following question.

Question 3.1. Do the Diophantine equations

x(x+ 1)(x+ 2)y(y + 1)(y + 2)(y + 3)(y + 4) = z2

and

x(x+ 1)(x+ 2)(x+ 3)y(y + 1)(y + 2)(y + 3)(y + 4) = z2

have infinitely many positive integer solutions?

When d > 1, we have

Question 3.2. For an even number d ≥ 2, r = 4, ki = 4, i = 1, 2, 3, 4,
does Eq. (1.1) have infinitely many nontrivial positive integer solutions, i.e.,
does the Diophantine equation

4
∏

i=1

xi(xi + d)(xi + 2d)(xi + 3d) = y2

have infinitely many nontrivial positive integer solutions?

Question 3.3. For odd number d ≥ 5, r = 3, ki = 4, i = 1, 2, 3, does
Eq. (1.1) have infinitely many nontrivial positive integer solutions, i.e., does
the Diophantine equation

3
∏

i=1

xi(xi + d)(xi + 2d)(xi + 3d) = y2

have infinitely many nontrivial positive integer solutions?

Bennett and Van Luijk [3] constructed an infinite family of r ≥ 5 non-
overlapping blocks of five consecutive integers such that their product is
always a perfect square. Similarly, we can ask
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Question 3.4. For d ≥ 2, r ≥ 5, ki = 5, i = 1, . . . , r, does Eq. (1.1) have
infinitely many nontrivial positive integer solutions, i.e., does the Diophan-
tine equation

r
∏

i=1

xi(xi + d)(xi + 2d)(xi + 3d)(xi + 4d) = y2

have infinitely many nontrivial positive integer solutions?
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