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L1, L2 and a lattice homomorphism g : L1 → L2, it is natural to consider
the map

(1.1)
Princ(g) : Princ(L1) → Princ(L2), defined by

conL1
(x, y) �→ conL2

(g(x), g(y)).

It was observed by Grätzer [20] that (1.1) defines indeed a map, since one can
easily show that conL1

(x1, y1) = conL1
(x2, y2) implies that conL2

(g(x1), g(y1))
= conL2

(g(x2), g(y2)). Clearly, the map Princ(g) is 0-preserving and isotone.
The following definition is quite natural; analogous concepts have been used
for (not necessarily principal) congruences in several earlier papers including
Czédli [1] and Grätzer [20].

Definition 1.1. Let f : P1 → P2 be a 0-preserving isotone map from
an ordered set P1 with 0 to an ordered set P2 with 0. We say that f is rep-
resentable by principal congruences of bounded lattices if there exist lattices
L1 and L2, order isomorphisms hi : Pi → Princ(Li), for i ∈ {1, 2}, and a lat-
tice homomorphism g : L1 → L2 such that f = h−1

2 ◦ Princ(g) ◦ h1, that is,
the diagram

(1.2)

�P1;≤P1
� �P2;≤P2

�

�Princ(L1);⊆� �Princ(L2);⊆�

f

h1

Princ(g)

h−1

2

is commutative. If we can find lattices L1 and L2 of lengths at most m
and n, respectively, such that (1.2) holds, then we say that f is representable
by principal congruences of lattices of lengths at most m and n. We also say
that the lattice homomorphism g represents f by means of principal congru-

ences.

We say that f in (1.2) is 0-separating, 1-preserving, and 0-preserving
if we have that {x ∈ P1 : f(x) = 0} = {0}, f(1) = 1, and f(0) = 0, respec-
tively. Of course, the 1-preserving property assumes that both P1 and P2

have largest elements. It was proved in Czédli [3] that if f has all the three
properties listed above, then it is representable by principal congruences
of bounded lattices. Later, Grätzer [20] proved that the first of the three
conditions can be omitted, that is, whenever f in (1.2) is 0-preserving and
1-preserving, then it is representable by principal congruences of bounded
lattices. Strengthening this result even further, our aim is to prove that the
preservation of 0 in itself guarantees representability; this is formulated in
our theorem below.

Acta Mathematica Hungarica

Acta Math. Hungar.
DOI: 0

REPRESENTING AN ISOTONE MAP

BETWEEN TWO BOUNDED ORDERED SETS

BY PRINCIPAL LATTICE CONGRUENCES

G. CZÉDLI
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Abstract. For bounded lattices L1 and L2, let f : L1 → L2 be a lattice
homomorphism. Then the map Princ(f) : Princ(L1) → Princ(L2), defined by
con(x, y) �→ con(f(x), f(y)), is a 0-preserving isotone map from the bounded or-
dered set Princ(L1) of principal congruences of L1 to that of L2. We prove that
every 0-preserving isotone map between two bounded ordered sets can be rep-
resented in this way. Our result generalizes a 2016 result of G. Grätzer from
{0, 1}-preserving isotone maps to 0-preserving isotone maps.

1. Introduction and our result

We assume that the reader has some familiarity with lattices and their
congruences; if not then Grätzer [13,19] and the freely down-loadable Na-
tion [33] are recommended. Postponing some details about our motivation
and a short survey of related results to Section 2, here we are going to get
to our result in a short way.

For a lattice L, let Princ(L) = �Princ(L);⊆� denote the ordered set of

principal congruences of L. A congruence of L is principal if it is of the form
con(a, b) = conL(a, b) for some elements a, b ∈ L, that is, if it is generated
by a single pair �a, b�. If L is bounded, which means that 0, 1 ∈ L, then so
is Princ(L). In 2013, Grätzer [14] proved the converse: up to isomorphism,
every bounded ordered set is of the form Princ(L) where L is a bounded
lattice. Since no similar characterization is known for non-bounded ordered
sets in general, we study the representability of isotone maps by principal
lattice congruences only among bounded ordered sets. For bounded lattices
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L1, L2 and a lattice homomorphism g : L1 → L2, it is natural to consider
the map

(1.1)
Princ(g) : Princ(L1) → Princ(L2), defined by

conL1
(x, y) �→ conL2

(g(x), g(y)).

It was observed by Grätzer [20] that (1.1) defines indeed a map, since one can
easily show that conL1

(x1, y1) = conL1
(x2, y2) implies that conL2

(g(x1), g(y1))
= conL2

(g(x2), g(y2)). Clearly, the map Princ(g) is 0-preserving and isotone.
The following definition is quite natural; analogous concepts have been used
for (not necessarily principal) congruences in several earlier papers including
Czédli [1] and Grätzer [20].

Definition 1.1. Let f : P1 → P2 be a 0-preserving isotone map from
an ordered set P1 with 0 to an ordered set P2 with 0. We say that f is rep-
resentable by principal congruences of bounded lattices if there exist lattices
L1 and L2, order isomorphisms hi : Pi → Princ(Li), for i ∈ {1, 2}, and a lat-
tice homomorphism g : L1 → L2 such that f = h−1

2 ◦ Princ(g) ◦ h1, that is,
the diagram

(1.2)

�P1;≤P1
� �P2;≤P2

�

�Princ(L1);⊆� �Princ(L2);⊆�

f

h1

Princ(g)

h−1

2

is commutative. If we can find lattices L1 and L2 of lengths at most m
and n, respectively, such that (1.2) holds, then we say that f is representable
by principal congruences of lattices of lengths at most m and n. We also say
that the lattice homomorphism g represents f by means of principal congru-

ences.

We say that f in (1.2) is 0-separating, 1-preserving, and 0-preserving
if we have that {x ∈ P1 : f(x) = 0} = {0}, f(1) = 1, and f(0) = 0, respec-
tively. Of course, the 1-preserving property assumes that both P1 and P2

have largest elements. It was proved in Czédli [3] that if f has all the three
properties listed above, then it is representable by principal congruences
of bounded lattices. Later, Grätzer [20] proved that the first of the three
conditions can be omitted, that is, whenever f in (1.2) is 0-preserving and
1-preserving, then it is representable by principal congruences of bounded
lattices. Strengthening this result even further, our aim is to prove that the
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Theorem 1.2. If f : P1 → P2 is a 0-preserving isotone map from a
bounded ordered set P1 = �P1;≤P1

� to a bounded ordered set P2 = �P2;≤P2
�,

then f is representable by principal congruences of bounded lattices of lengths
at most 5 and 7.

Theorem 1.2 gives an affirmative answer to F. Wehrung’s question asked
at the conference SSAOS55, Nový Smokovec, Slovakia, 2017. Related re
sults on ordered sets of principal congruences have recently been given in
Czédli [3,4,6–9], Grätzer [14,20–23], and Grätzer and Lakser [28,29].

Remark 1.3. If none of P1 and P2 is a singleton, then we can chose L1

and L2 in Theorem 1.2 such that L1 is of length 5 while L2 is of length 7.

Outline. Section 2 contains a mini survey of earlier results that mo
tivate our present work. The rest of the paper is devoted to the proof of
Theorem 1.2 and Remark 1.3. Section 3 describes the construction we need;
first in a pictorial and easytounderstand way for a concrete example, and
then we expand this visual description to a general construction. Section 4
verifies our construction, whereby the theorem follows. Also, Section 4 points
out why Remark 1.3 holds.

2. Motivation and a mini survey

There are so many results on congruence lattices of lattices which moti
vate the present paper that this section, added on April 30, 2018, is restricted
only to a mini survey of them. This short section and the list of the papers
referenced here are far from being complete; a complete treatment would
need a whole book. For much more extensive and very deep surveys up to
their publication dates, the reader is referred to the monograph Grätzer [19]
and to the book chapters Grätzer [16] and [17] and Wehrung [37], [38], and
[39].

By a wellknown old result of Funayama and Nakayama [12], the lattice
Con(L) = �Con(L);⊆� of all congruences of a lattice L is distributive. The
converse for the finite case is due to R. P. Dilworth but, independently, it was
first published in Grätzer and Schmidt [30]. This result states that every
finite distributive lattice is (isomorphic to) the congruence lattice Con(L)
of a finite lattice L. In spite of several positive results, milestoned by
Huhn [32] and Schmidt [35], which represent some infinite distributive alge
braic lattices as congruence lattices of lattices; it was a real breakthrough
when Wehrung [36] presented a distributive algebraic lattice D such that
D ∼= Con(L) holds for no lattice L. Later, such a distributive algebraic lat
tice D of minimal cardinality was given by Růžička [34].

Compared to the infinite case, much more results have been proved
on the representability of finite distributive lattices D by congruence lat
tices of finite lattices L. There are several results in which, in addition
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to D ∼= Con(L), the lattice L has some nice properties or its automor-
phism group is isomorphic to a given finite group; we mention Grätzer and
Knapp [24] and Grätzer and Schmidt [31] as some attracting examples of
this sort. A homomorphism f : L1 → L2 between two lattices naturally in-
duces an isotone map from Con(L1) to Con(L2) or backwards, and various
papers represent isotone maps between two finite distributive lattices in this
way; see, for example, Grätzer and Lakser [25]. Several papers do this so
that the lattices L1 and L2 have some nice properties; see, for example,
Czédli [1] and Grätzer and Lakser [26] and [27]. Instead of representing a
single map, there is a whole theory of representing families of isotone maps;
see Wehrung [39].

In a pioneering paper, Grätzer [14] proved that every bounded ordered
set P = �P ;≤� is isomorphic to �Princ(L);⊆� for some lattice L. This result
naturally leads to the following general problem: find the “�P,Princ(L)�-
type” counterparts of the “�D,Con(L)�-type” results mentioned so far in this
section and, in addition, find analogous “�P ⊆ D,Princ(L) ⊆ Con(L)�-type”
representability results. Some concrete instances of this general problem are
formulated at the end of Grätzer [17].

The present paper is motivated by and contributes to the progress out-
lined in this section above and mentioned right after Theorem 1.2. In spite of
this progress, the present paper, and the very recent Czédli and Mureşan [11],
we are far from the solution of the above-mentioned general problem.

3. The construction

3.1. Decomposing f . Let P1 and P2 be bounded ordered sets. As-
sume that

(3.1)





f : P1 → P2 is a 0-preserving isotone map. Let P3 be the prin-
cipal ideal of P2 generated by f(1P1

), that is, P3 = ↓f(1P1
).

Then f decomposes as f = f3 ◦ f1, where f1 : P1 → P3, de-
fined by f1(x) := f(x), is a {0,1}-preserving isotone map and
f3 : P3 → P2, defined by x �→ x, is a 0-preserving injective iso-
tone map.

Note that the embedding f3 is necessarily 0-separating. We can use Czédli [7]
to represent f1, while some ideas of Czédli [4] can be modified to represent f3.
Finally, the composite of these two representations is what we need in order
to prove Theorem 1.2. Since Czédli [4] and [7] are long papers and it would
take a lot of time of the reader to extract and appropriately modify ideas
from them, we are going to outline these ideas by a concrete but sufficiently
general example.
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to D ∼= Con(L), the lattice L has some nice properties or its automor-
phism group is isomorphic to a given finite group; we mention Grätzer and
Knapp [24] and Grätzer and Schmidt [31] as some attracting examples of
this sort. A homomorphism f : L1 → L2 between two lattices naturally in-
duces an isotone map from Con(L1) to Con(L2) or backwards, and various
papers represent isotone maps between two finite distributive lattices in this
way; see, for example, Grätzer and Lakser [25]. Several papers do this so
that the lattices L1 and L2 have some nice properties; see, for example,
Czédli [1] and Grätzer and Lakser [26] and [27]. Instead of representing a
single map, there is a whole theory of representing families of isotone maps;
see Wehrung [39].

In a pioneering paper, Grätzer [14] proved that every bounded ordered
set P = �P ;≤� is isomorphic to �Princ(L);⊆� for some lattice L. This result
naturally leads to the following general problem: find the “�P,Princ(L)�-
type” counterparts of the “�D,Con(L)�-type” results mentioned so far in this
section and, in addition, find analogous “�P ⊆ D,Princ(L) ⊆ Con(L)�-type”
representability results. Some concrete instances of this general problem are
formulated at the end of Grätzer [17].

The present paper is motivated by and contributes to the progress out-
lined in this section above and mentioned right after Theorem 1.2. In spite of
this progress, the present paper, and the very recent Czédli and Mureşan [11],
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From now on, we denote the bottom element and the top element of Pi

by 0i and 1i, respectively, while those of Li will be denoted by the boldface
symbols 0i and 1i. When no ambiguity threatens, we will often write �Pi,
≤i� instead of �Pi,≤Pi

�. The least congruence and the largest congruence of
a lattice L will be denoted by ∆L and ∇L, respectively. Let L be an ordered
set or a lattice. For x, y ∈ L, �x, y� is called an ordered pair of L if x ≤ y.
If y covers x, then �x, y� is an edge of L. Edges and prime intervals are
essentially the same but edges are pairs of elements while prime intervals are
two-element subsets. The set of ordered pairs of L is denoted by Pairs≤(L).
As opposed to the concept of intervals [x, y], pairs and the notation �x, y�
make it clear that S ⊆ L implies that Pairs≤(S) ⊆ Pairs≤(L).

Fig. 1: Our gadget G2 = G2(p, q) = �G2; γ2,H2, ν2�

3.2. Basic gadgets and their pictograms, the zigzag arrows.

Our basic tool is the lattice G2 = G2(p, q) given on the right of Fig. 1. This
lattice is taken from Czédli [7], where it is denoted by Gup

2 (p, q), because [7]
also uses its “down” variant. Some details of Fig. 1 that are not needed at
this stage will be explained later. Note that we can use G2 and G2 with
parameters other than p and q, and we often drop the parameters if they
are not relevant or they are clear from the context. The edges �aq, bq� and
�ap, bp� are called the first edge and the target edge of G2(p, q), respectively.
In order to make our figures less crowded, we will often denote G2 by a grey
zigzag arrow that is directed from its first edge to its target edge. We also
say that the zigzag arrow goes from the first edge to the target edge. Some-
times we draw a double-lined zigzag arrow to indicate that besides a zigzag
arrow some other elements (whose set will be denoted by Upq in our fig-
ures) are also added. We will explain later why we need double-lined zigzag
arrows and we will define them exactly in (3.18); at present, it suffices to
know that their role is the same as that of the “single-lined” zigzag arrows.
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Zigzag arrows without the adjective “double-lined” are always understood as
single-lined ones. Observe that con(ap, bp) collapses only the p-labeled edges,
so its non-singleton blocks are {ap, bp}, {c

pq
1 , dpq1 }, {cpq2 , dpq2 }, {cpq3 , dpq3 }, and

{epq, dpq4 }. Similarly,

(3.2)

{
the non-singleton blocks of con(aq, bq) are {ap, bp},
{cpq1 , dpq1 }, {cpq2 , dpq2 }, {cpq3 , dpq3 }, {cpq4 , epq, dpq4 }, {cpq5 , dpq5 },
{cpq6 , dpq6 }, and {aq, bq}.

The quotient lattices G1 := G2/con(ap, bp) and G0 := G2/con(aq, bq) and the
corresponding “gadget structures” will be denoted by different kinds of grey
zigzag arrow pictograms as Figs. 2 and 3 show. These arrows will have no
double-lined variants.

Fig. 2: The quotient gadget G1 = G1(p, q) = �G1; γ1,H1, ν1�

Fig. 3: The quotient gadget G0 = G0(p, q) = �G0; γ0,H0, ν0�

The zigzag arrow notation in Fig. 1 and also in other figures is mo-
tivated by the way the congruences spread: con(aq, bq) ≥ �ap, bp�, that is,
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con(aq, bq) collapses the p-colored edge �ap, bp�. The lattice G2 and its quo-
tient lattices G1 and G0 will be referred to as our gadgets or zigzag arrows.
Sometimes, G1 and G0 will be called “quotient zigzag arrows”. Note that

(3.3)

{
con(ap, bp) and con(aq, bq) are the only
nontrivial congruences of G2(p, q),

whereby we will use only two kinds of quotient zigzag arrows. So, there
are three different zigzag arrows, the “non-quotient” G2 and two quotient
ones, G1 and G0. Now we premise our plans with them in our construction;
this will hopefully help to enlighten the basic ideas, which will be detailed
later. Note, however, that these plans will become more clear only in Sub-
section 3.3.

First, assume that we want to represent a single ordered set �P ;≤P � in
the form �Princ(L);⊆�. Then we have to find a lattice L and an order iso-
morphism h : �P ;≤P � → �Princ(L);⊆�. It will be clear from Subsection 3.3
soon that, for p ∈ P , we will let h(p) := con(ap, bp). Also, for p < q in P , we
will extend the set (in fact, the six-element sublattice) {0, ap, bp, aq, bq, 1} to
the zigzag arrow G2(p, q) of Fig. 1; the reason is that the zigzag arrow

(3.4) G2(p, q) forces the inequality con(ap, bp) ≤ con(aq, bq),

and this inequality is needed to guarantee that h is isotone. We do not
need quotient zigzag arrows for this purpose, because they force only that
∆L ≤ con(aq, bq) and ∆L ≤ ∆L, which automatically hold. However, even if
they are superfluous at this stage, quotient zigzag arrows can be included,
since they do not disturb the job of the “non-quotient” G2 zigzag arrows.

Second, the situation becomes more involved when we want to represent
the map f from (3.1) (with the subscript 2 changed to 3) from �P1;≤1� to
�P3;≤3�. We will represent �P1;≤1� by an order isomorphism h1 : �P1;≤1� →
�Princ(L1);⊆� without quotient zigzag arrows as explained in the previous
paragraph. But then we will face the problem that for 0 <1 p <1 q in P1,
it may happen that, say, 03 = f1(p) <3 f1(q) in P3. Since f1 is intended to
be represented as Princ(g1), see (1.1) (but replace the subscript 2 by 3), it
follows from (1.2) (after slight notational changes) that

(3.5)

{
∆L3

= h3(03) = h3(f1(p)) = Princ(g1)(h1(p))

= Princ(g1)(con(ap, bp)) = con(g1(ap), g1(bp)).

This means that g1 collapses ap and bp, that is, �ap, bp� ∈ Ker(g1). On
the other hand, a calculation similar to (3.5) shows that �aq, bq� �∈ Ker(g1).
Hence, it follows from (3.3) that g1 maps the G2(p, q) sublattice of L1 onto
a quotient zigzag arrow G1. So even if G1 would not be necessary to rep-
resent �P3;≤3� in itself, some copies of G1 has to be included in L3, be-
cause otherwise we could not define an appropriate lattice homomorphism
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g1 : L1 → L3. The motivation for using G0 is similar but it has an additional
feature. Namely, if 03 = f1(p) = f1(q), then Ker(g1) has to collapse each of
the pairs �ap, bp� and �aq, bq�, but it cannot collapse a pair that is not col-
lapsed by the congruence of G2(p, q) described in (3.2), because otherwise
�0L1

,1L1
� would belong to Ker(g1) and Ker(g1) would collapse the whole lat-

tice L1, so the range of Princ(g1) would be the singleton set {∆L3
}, which

is clearly not the case in general. Combining this with (3.3), it follows that
g1 has to map G2(p, q) to a copy of G0, provided that 03 = f1(p) = f1(q).

Finally, the quotient zigzag arrows that are necessarily included in L3

will not disturb us to extend L3 to a lattice L2 in a way similar to the one
used in Czédli [4].

Fig. 4: An example

3.3. Describing the construction with an example.

Example 3.1. Let P1 = {01, p, q, r,11} and P2 = {02, s, t, u, v,12} be the
ordered sets given in Fig. 4, and let f : P1 → P2 be the isotone map indicated
by dashed arrows in the figure.

Fig. 5 shows how we represent P1 as Princ(L1). We start with the eight
element simple lattice M3,3; in Fig. 5, M3,3 is the sublattice of L1 formed
by the pentagon-shaped elements. One of the edges of M3,3 that is disjoint
from {0, 1} is denoted by �a11

, b11
�; this edge and all thick edges in the fig-

ure are colored by 11 ∈ P1. In the next step, we add the dark-grey-filled
large elements. That is, for every x ∈ P1 \ {01, 11}, we add the thin edge
�ax, bx�. We often call this edge a basic edge. Our goal is that the principal
congruence con(ax, bx) should represent x ∈ P1. That is, the map

(3.6) h1 : P1 → Princ(L1), defined by x �→ con(ax, bx),

should be an order isomorphism. At present, we are far from this goal
since the principal congruences con(ax, bx), for x ∈ P1 \ {01,11}, form an an-
tichain. Therefore, we add several copies of our gadget G2 in order to force
the comparability of con(ax, bx) and con(ay, by) whenever x, y ∈ L \ {01, 11}
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g1 : L1 → L3. The motivation for using G0 is similar but it has an additional
feature. Namely, if 03 = f1(p) = f1(q), then Ker(g1) has to collapse each of
the pairs �ap, bp� and �aq, bq�, but it cannot collapse a pair that is not col-
lapsed by the congruence of G2(p, q) described in (3.2), because otherwise
�0L1

,1L1
� would belong to Ker(g1) and Ker(g1) would collapse the whole lat-

tice L1, so the range of Princ(g1) would be the singleton set {∆L3
}, which

is clearly not the case in general. Combining this with (3.3), it follows that
g1 has to map G2(p, q) to a copy of G0, provided that 03 = f1(p) = f1(q).

Finally, the quotient zigzag arrows that are necessarily included in L3

will not disturb us to extend L3 to a lattice L2 in a way similar to the one
used in Czédli [4].

Fig. 4: An example

3.3. Describing the construction with an example.

Example 3.1. Let P1 = {01, p, q, r,11} and P2 = {02, s, t, u, v,12} be the
ordered sets given in Fig. 4, and let f : P1 → P2 be the isotone map indicated
by dashed arrows in the figure.

Fig. 5 shows how we represent P1 as Princ(L1). We start with the eight
element simple lattice M3,3; in Fig. 5, M3,3 is the sublattice of L1 formed
by the pentagon-shaped elements. One of the edges of M3,3 that is disjoint
from {0, 1} is denoted by �a11

, b11
�; this edge and all thick edges in the fig-

ure are colored by 11 ∈ P1. In the next step, we add the dark-grey-filled
large elements. That is, for every x ∈ P1 \ {01, 11}, we add the thin edge
�ax, bx�. We often call this edge a basic edge. Our goal is that the principal
congruence con(ax, bx) should represent x ∈ P1. That is, the map

(3.6) h1 : P1 → Princ(L1), defined by x �→ con(ax, bx),

should be an order isomorphism. At present, we are far from this goal
since the principal congruences con(ax, bx), for x ∈ P1 \ {01,11}, form an an-
tichain. Therefore, we add several copies of our gadget G2 in order to force
the comparability of con(ax, bx) and con(ay, by) whenever x, y ∈ L \ {01, 11}

Acta Mathematica Hungarica

REPRESENTING AN ISOTONE MAP BY PRINCIPAL LATTICE CONGRUENCES 339



Acta Mathematica Hungarica 155, 2018

REPRESENTING AN ISOTONE MAP BY PRINCIPAL LATTICE CONGRUENCES 9

are comparable. We can add a gadget going from the basic edge �ay, by� to

the basic edge �ax, bx� for every �x, y� ∈ Pairs≤(P1 \ {01, 11}), but it is often
sufficient to add less gadgets because of transitivity. Note that the gadget
added to �p, 11�, indicated only by a (thick grey) zigzag arrow, is super-
fluous in Fig. 5; it is in the figure to exemplify later how to deal with the
f -preimages of 03 = 02.

Fig. 5: P1( Princ(L1)

Fig. 6: P3(Princ(L3)

As Fig. 6 shows, the representation of P3 = ↓s as Princ(L3) is similar but
we need some new features: L3 has an extra element a0(p) = b0(p), it has two
s-colored thin basic edges, and there are gadgets, in both directions, between
the s-colored basic edges. Also, to guarantee that the s-colored basic edges
generate ∇L3

, a zigzag arrow goes from the basic edge �as(q), bs(q)� to the
edge �a13

, b13
�. Note that some edges ending at 13 or starting from 03 need

not indicate coverings in Fig. 6; for example, since the t-colored basic edge
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�at, bt� is the target edge of a zigzag arrow, we have only that bt < 13 but
bt ⊀ 13. This will not cause any problem in what follows, and

(3.7) h3 : P3 → Princ(L3), defined by x �→ con(ax, bx),

is an order isomorphism.

Fig. 7: P2( Princ(L2)

The required homomorphism g1 : L1 → L3 is defined as follows. It maps
the M3,3 sublattice, which is the collection of the pentagon-shaped ele-
ments of L1, onto the M3,3 sublattice of L3 such that g1(a11

) = a13
and

g1(b11
) = b13

. Motivated by f(p) = 03, f maps both ap and bp to a0(p) = b0(p).
The element s ∈ P3 has two f -preimages in P1 \ {11}; this explains why L3

has two s-colored thin basic edges. The pairs �aq, bq� and �ar, br� are mapped
to the pairs �as(q), bs(q)� and �as(r), bs(r)�, respectively. The left and the right
grey zigzag arrows (representing copies of G2) of L1 are mapped to the left-
most grey zigzag arrow and the rightmost upper zigzag arrow, respectively.
Since G1, the leftmost zigzag arrow in Fig. 6, is a homomorphic image of G2,
it is easy to see that the map g1 we have just defined is a lattice homomor-
phism. It is straightforward to see, at least for Example 3.1, that

(3.8) g1 represents f1 by means of principal congruences;

see Definition 1.1. Note that since con(aq, ar) = ∇L1
, it follows from (1.1)

and f = Princ(g) that g(aq) �= g(ar); this explains why we need two s-colored
basic edges in L3. So far, we have not used any double-lined zigzag arrow.
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it is easy to see that the map g1 we have just defined is a lattice homomor-
phism. It is straightforward to see, at least for Example 3.1, that

(3.8) g1 represents f1 by means of principal congruences;

see Definition 1.1. Note that since con(aq, ar) = ∇L1
, it follows from (1.1)

and f = Princ(g) that g(aq) �= g(ar); this explains why we need two s-colored
basic edges in L3. So far, we have not used any double-lined zigzag arrow.
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As the last step of the construction, we extend L3 to a lattice L2 as
shown in Fig. 7. In this figure, L3 is the interval [03,13], and

(3.9)

{
each of the thick dotted edges of L3 generates
a congruence that corresponds to 13 ∈ P3.

In order to take care of the comparability u ≤ v, there is a new (single-lined)
zigzag arrow in L2 with first edge �av, bv� and target edge �au, bu�. (“New”
means that it is not in L3.) This is possible because at the beginning, as
previously, the top element bu of the target edge is a coatom in L2, so the
new zigzag arrow lies in L2 basically in the same way as the zigzag arrows
lied in L1 and L3. However, we use double-lined zigzag arrows in L2 to
take care of the comparabilities s ≤ v and t ≤ u; we will explain later in
(3.18) what these double-lined zigzag arrows are, and we will point out why
a single-lined zigzag arrow cannot work if there is an edge r in the filter
generated by the top of its target edge such that con(r) �= ∇L2

.
Now that the new arrows, single-lined and double-lined, take care of each

of the comparabilities u ≤ v, s ≤ v, t ≤ s, and t ≤ u, it follows that

(3.10) h2 : P2 → Princ(L2), defined by x �→ con(ax, bx),

is an order isomorphism. Let g3 be the natural embedding

(3.11) g3 : L3 → L2, defined by x �→ x.

It is straightforward to see, at least for Example 3.1, that

(3.12) g3 represents f3 by means of principal congruences.

Let g = g3 ◦ g1; it is a lattice homomorphism from L1 to L2. We know from
Czédli [6,7] and it is easy to see that Princ is a functor, whereby

(3.13) Princ(g3) ◦ Princ(g1) = Princ(g3 ◦ g1) = Princ(g).

For i ∈ {1, 3}, let hi : Pi → Princ(Li) denote the order isomorphism defined
by x �→ con(ax, bx); see (3.6), (3.7), and (3.10). By (1.2), (3.8) and (3.12)
mean that

(3.14) f1 = h−1
3 ◦ Princ(g1) ◦ h1 and f3 = h−1

2 ◦ Princ(g3) ◦ h3.

Combining (3.13) and (3.14), we obtain that

f = f3 ◦ f1 = (h−1
2 ◦ Princ(g3) ◦ h3) ◦ (h

−1
3 ◦ Princ(g1) ◦ h1)

= h−1
2 ◦ Princ(g3) ◦ Princ(g1) ◦ h1 = h−1

2 ◦ Princ(g) ◦ h1.

Hence, g is representable by principal congruences of lattices of lengths 5
and 7.
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3.4. The construction for the general case. The construction for
the general case is almost the same as that for Example 3.1. Hence, it suffices
to point out the differences. The construction of L1 is essentially the same
as in the example.

For each p ∈ f−1(02), L3 has to contain an element a0(p) = b0(p) that is an
atom and also a coatom in L2. Remember that 02 = 03. Of course, g1 maps
the elements ap and bp of L1 to the element a0(p) = b0(p) ∈ L3. Note that for

p, p′ ∈ f−1(02), if p �= p′, then a0(p) �= a0(p′). For each s ∈ f(P1) \ {03}, we

need as many s-colored thin basic edges in L3 as the size |f−1(s) \ {11}| of
f−1(s) \ {11}. So if f−1(s) \ {11} = {q, r, . . .}, then we include the s-colored
basic edges �as(q), bs(q)�, �as(r), bs(r)�, . . . in L3. In order to guarantee that
every s-colored edge generates the same congruence of L3, we let a zigzag
arrow go between any two s-colored basic edges in both directions. (Note
that it often suffices to use fewer zigzag arrows; we only need that the “re-
flexive and transitive closure of the zigzag arrows” is the full relation on the
set of s-colored edges of L3.) So far, we have seen what L3 is and we have
defined the action of g1 for the M3,3 sublattice of L1 and for the thin basic
edges of L1.

In the next step, we extend the action of g1 to the gadgets. For each
gadget, that is, for each zigzag arrow Z ∼= G2 of L1, we do the following. Let
�ah, bh� and �aw, bw� be the target edge and the first edge of Z, respectively,
and observe that since Z is included in L1, we have that h ≤1 w in P1. Thus,
f(h) ≤3 f(w) in P3 since f is isotone, and there are three cases to consider.

First, if f maps none of h and w to 03, then �g1(ah), g1(bh)� = �af(h), bf(h)�
and �g1(aw), g1(bw)� = �af(w), bf(w)� are basic edges of L3 and L3 contains
a zigzag arrow Z ′ ∼= G2 from �g1(aw), g1(bw)� to �g1(ah), g1(bh)� by the con-
struction of L3. In this case, g1 restricted to Z will be an isomorphism
from Z to Z ′.

Second, if f(h) = 03 �= f(w), then we modify L3 by adding a quo-
tient zigzag arrow G1 that goes from �g1(aw), g1(bw)� = �af(w), bf(w)� to
�g1(ah), g1(bh)� = �a0(h), b0(h)�. Observe that a0(h) = b0(h) and so

con(a0(h), b0(h)) = ∆L3
.

Hence, the new zigzag arrow does not spoil the construction of L3 since
its only effect is to force the inequality ∆L3

≤ con(af(w), bf(w)), which holds
automatically.

Third, if f(h) = 03 = f(w), then we add a quotient zigzag arrow G0 go-
ing from the “degenerate” (singleton) edge �g1(aw), g1(bw)� = �a0(w), b0(w)�
to the degenerate edge �g1(ah), g1(bh)� = �a0(h), b0(h)�; this does not spoil
anything.

Finally, we extend L3 to L2 and we define g3 in the same way as in
Example 3.1. Since P3 is a (principal) order ideal in P2, there are only two
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and observe that since Z is included in L1, we have that h ≤1 w in P1. Thus,
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and �g1(aw), g1(bw)� = �af(w), bf(w)� are basic edges of L3 and L3 contains
a zigzag arrow Z ′ ∼= G2 from �g1(aw), g1(bw)� to �g1(ah), g1(bh)� by the con-
struction of L3. In this case, g1 restricted to Z will be an isomorphism
from Z to Z ′.

Second, if f(h) = 03 �= f(w), then we modify L3 by adding a quo-
tient zigzag arrow G1 that goes from �g1(aw), g1(bw)� = �af(w), bf(w)� to
�g1(ah), g1(bh)� = �a0(h), b0(h)�. Observe that a0(h) = b0(h) and so

con(a0(h), b0(h)) = ∆L3
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Hence, the new zigzag arrow does not spoil the construction of L3 since
its only effect is to force the inequality ∆L3

≤ con(af(w), bf(w)), which holds
automatically.

Third, if f(h) = 03 = f(w), then we add a quotient zigzag arrow G0 go-
ing from the “degenerate” (singleton) edge �g1(aw), g1(bw)� = �a0(w), b0(w)�
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sorts of comparabilities u ≤ v in P2 that we still have to force, namely,

(3.15)

�
either u, v ∈ P2 \ P3 and u ≤ v,
or u ∈ P3 and v ∈ P2 \P3 and u ≤ v.

In case of the first alternative mentioned in (3.15), every edge �x, y� with
x ≥ bu is a thick and solid edge and generates the largest congruence; as a
consequence to be clarified later, we use a (single-lined) zigzag arrow in this
case. In the second case, we use a double-lined zigzag arrow; we are going
to point out a few lines later why.

Note at this point that

(3.16)

�
a zigzag arrow “arrives” at its target edge from
above and “departs” from its first edge upwards;

see our figures. Therefore, as it will be explained later (with reference to the
present paragraph), it needs a special attention whether all the edges above
the target edge are thick and solid or not, but it is irrelevant whether the
same holds below the target edge and below the first edge. As opposed to
Czédli [4], now since all edges above bv are thick and solid for both alterna-
tives given in (3.15), the first edges of the new single-lined or double-lined
zigzag arrows will need no special care.

For p ∈ P3 \ {03}, let

(3.17) Up := [bp,13], which is a filter in L3 and an interval in L2.

The element dpq1 in Fig. 1 will be called the elbow of G2(p, q). By the con-
struction of L3, Up consists of bp, 13, and the elbows of the zigzag arrows
in L3 with target edge �ap, bp�. (It may happen that there is no such el-
bow; then |Up| = 2. If |Up| > 2, then it is a modular lattice of length 2.)
For p ∈ P3 \ {03} and q ∈ P2 \P3, inserting a double-lined zigzag arrow with
first edge �aq, bq� and target edge �ap, bp� means that

(3.18)





first we insert a (single-lined) zigzag arrow, and
then we add a new interval Upq isomorphic to
Up such that [bp,1Upq

] is isomorphic to the direct
product of Up and the two-element chain {0, 1}
such that Up corresponds to Up×{0} in [bp,1Upq

];

see Figs. 8 and 9 for illustration. In both figures, Up is the lowest grey-
filled interval and it consists of the black-filled circles and the black-filled
pentagon, while the interval Upq is also grey-filled and it consists of the grey-
filled square elements.

Note that (3.9) is still valid; in fact, our intention to preserve its va-
lidity explains why we cannot use (single-lined) zigzag arrows instead of
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Fig. 8: Up = {black-filled elements}, a double-lined zigzag arrow from �aq, bq� to �ap, bp�,
and a part of L2 (not for Example 3.1)

double-lines ones here. Namely, continuing the paragraph containing (3.16),
remember that the bottom element of Upq is dpq1 , the elbow element of the
zigzag arrow G2(p, q). Assume that we delete Upq \ {d

pq
1 } from Fig. 8 or from

Fig. 9. Then the elbow dpq1 becomes a coatom and �dpq1 ,12� becomes a solid
thick edge, that is, it generates the largest congruence of L2 and so it corre-
sponds to the top 12 of P2. However, then the dotted thick edge �bp, e

′� and
the solid thick edge �dpq1 ,12� become transposed, and so they generate the
same congruence, which violates (3.9). Furthermore, it remains true that
any two thick dotted edges generate the same congruence, and it turns out
that no congruence of L2 corresponds to 13 ∈ P3; this is what we surely have
to avoid. It will turn out that the usage of double-lined zigzag arrows is
sufficient to keep the validity of (3.9), and our L2 does the job.

As opposed to the top element bp of the basic edge associated with
p ∈ P3 \ {03}, its bottom element ap does not cause a similar difficulty. So,
as opposed to Upq inserted above the single-lined part Z of the double-lined
zigzag arrow from �aq, bq� to �ap, bp�, we do not have to add extra elements
below Z. In order to give a first impression why this is so, note that the ideal
↓cpq1 = {02,03, ap, c

pq
2 , cpq1 } is a sublattice isomorphic to N5; see Figs. 8 and 9.

Obviously, the congruence con↓cpq1 (03, ap) generated by the dotted thick edge
of this sublattice does not collapse any solid thick edge in this sublattice;
much less obviously, the same will turn out to hold for conL2

(03, ap) in the
whole lattice L2.
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below Z. In order to give a first impression why this is so, note that the ideal
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Fig. 9: Adding the third double-lined zigzag arrow with target edge 〈ap, bp〉 and a part of
L2 (not for Example 3.1)

4. Proving that our construction works

In this section, we are going to prove that our construction has the prop-
erties stated in Section 3; this will imply Theorem 1.2. A direct proof given
in a self-contained way with all details would result in an extremely long pa-
per, which we want to avoid. Therefore, we organize the proof so that it
relies on very similar considerations, even if this makes it necessary to ref-
erence some long proofs in addition to some statements from earlier papers.
First, we claim that (3.8) holds in general, not only for our example.

Lemma 4.1. The lattice homomorphism g1 : L1 → L3 constructed in the

previous section represents f1 by means of principal congruences.

Proof. The proof of the main result in Czédli [7] yields this lemma as
the particular case where only one 0-preserving isotone map between two
bounded ordered sets has to be represented. In order to make this observa-
tion clear, note that the main difference between the present construction
and that in [7] is the following. Here we use only one gadget G2 to force
an inequality mentioned in (3.4). The same inequality in [7] is forced twice;
once with G2 and once with the dual of G2. The reason is that [7] constructs
selfdual lattices; we do not pursue a similar target, because that would make
the rest of this section much more complicated.

Clearly, the above-mentioned “main difference” does not threaten the
validity of Lemma 4.1, because of two obvious reasons. First, it suffices to
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force an inequality from (3.4) only once. Second, it is even safer to force
it only once, because otherwise it is more difficult to show that a different
additional forcing does not force non-desired inequalities. �

4.1. Quasi-colored lattices. In this subsection, we recall a concept,
which has been useful in Czédli [1,4]; it will be used while proving that
the lattice homomorphism (in fact, embedding) g3 : L3 → L2 represents f3.
A quasiordered set, also known as a preordered set, is a structure �H;ν� where
H �= ∅ is a set and ν ⊆ H2 is a reflexive and transitive relation on H . We
often use the notation x ≤ν y instead of �x, y� ∈ ν. For X ⊆ H2, the least
quasiorder on H that includes X is denoted by quo(X). We write quo(x, y)
instead of quo({�x, y�}). The advantage of using quasiorders over partial
orderings is that quo(X) always exists. This fact is extremely useful in con-
structions where we modify a quasiorder by adding new pairs to it. Since
antisymmetry is inherited by smaller relations, it follows that

(4.1)





If {νi : i ∈ I} is a set of quasiorders onH such that there
is a partial order �ν with νi ⊆ �ν for all i ∈ I , then all the
νi and quo(

�
i∈K νi) are also partial orders on H .

Following Czédli [1,4], a quasi-colored lattice is a structure L = �L; γ,H, ν�
where L is a lattice, �H; ν� is a quasiordered set, γ : Pairs≤(L) → H is a
surjective map, and for all �u1, v1�, �u2, v2� ∈ Pairs≤(L),
(C1) if γ(�u1, v1�) ≤ν γ(�u2, v2�), then con(u1, v1) ≤ con(u2, v2);
(C2) if con(u1, v1) ≤ con(u2, v2), then γ(�u1, v1�) ≤ν γ(�u2, v2�).
For example, G2 = G2(p, q) = �G2; γ2,H2, ν2� in Fig. 1 is a quasi-colored

lattice. In this figure, all the thick edges are 1 = 1H2
-colored. Furthermore,

if x < y, then γ2(�x, y�) is the join of the colors of the edges in [x, y] in the
figure; the join is taken in the chain �H2, ν2�. This quasi-colored lattice as
well as the quasi-colored lattices in Figs. 2 and 3 are taken from Czédli [7].
If �H; ν� happens to be an ordered set, then L above is a colored lattice. As
a consequence of (4.1),

(4.2)

�
all the quasi-colored lattices we are going construct
in this paper will be colored lattices.

The importance of (4.2) lies in the fact that we know from Czédli [7] or, less
explicitly, from [4, Lemma 2.1] that for every colored lattice L = �L;γ,H, ν�,
the map

(4.3) h : H → Princ(L), defined by p �→ con(a p-colored edge),

is an order isomorphism. Note that h above is well defined, since (C1) im-
plies that no matter which p-colored edge is considered in (4.3).
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4.2. Completing the proof with [4]. If Pi is a singleton and
Pi

∼= Princ(Li), then Li is necessarily the 1-element lattice, which cannot be
obtained by our construction. However, if |Pi| = 1 for some i ∈ {1, 2}, then
Theorem 1.2 follows from Grätzer [14], which represents P3−i as Princ(L3−i)
with L3−i of length at most 5. Hence, in what follows, we assume that none
of P1 and P2 is a singleton. In order to complete the proof of Theorem 1.2,
we need to show only the following lemma.

Lemma 4.2. (3.12) holds in general, that is, g3 represents f3 by means
of principal congruences.

We present two proofs, which are close to each other; the first one is less
detailed and it is recommended only to those who are familiar not only with
the statements but also with the proofs given in Czédli [4].

First proof of Lemma 4.2. The lemma follows from straightforward
modifications of the method used in Czédli [4]. While extracting the proof of
Lemma 4.2 from [4], the following three facts have to be taken into account.

First, since [4] deals with lattices without bottom and top elements and
infinitely many lattice homomorphisms corresponding to our g3 are con-
structed for an increasing sequence of ordered sets, [4] uses wider gadgets.
Analyzing the proof of [4], one can see that G2 also works in the present
particular case. There is another possibility: after constructing L1, L3, and
g1 : L1 → L3, we could change our zigzag arrow G2 to the gadget used in [4];
see [4, Figure 2]; this would change the definition of L2 and g3 but Lemma 4.2
would remain valid.

Second, the role of our Upq corresponds to that of U q
p in [4] and some

similar convex sublattices also occur there; see the grey-filled sublattices in
[4, Figure 8]. The purpose of these convex sublattices is the generalization
of (3.9), which cannot be achieved without some auxiliary subsets; see the
last two paragraphs of Section 3 here. Here the situation is easier, because
some of the grey-filled convex sublattices of [4, Figure 8] are singletons here
and, as it was pointed out in the last paragraph of Section 3, some others
cause no problem.

Third, whenever we add a gadget together with new grey-filled convex
sublattices in [4], the length of the lattice can increase; this is not a problem
there since at the end of the transfinite process, a lattice of infinite length
is constructed. As opposed to [4], when we add a new double-lined zigzag
arrow, then the new interval Upq is never put above an earlier Up′q′ . Hence,
the length of the lattice does not increase when we add the second, third,
etc. double-lined zigzag arrows. This is why we use Upq rather than the
set U q

p from [4]. However, this modification does not change the argument
of [4] significantly.

Taking the above-mentioned three facts into account, the method of [4]
proves Lemma 4.2. �
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Second proof of Lemma 4.2. It follows from the construction of L3

that we have a coloring γ′ : �H3,≤3� → Pairs≤(L3). Namely, for a prime
interval p, γ′(p) is the label of the edge p. If an edge is not labeled because
of space considerations, then γ′(p) is defined by the following two rules: the
thick solid edges of L3 are labeled by 13, and if r and r′ are transposed edges
in the same gadget G2, then γ′(r′) = γ′(r). Of course, γ′(�x, x�) = 03 = 02.
Furthermore, if r = �x, y� such that x < y but y does not cover x, then take
a maximal chain x = z0 ≺ z1 ≺ . . . ≺ zn = y in the interval [x, y] and let

(4.4) γ′(r) = γ′(�x, y�) :=
n∨

i=1

γ′(�zi−1, zi�),

where the join is taken in �P3,≤3�. Of course, �P3,≤3� is not a lattice and
joins in it do not make sense in general. However, the set on the right of (4.4)
is a finite chain or it contains 13, the top element of P3, whereby the join in
(4.4) always makes sense; compare this with Lemma [4, Chain Lemma 4.6].
Furthermore, it is easy to see from the structure of L3 that the join above
does not depend on the choice of the maximal chain in [x, y]. Compare (4.4)
also with the well-known fact that in a lattice of finite length, if x = z0 ≺ z1
≺ . . . ≺ zn = y is a maximal chain in an interval [x, y], then

(4.5) con(x, y) =

n∨

i=1

con(zi−1, zi) =
∨

{con(r′) : x ≤ 0r′ ≺ 1r′ ≤ y}.

Since �Princ(L3);⊆� represents �P3,≤3�, it is straightforward to derive from
its construction that γ′ is a quasi-coloring; in fact, it is a coloring.

The construction of L2 begins with adding some new edges to L3 that
are either labeled or their thick solid style means that their labels are 12;
the earlier 13-labeled edges become dotted and thick; see Figs. 7–9 without
the zigzag arrows; at this stage, we have an “initial” lattice L2,0 whose edges
are labeled by the elements of P2. For syntactical reasons, we will often de-
note ≤3 and ≤2 by ν3 and ν2, respectively; for example, �P3, ν3� = �P3,≤3�.
Letting

(4.6) ν2,0 := quo(ν3 ∪ ({02}×P2) ∪ (P2 × {12})),

�P2; ν2,0� turns out to be a quasiordered set with bottom element 02 = 03
and top element 12. In fact, it is an ordered set; see (4.1) and (4.2). Since
each edge of L2,0 is either labeled, or thick and dotted (corresponding to the
label 13), or thick and solid (corresponding to 12), or transposed to other
edges in the same gadget, we can uniquely define a quasi-coloring

(4.7) γ∗0 : Pairs
≤(L2,0) → �P2; ν2,0�
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analogously to (4.4). By construction, it is straightforward to see that γ∗0 is
a coloring and it extends γ′; let us remind to (4.2) at this point. Let

(4.8) {�uι, vι� : 1 ≤ ι < κ} := ν2 \ (ν3∪{�x, x� : x ∈ P2}∪{�02, x� : x ∈ P2})

be the set of the comparabilities we intend to force by zigzag arrows; see
(3.15) and (3.16). (Note that any smaller set whose union with ν3 gener-
ates ν2 as a quasiorder would do.) In (4.8), κ is an ordinal number, that is,
we have chosen a well-ordered index set. We let ν2,ι := quo(ν2,0 ∪ {�uµ, vµ�:
1 ≤ µ < ι}). By transfinite induction, we define lattices L2,ι, quasiordered
(in fact, ordered) sets �P2; ν2,ι� and quasi-colorings (in fact, colorings)

(4.9) γ∗ι : Pairs
≤(L2,ι) → �P2; ν2,ι�

in the following way. The case ι = 0 is settled by (4.6) and (4.7). If ι is a
limit ordinal, then the ordering ν2,ι is the directed union of {ν2,µ : µ < ι}.
Let the lattice L2,ι and the coloring γ∗ι be the directed union of {L2,µ : µ < ι}
and that of {γ∗µ : µ < ι}, respectively; it is straightforward to see that γ∗ι is
a (quasi-) coloring. So the real task is to step from an ordinal ι to the next
ordinal, µ := ι+1. In order to accomplish this step, assume as an induction
hypothesis that γ∗ι from (4.9) is a coloring. Then νµ = quo(νι ∪ {�uι, vι�})
and we obtain Lµ from Lι by adding, from the vι-colored basic edge �avι , bvι�
to the uι-colored basic edge �auι

, buι
�,

(A) a zigzag arrow if uiota ∈ P3 \ P2, or
(B) a double-lined zigzag arrow if uiota ∈ P2 \ {03}.

In both cases, the purpose of the arrow we add is to force the inequality in

(4.10) γ∗µ(�auι
, buι

�) = con(auι
, buι

) ≤ con(avι , bvι) = γ∗µ(�avι, bvι�).

Hence, it is straightforward to check the validity of (C1) for γ∗µ as follows.
Assume that r := γ∗µ(�x1, x2�) ≤νµ

γ∗µ(�x3, x4�) =: r′ for �x1, x2�, �x3, x4� ∈

Pairs≤(Lµ). Since νµ = quo(νι ∪ {�uι, vι�}), there is a finite sequence r = s0,
s1, . . . , sn = r′ of elements in P2 such that for each i ∈ {1, . . . , n},

(4.11) si−1 ≤νι
si or �si−1, si� = �uι, vι�.

Since γ∗ι : Pairs
≤(Lι) → P2 is a surjective map by the definition of quasi-

colorings, we can pick pairs �ci, di� ∈ Pairs≤(Lµ) such that �c0, d0� = �x1, x2�,
�cn, dn� = �x3, x4�, γ∗ι (�ci, di�) = si for all i ∈ {0, . . . , n}, and, in addition,
�ci, di� = �auι

, buι
� if si = uι and �ci, di� = �avι , bvι� if si = vι. Observe that

for all i ∈ {1, . . . , n}, we have that conLµ
(ci−1, di−1) ≤ conLµ

(ci, di) either
because (4.11) and the validity of (C1) for γ∗ι , or because the (single-lined
or double-lined) zigzag arrow forces that conLι

(ci−1, di−1) = conLι
(auι

, buι
)

≤ conLι
(avι , bvι) = conLι

(ci, di). Therefore, by transitivity, we conclude that

conLµ
(x1, x2) = conLµ

(c0, d0) ≤ conLµ
(cn, dn) = conLµ

(x3, x4).
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Thus, γ∗µ satisfies (C1).

Fig. 10: Prime perspectivities

Next, in order to prove the validity of (C2) for γ∗µ, we begin with a weaker
statement; namely, we are going to show that for every x1, . . . , x4 ∈ Lµ,

(4.12)

{
if x1 ≺ x2, x3 ≺ x4, and conLµ

(x1, x2) ≤ conLµ
(x3, x4),

then γ∗µ(�x1, x2�) ≤νµ
γ∗µ(�x3, x4�).

Following Grätzer [18] and using the definition given in Czédli, Grätzer, and
Lakser [10], we say that the edge �x1, x2� is prime-perspective down to the

edge �x3, x4�, in notation �x1, x2�
p-dn
−→ �x3, x4�, if x2 = x1 ∨ x4 and x1 ∧ x4

≤ x3; see Fig. 10, where the double-lined edges denote coverings, and ob-
serve the role of the black-filled elements in this definition. The upward

prime perspectivity �x1, x2�
p-up
−→ �x3, x4� is defined dually. Since its proof

uses induction on length, the Prime Projectivity Lemma of Grätzer [18] is
valid for every lattice of finite length; this lemma asserts that conLµ

(x1, x2)
≤ conLµ

(x3, x4) if and only if there exists a finite sequence p0 = �x3, x4�, p1,

. . . , pk−1, pk = �x1, x2� of edges such that, for each i ∈ {1, . . . , k}, pi−1
p-dn
−→ pi

or pi−1
p-up
−→ pi. Hence, by the transitivity of νµ, the required (4.12) would

follow if we proved that

(4.13)

{
if �x3, x4�

p-dn
−→ �x1, x2� or �x3, x4�

p-up
−→ �x1, x2�,

then γ∗µ(�x1, x2�) ≤νµ
γ∗µ(�x3, x4�).

If x1, . . . , x4 ∈ Lι, then the premise of (4.13) gives

conLι
(x1, x2) ≤ conLι

(x3, x4),

whereby γ∗µ(�x1, x2�) = γ∗ι (�x1, x2�) ≤νµ
γ∗ι (�x3, x4�) = γ∗µ(�x3, x4�) since (C2)

holds for γ∗ι and νι ⊆ νµ. So (4.13) holds if x1, . . . , x4 ∈ Lι. It also holds if
x1, . . . , x4 belong to the last added (single-lined or double-lined) zigzag ar-
row, because G2 is a colored lattice and Upq is isomorphic to Up. We are left
with the case where exactly one of the edges �x1, x2� and �x3, x4� belongs to
Pairs≤(Lι). There are a lot of cases depending on the position of the edge
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not belonging to Pairs≤(Lι) but, similarly to Czédli [4], each of these cases
can be settled in a straightforward way. Figs. 8 and 9 reflect these cases
satisfactorily but the rather tedious further details are omitted even if the
present task based on the Prime Projectivity Lemma is slightly easier than
the method used in Czédli [4]. After settling the above-mentioned cases,
(4.13) follows, and it implies the validity of (4.12).

Next, for �x1, x2�, �x3, x4� ∈ Pairs≤(Lµ) that are not necessary edges,
assume that conLµ

(x1, x2) ≤ conLµ
(x3, x4). Clearly, we can assume that

x1 < x2 and x3 < x4. Let x1 = y0 ≺ y1 ≺ . . . ≺ ym = x2 and x3 = z0 ≺ z1
≺ . . . ≺ zn = x4 be maximal chains in the corresponding intervals. The struc-
ture of Lµ makes it clear that in every chain of Lµ, the set of γ

∗
µ-colors of the

edges of this chain has a largest element. Hence, it follows from Czédli [4,
Lemma 4.6], which says that (4.4) holds in every quasi-colored lattice with
coloring map γ′, that there are subscripts i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}
such that

(4.14) γ∗µ(�x1, x2�) = γ∗µ(�yi−1, yi�) and γ∗µ(�x3, x4�) = γ∗µ(�zj−1, zj�).

Larger colors mean larger generated congruences since γ∗µ satisfies (C1). Us-
ing this fact together with (4.5), it follows that

(4.15) conLµ
(x1, x2) = conLµ

(yi−1, yi) and conLµ
(x3, x4) = conLµ

(zj−1, zj).

Combining (4.12), (4.14), and (4.15), it follows immediately that the assump-
tion conLµ

(x1, x2) ≤ conLµ
(x3, x4) implies that γ∗µ(�x1, x2�) ≤νµ

γ∗µ(�x3, x4�).
Thus, γ∗µ satisfies (C2). This completes the induction, whence we know
that �Lι; γ

∗
ι , P2, νι� is a quasi-colored lattice for all ι ≤ κ. In partic-

ular, �L2; γ2, P2,≤2� := �Lκ; γ
∗
κ, P2, νκ� is a colored lattice and the map

h2 : �P2;≤2� → �Princ(L2);⊆� defined in (3.10) is an order isomorphism by
(4.3). Finally , for x ∈ P3,

Princ(g3)(h3(x))
(3.7)
= Princ(g3)(conL3

(ax, bx))
(1.1)
= conL2

(g3(ax), g3(bx))

(3.11)
= conL2

(ax, bx)
(3.1)
= conL2

(af3(x), bf3(x))
(3.10)
= h2(f3(x)).

Hence, Princ(g3) ◦ h3 = h2 ◦ f3. Multiplying both sides by h−1
2 from the left,

we obtain that f3 = h−1
2 ◦Princ(g3)◦h3. This means that g3 represents f3 by

means of principal congruences, completing the second proof of Lemma 4.2.
�

Now, we are in the position to complete the paper with two easy proofs
as follows.

Proof of Theorem 1.2. Armed with Lemmas 4.1 and 4.2, the argu-
ment between (3.13) and Subsection 3.4 applies. �
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Proof of Remark 1.3. Let M3,3,3,3 be one of the lattices that we can
obtain from two copies of M3,3 by means of a Hall–Dilworth gluing over a
two-element intersection. If we replace M3,3 by the simple lattice M3,3,3,3

of length 5, then our construction yields L1 and L2 such that they are of
lengths 5 and 7, respectively. �
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[14] G. Grätzer, The order of principal congruences of a bounded lattice, Algebra Univer-

salis, 70 (2013), 95–105.
[15] G. Grätzer, A technical lemma for congruences of finite lattices, Algebra Universalis,

72 (2014), 53–55.
[16] G. Grätzer, Planar semimodular lattices: congruences, in: Lattice Theory: Spe-

cial Topics and Applications, Vol. 1, G. Grätzer and F. Wehrung (eds),
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