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the best known upper bound for δ4 is 0.130587 [60], a slight improvement on
the Cohn–Elkies bound of δ4 < 0.13126 [27], but still nowhere near sharp.

Consider the Voronoi decomposition of any given packing P of unit
spheres in R

4.

The 24-cell conjecture. The minimal volume of any cell in the re-
sulting Voronoi decomposition of P is at least as large as the volume of a
regular 24-cell circumscribed to a unit sphere.

Note that a proof of the 24-cell conjecture would also prove that D4 is
the densest sphere packing in 4 dimensions.

The maximum possible number of non-overlapping unit spheres that can
touch a unit sphere in n dimensions is called the kissing number. The prob-
lem for finding kissing numbers k(n) is closely connected to the more general
problems of finding bounds for spherical codes and sphere packings [23]. Cur-
rently, only six kissing numbers are known: k(1) = 2, k(2) = 6 (these two
are trivial), k(3) = 12 (some incomplete proofs appeared in the 19th cen-
tury and Schütte and van der Waerden [99] first gave a detailed proof in
1953) (see also [61,67,68], k(4) = 24 (finally proved in 2003, see [71] and
[74]), k(8) = 240 and k(24) = 196560 (found independently in 1979 by Lev-
enshtein [62] and Odlyzko–Sloane [93]). Moreover, Bannai and Sloane [6]
proved that the maximal kissing arrangements in dimensions 8 and 24 are
unique up to isometry. In dimension 4 the uniqueness of the maximal kissing
arrangement is conjectured but not yet proven.

The main goal is to find reasonable approaches for solutions to problems
related to densest sphere packings in 4-dimensional Euclidean space. As a
basis for this research, we will consider two long-standing open problems:
the uniqueness of maximum kissing arrangements in 4 dimensions and the
24-cell conjecture.

The paper also considers the following related problems in 4 dimensions:
the enumeration of optimal and critical spherical configurations of N points
for small N , which subsumes the study of optimal spherical codes and pack-
ings in S

3; the enumeration of all spherical and Euclidean 2-distance sets;
and the duality gap for LP and SDP bounds.

The initial aims of the project are to examine this duality gap in global
LP and SDP problems while simultaneously analyzing the combinatorial
structures coming from candidate counterexamples to the 24-cell conjecture
defined by unweighted Voronoi cells, as well as those coming from augmented
density functionals. The goal is to reduce the global packing problem to a
local problem in the spirit of Fejes Tóth and to use a combination of coun-
terexample elimination and SDP techniques to make the local computation
tractable. The 24-cell conjecture is the most direct reduction and the driving
force behind this project.

Our ideas for research problems and preliminary findings are presented
in subsequent sections of the paper.
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Abstract. This review paper is devoted to the problems of sphere packings
in 4 dimensions. The main goal is to find reasonable approaches for solutions to
problems related to densest sphere packings in 4-dimensional Euclidean space. We
consider two long-standing open problems: the uniqueness of maximum kissing
arrangements in 4 dimensions and the 24-cell conjecture. Note that a proof of
the 24-cell conjecture also proves that the lattice packing D4 is the densest sphere
packing in 4 dimensions.

1. Introduction

This paper devoted to the classical problems related to sphere packings
in four dimensions.

The sphere packing problem asks for the densest packing of Rn with unit
balls. Currently, this problem is solved only for dimensions n = 2 (Thue
[1892, 1910] and Fejes Tóth [1940], see [22,26,39,102] for detailed accounts
and bibliography), n = 3 (Hales and Ferguson [42–52]), n = 8 (Viazovska
[101]) and n = 24 (Cohn et al. [29]).

In four dimensions, the old conjecture states that a sphere packing
is densest when spheres are centered at the points of lattice D4, i.e. the
highest density ∆4 is π2/16, or equivalently the highest center density is
δ4 = ∆4/B4 = 1/8. For lattice packings, this conjecture was proved by
Korkin and Zolatarev in 1872 [58,59]. Currently, for general sphere packings
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local problem in the spirit of Fejes Tóth and to use a combination of coun-
terexample elimination and SDP techniques to make the local computation
tractable. The 24-cell conjecture is the most direct reduction and the driving
force behind this project.

Our ideas for research problems and preliminary findings are presented
in subsequent sections of the paper.
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2. Overview of methods for sphere packing problems

2.1. Problems and methods. To introduce our problems, let C =
{x1, . . . , xM} ⊂ S

d−1 be a subset of points on the sphere in R
d. We will call C

a spherical ϕ-code if the angular distance between any two points of C is not
less than ϕ. By A(d, ϕ) we denote the maximum cardinality of a ϕ-code
in S

d−1. For ϕ = π/3 the problem of finding A(d, π/3) is the kissing number
problem (see the extensive literature). For d = 3, the problem of finding the
maximal ϕ such that A(3, ϕ) ≥ n for given n is the Tammes problem.

There are three classic methods used for finding the densest sphere pack-
ings in metric spaces. The local density method goes back to Fejes Tóth [38],
who calculated the maximal density of a sphere packing by considering a tri-
angle with vertices at circle centers and calculating the maximal part of the
triangle occupied by circles.

Coxeter [34] applied this approach to spheres in higher dimensions and
conjectured the general upper bounds on A(d, ϕ) by calculating the volume
of a regular simplex with edges of angular length ϕ and spatial angle mea-
sures at its vertices. Böröczky [13] verified Coxeter’s conjecture for spaces
of constant curvature and thereby proved the Coxeter bound. The Coxeter
bound is tight for the 600-cell and therefore A(4, π/5) = 120.

Similar ideas are often applied to sphere packing problems of R
d and

particularly to the famous Kepler conjecture [56]. The choice of partition
used for the local approach is especially important in this case. Fejes Tóth
[39] and Hsiang in his unconvincing approach [54] suggested to use averaging
of Voronoi cell densities. Hales proposed a local density inequality based on
Delaunay triangulations [42], then he formulated inequalities on a “hybrid”
between Delaunay and Voronoi cells [45]. Finally, the local density inequal-
ity of Hales and Ferguson giving the solution to the Kepler conjecture uses
the triangulation of space into non-Delaunay triangles [51]. A simplified
method for the formal proof of Kepler uses a hybridization and truncation
method introduced by Marchal [69].

Also of importance are structural results where local constraints force a
global behavior. In packings of the plane, it is a straightforward observa-
tion that the condition that the contact graph is six regular, forces a lattice
structure; in three dimensions, 12-regularity forces a Barlow packing [49].
It turns out that the determination of the exact value of the kissing radius
for 13 points in [88] allows for an alternative proof of this structure theo-
rem in three dimensions [21]. In particular, the exact values found in [88,90]
are also tight enough to pass through a series of geometric inequalities and
constrain the discrete structure of the spherical Delaunay polytope enough
to determine that it must be a rhombic dodecahedron or a triangular or-
thobicupola. The same methods of spherical geometry are applicable in the
4-dimensional problem and could be used to reduce the complexity of the
case analysis for all the problems we wish to address.
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2.2. Fejes Tóth/Hales method: Kepler and Dodecahedral con-
jectures. The solution to the Kepler conjecture, completed by Hales and
Ferguson in [51], roughly followed an outline proposed by Fejes Tóth in [39].
In the same book, Fejes Tóth linked the kissing problem of Newton and Gre
gory and the problem of minimal volume configurations in the Dodecahedral
conjecture, now also a theorem of Hales and McLaughlin [52].

Theorem (Kepler conjecture: Hales and Ferguson). There is no packing
of R

3 by congruent balls with a density greater than that achieved by the A3

lattice.

Theorem (Dodecahedral conjecture: Hales and McLaughlin). There is
no Voronoi cell in any unit sphere packing with a volume less than the volume
of a regular dodecahedron circumscribed to a unit sphere.

The final proof method of the Kepler conjecture differs from the strategy
proposed by Fejes Tóth in several ways; it even had to be adapted and evolve
over the course of the solution — but the philosophy is the one that we will
outline here. It is in many ways similar to proposed attacks on the kissing
problem and the problem of best lattice packing. Many of such problems
are known to be solvable algorithmically. The lattice case is solvable via
an algorithm due to Voronoi [100], and many geometric problems may be
subsumed into the much broader class of optimization over semialgebraic
sets; as long as there are algebraic constraints and objective, the Tarski–
Seidenberg algorithm applies. However, such an approach is intractable in
all but the simplest of cases. This brute force computational method is not
how these problems are generally approached, even if the apparent size of
the case analysis makes it appear this way — the case analyses for the Kepler
and Dodecahedral conjectures are massive reductions of the semialgebraic
problem.

In these settings, it is possible to attach relatively simple combinato
rial structures to configurations and, via a much smaller enumeration and
classification, arrive at a solution. The case of arbitrary packings is not
generally known to be a finite problem. By periodic approximation, it is
know that a counterexample to the Kepler conjecture would force the exis
tence of a finite counterexample, however, the proof depends on disproving
the existence of such. To succeed, there must be an auxiliary function that
can be attached to the density functional that eliminates all configurations
that are sufficiently large. In practice, the cutoff is fairly small; there is a
decomposition and auxiliary function that works for packings with centers
constrained to be with a ball of radius 2.52 (relative to a packing of balls
with unit radius). The final proof by Hales and Ferguson formed one of the
longest proofs in mathematics (a simplification [50] was required to outline
the formal verification project, since completed [48]). It was only known
a posteriori that the Kepler problem was solvable by considering bounded
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2.2. Fejes Tóth/Hales method: Kepler and Dodecahedral con-
jectures. The solution to the Kepler conjecture, completed by Hales and
Ferguson in [51], roughly followed an outline proposed by Fejes Tóth in [39].
In the same book, Fejes Tóth linked the kissing problem of Newton and Gre
gory and the problem of minimal volume configurations in the Dodecahedral
conjecture, now also a theorem of Hales and McLaughlin [52].

Theorem (Kepler conjecture: Hales and Ferguson). There is no packing
of R

3 by congruent balls with a density greater than that achieved by the A3

lattice.

Theorem (Dodecahedral conjecture: Hales and McLaughlin). There is
no Voronoi cell in any unit sphere packing with a volume less than the volume
of a regular dodecahedron circumscribed to a unit sphere.

The final proof method of the Kepler conjecture differs from the strategy
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clusters; it was not a given that such an analysis would be guaranteed to ter-
minate. For the Dodecahedral conjecture, there is a similar cutoff; since it
is a local problem, such a cutoff clearly exists, but there is a tradeoff due to
the constraint on the decomposition of space — the auxiliary function must
deeply respect the volume of the Voronoi cell. The final proof by Hales and
McLaughlin initially depended heavily on the machinery developed in the
proof of the Kepler conjecture; many of the constructions are directly trans-
ferable. Constructions that are not turn out at least to be transferable by
“close analogy”.

When considering the density of arrangements of spheres in R
3, there

are counterexamples to the local optimality of the A3 lattice for obvious
decompositions of space. For example, the Dodecahedral conjecture arose
from this fact: The Voronoi domain (a regular dodecahedron) of a central
sphere, kissing 12 others at the Tammes optimizer is also the volume mini-
mizer among Voronoi cells in sphere packings. This is not the configuration
found in the optimal A3 lattice.

This might be considered the initial observation in the proof: there might
be counterexamples to the global solution. As observed above, by choosing
a clever decomposition of space and attaching an auxiliary function that
defines a method of borrowing volume, the existence of a counterexample
becomes a finite problem. To all configurations, and in particular, to all
such potential counterexamples, a combinatorial object can be attached, de-
pendent on the decomposition and auxiliary functions. To be attached to
a counterexample, these combinatorial objects must satisfy some topolog-
ical or combinatorial properties: these are the tame graphs or hypermaps
that must be enumerated. In the case of the pure Voronoi decomposition,
such a tame graph exists attached to a realizable geometric configuration
(the Dodecahedral configuration) which blocks the proof by that particu-
lar method. But there exists another decomposition (in fact it appears that
there is a large family) when no tame graphs can be realized except the cells
associated to the conjectured best packings. This eliminates all candidate
counterexamples and proves the conjecture. The strategy for the proof of
the Dodecahedral conjecture proceeds similarly, but not identically. In par-
ticular, the two proofs illustrate that tameness is dependent on the problem;
the set of tame graphs must classify the problem and also be constrained
enough to enumerate. In fact, many classical proofs and bounds for packing
problems can be placed into this framework

2.3. Tammes’ problem, Fejes Tóth’s method and irreducible
contact graphs. If N unit spheres kiss the unit sphere in R

n, then the
set of kissing points is an arrangement on the central sphere such that the
(Euclidean) distance between any two points is at least 1. This allows us to
state the kissing number problem in another way: How many points can be
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placed on the surface of Sn−1 so that the angular separation between any
two points will be at least 60◦?

This leads to an important generalization: a finite subset X of Sn−1 is
called a spherical ψ-code if for every pair (x, y) of X with x �= y, its angular
distance dist(x, y) is at least ψ.

Let X be a finite subset in a metric space M . Denote

ψ(X) := min
x,y∈X

{dist(x, y)}, where x �= y.

Let M = S
2. Denote by dN the largest angular separation ψ(X) with

|X| = N that can be attained in S
2, i.e.

dN := max
X⊂S2

{ψ(X)}, where |X| = N.

Consider configurations in S
2 with ψ(X) = dN . In other words, how are N

congruent, non-overlapping circles distributed on the sphere when the com-
mon radius of the circles is as large as possible?

This question is also known as the problem of the “inimical dictators”:
Where should N dictators build their palaces on a planet so as to be as far
away from each other as possible? The problem was first asked by the Dutch
botanist Tammes (see [24, Section 1.6: Problem 6], who was led to this prob-
lem by examining the distribution of pores on the pollen grains of different
flowers.

The Tammes problem is presently solved for only a few values of N :
for N = 3, 4, 6, 12 by Fejes Tóth [38]; for N = 5, 7, 8, 9 by Schütte and van
der Waerden [98]; for N = 10, 11 by Danzer [35]; and for N = 24 by Robin-
son [95]. Recently, the problems for N = 13 and N = 14 were solved with
computer assistance [88,90].

The local density method goes back to Fejes Tóth [38], who calculated the
maximal density of a sphere packing by considering a triangle with vertices
at circle centers and calculating the maximal part of the triangle occupied
by circles. He found the following bound:

A(3, ϕ) ≤ 2π

∆(ϕ)
+ 2, where ∆(ϕ) = 3 arccos

( cosϕ

1 + cosϕ

)

− π,

i.e. ∆(ϕ) is the area of a spherical regular triangle with side length ϕ.
This bound is tight for the Tammes problem for N = 3, 4, 6, 12, where

the configurations are regular triangulations of the sphere. It is also tight
asymptotically, since the densest planar circle packing is formed by the reg-
ular triangle lattice. For all other cases of the Tammes problem, the Fejes
Tóth upper bound can not be tight. Robinson [95] extended Fejes Tóth’s
method and gave a bound valid for all N that is also sharp for N = 24.

Acta Mathematica Hungarica

O. R. MUSIN188



Acta Mathematica Hungarica 155, 2018

6 O. R. MUSIN

placed on the surface of Sn−1 so that the angular separation between any
two points will be at least 60◦?

This leads to an important generalization: a finite subset X of Sn−1 is
called a spherical ψ-code if for every pair (x, y) of X with x �= y, its angular
distance dist(x, y) is at least ψ.

Let X be a finite subset in a metric space M . Denote

ψ(X) := min
x,y∈X

{dist(x, y)}, where x �= y.

Let M = S
2. Denote by dN the largest angular separation ψ(X) with

|X| = N that can be attained in S
2, i.e.

dN := max
X⊂S2

{ψ(X)}, where |X| = N.

Consider configurations in S
2 with ψ(X) = dN . In other words, how are N

congruent, non-overlapping circles distributed on the sphere when the com-
mon radius of the circles is as large as possible?

This question is also known as the problem of the “inimical dictators”:
Where should N dictators build their palaces on a planet so as to be as far
away from each other as possible? The problem was first asked by the Dutch
botanist Tammes (see [24, Section 1.6: Problem 6], who was led to this prob-
lem by examining the distribution of pores on the pollen grains of different
flowers.

The Tammes problem is presently solved for only a few values of N :
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The solutions of all other known cases are based on the investigation
of the so-called contact graphs associated with a finite set of points. For a
finite set X in S

2, the contact graph CG(X) is the graph with vertices in X
and edges (x, y), x, y ∈ X , such that dist(x, y) = ψ(X). If the configuration
of spherical caps in S

2 centered in X of diameter ψ(X) is locally rigid, then
the graph CG(X) is said to be irreducible. Thus, the study of rigid packings
reduces locally to the study of irreducible graphs.

The concept of irreducible contact graphs was first used by Schütte and
van der Waerden to address Tammes’ problem [98]. They used the method
also for the solution to the thirteen spheres (kissing number) problem [99].
In Ch. VI of the Fejes Tóth book [39], irreducible contact graphs are con-
sidered in greater detail. Moreover, in this chapter, solutions for Tammes’
problem are conjectured for N ≤ 16, N = 24 and N = 32. The method of
irreducible spherical contact graphs was used also [14,15,19,20,35,88–91] to
obtain bounds for the kissing number and Tammes problems.

The computer-assisted solution of Tammes’ problem for N = 13 and
N = 14 consists of three parts: (i) creating the list LN of all planar graphs
with N vertices that satisfy the conditions of [90, Proposition 3.1]; (ii) using
linear approximations and linear programming to remove from the list LN

all graphs that do not satisfy the known geometric properties of the maximal
contact graphs [90, Proposition 3.2]; (iii) proving that among the remaining
graphs in LN only one is maximal.

In [86] we considered packings of congruent circles on a square flat torus,
i.e., periodic (with respect to a square lattice) planar circle packings, with
the maximal circle radius. This problem is interesting due to a practical
reason — the problem of “super resolution of images.” We have found op-
timal arrangements for N = 6, 7 and 8 circles. Surprisingly, for the case
N = 7 there are three different optimal arrangements. Our proof is based
on a computer enumeration of toroidal irreducible contact graphs.

2.4. LP and SDP methods for sphere packings. Let M be a met-
ric space with a distance function τ. A real continuous function f(t) is said
to be positive definite (p.d.) in M if for arbitrary points p1, . . . , pr in M ,
real variables x1, . . . , xr, and arbitrary r we have

r
∑

i,j=1

f(tij)xixj ≥ 0, tij = τ(pi, pj),

or equivalently, the matrix
(

f(tij)
)

� 0, where the sign � 0 stands for: “is
positive semidefinite”.

Schoenberg [96] proved that: f(cosϕ) is p.d. in S
n−1 if and only if

f(t) =
∑∞

k=0 fkG
(n)
k (t) with all fk ≥ 0. Here G

(n)
k (t) are the Gegenbauer

polynomials.
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Schoenberg’s theorem has been generalized by Bochner [11] to more
general spaces. Namely, the following fact holds: f is p.d. in a 2-point-
homogenous space M if and only if f(t) is a nonnegative linear combination

of the zonal spherical functions Φk(t) (see details in [36,55], [33, Ch. 9]).
The Bochner–Schoenberg theorem plays a crucial role in Delsarte’s linear
programming (LP) method for finding bounds for the density of sphere pack-
ings on spheres and Euclidean spaces. One of the most exciting applications
of Delsarte’s method is a solution of the kissing number problem in dimen-
sions 8 and 24. However, 8 and 24 are the only dimensions in which this
method gives a precise result. For other dimensions (for instance, 3 and
4) the upper bounds exceed the lower. We have found an extension of the
Delsarte method [72–74] that allows to solve the kissing number problem
(as well as the one-sided kissing number problem) in dimensions 3 and 4.
This method is widely used in coding theory and discrete geometry for find-
ing bounds for error-correcting codes, spherical codes, sphere packings and
other packing problems in 2-point–homogeneous spaces ([5–7,26,28,30–33,
55,62–64,87,93,94] and many others).

Cohn and Elkies developed an analogue of the Delsarte LP bounds [27]
for sphere packing in R

n. (Note that Gorbachev [41] independently obtained
similar results.) Using this method, Cohn and Kumar [31] proved the opti-
mality and uniqueness of the Leech lattice among lattices in dimension 24
(see also [94] for a beautiful exposition). Recent solutions of the densest
packing problem in dimensions 8 (Viazovska [101]) and 24 (Cohn et al. [29])
also rely on the Cohn–Elkies method (see also [25]).

Semidefinite programming (SDP) is a subfield of convex optimization
concerned with the optimization of a linear objective function over the in-
tersection of the cone of positive semidefinite matrices with an affine space.
Schrijver [97] improved some upper bounds on binary codes using SDP. Schri-
jver’s method has been adapted for spherical codes by Bachoc and Vallentin
[2]. Now there are many applications of SDP bounds to spherical codes and
sphere packings (see [1,3,4,26,40,75,76,78] and many others).

3. Kissing arrangement uniqueness and the 24-cell conjecture

3.1. Contact graphs in four dimensions. Much of the machinery
needed for the analysis of kissing configurations in R

4 can be developed
from off-the-shelf components that have been extensively studied and docu-
mented; such kissing configurations reduce to configurations of spheres in S

3

and the analogous problem in R
3 is the elimination of the local counterex-

amples to the Kepler problem, as discussed previously. The combinatorial
methods need to be modified to a spherical geometry, but the considerations
would be simpler than those required to determine the best packing in R

3,

Acta Mathematica Hungarica

O. R. MUSIN190



Acta Mathematica Hungarica 155, 2018

8 O. R. MUSIN
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as there are no candidate configurations that are not in contact with a cen-
tral sphere — it suffices to start by considering exactly the nearest neighbor
contact graphs (or complexes) and characterize them as irreducible with ge-
ometric conditions on points and edges (and also higher dimensional cells).
A generally agreed upon condition for irreducibility is local rigidity, there is
no shift of a single geometric vertex can increase edge lengths of the con-
tact graph [98]. Further geometric constraints on the degree and diameter
of candidate irreducible or “tame” graphs in this context make it a reason-
able first approach to the uniqueness conjecture and provide a method to
address other kissing configuration problems in R

4. In particular, we think
that more constraints on the combinatorial structure for some optimal pack-
ing configurations that considered in recent papers [16–18,57] can be useful
for a proof of the uniqueness of the 24-cell sphere configuration in R

4.

3.2. SDP and uniqueness of the kissing arrangement. Odlyzko
and Sloan [93] show that the LP upper bound for the kissing number k(4)
is 25.558. . . We proved that k(4) < 24.865 [74].

Denote by sd(n) the optimal SDP bound on k(n) of degree d [70]. In the
following list it is shown that this minimization problem is a semidefinite
program and that every upper bound on sd(4) provides an upper bound for
the kissing number in dimension 4.

• s7(4) < 24.5797 — Bachoc and Vallentin [2];
• s11(4) < 24.10550859 — Mittelmann and Vallentin [70];
• s12(4) < 24.09098111 [70];
• s13(4) < 24.07519774 [70];
• s14(4) < 24.06628391 [70];
• s15(4) < 24.062758 — Machado and de Oliveira Filho [66];
• s16(4) < 24.056903 [66].

Clearly, the numbers sd(n) form a monotonic decreasing sequence in d.
Perhaps this sequence for n = 4 approaches 24. If there is a d such that
sd(4) = 24, then we think it will be possible to prove the uniqueness theorem
by a similar way as for dimensions 8 and 24.

However, since sd(4) is close to 24, the correspondent polynomial f
gives some inequalities for the distances distribution (see [78, Theorem 5.4]).
Moreover, that yields certain constraints for the contact graphs. Therefore,
it can help to reduce the list of possible irreducible contact graphs of the
kissing arrangements in four dimensions.

Another interesting possibility is to find an SDP version of our Theorem 1
in [74]. For n = 4 and t0 = 0.6058 we have k(4) ≤ max{hm}, 1 ≤ m ≤ 6 [74,
Corollary 3]. Then using SDP method we certainly have less t0 and there-
fore less number of possible configurations. It can also lead to a proof of the
uniqueness theorem.
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3.3. The 24-cell conjecture. The 24-cell conjecture in particularly
states that, in the optimal case, all N neighboring spheres touch the central
sphere. Since k(4) = 24, it can be only for N ≤ 24. In order to eliminate the
case N ≥ 25 and consider the case N ≤ 24, we can use the ideas from the
two previous subsections. For this, we can generalize the SDP method for
points in R

n and to apply certain isoperimetric inequalities for polyhedrons.
In [78, Section 4] we define positive definite (p.d.) functions in R

n

H
(n,m)
k (t, x, y,u,v), where 0 ≤ m ≤ n− 2, t, x, y ∈ R, u,v ∈ R

m. Note that

for x = y = 1, H
(n,0)
k is the Gegenbauer polynomial G

(n)
k (t), and for m = 1

that is the multivariate Gegenbauer polynomial Sn
k (t, u, v) first defined by

Bachoc and Vallentin [2].

Let Hk := H
(4,1)
k . Then Hk is a p.d. polynomial in five variables t, x,

y, u, v. If p1, . . . , pN in R
4 are centers of unit neighboring spheres with

the central sphere centered at the origin, then t = �pi, pj�, x = |pi|2 and y =
|pj|2, see [78, Theorem 4.1]. Since all |pi| are close to 1, all Hk are close to
S4
k . Thus, perhaps we can have similar bounds as for the spherical case and

in particular N ≤ 24.

3.4. Dimension reduction. Here we consider more difficult problems
for which we do not have a ready approach in mind, but which we still wish
to analyze. If we increase the degree of the polynomial, then the dimension
of the SDP problem rapidly increases. It seems to us that it is possible to
apply the methods of combinatorial topology, namely fixed-point theorems
for reducing the dimension of the corresponding SDP problems.

One of the successful implementations of this approach is a paper by Bon-
darenko, Radchenko, and Viazovska [12] on spherical t-designs. (A spherical
t-design is a finite set of N points on S

d such that the average value of any
polynomial f of degree t or less on the set equals the average value of f on
the whole sphere.) They proved the conjecture of Korevaar and Meyers:

For each N ≥ cdt
d there exists a spherical t-design in the sphere S

d con-
sisting of N points, where cd is a constant depending only on d.

One of the most important steps in their proof is based on the lemma
that follows from the Brouwer fixed point theorem.

Note that our topological and topological combinatorics papers [77,79–
83,92] are particularly motivated by optimal sphere packing problems.

4. Related research problems

4.1. Optimal spherical codes in four dimensions. From the per-
spective of spherical codes, it is a shame that so little is known about kissing
configurations in higher dimensions. Fejes Tóth-type inequalities imply that
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the regular simplex is an optimizer in all dimensions, as well as the octa-
hedron and icosahedron in dimension 3, and the 600-cell in dimension 4.
Otherwise, in dimension 4, the only other spherical codes known to be opti-
mal are for configurations with fewer than 8 points and for exactly 10. It is
conjecture that the 9-point configuration is of the form {1, 4, 4∗}, one point
in the pole and two simplexes, twisted relative to reach other, on “spheres
of latitude”. Such problems seem approachable by methods of irreducible
graphs related to the classifications that would be required to address the
24-cell conjecture and would yield insight into the discrete geometry of S3. A
further generalization of Robinson’s tightening of the Fejes Tóth inequality
would also be of great interest.

4.2. Maximum contact packings in four dimensions. The spher-
ical kissing number kS(d, θ) is the maximum number of disjoint spherical caps
of angular diameter θ in S

d that can be arranged so that all of them touch
one spherical cap of the same diameter. Denote by kS(d) the maximum
value of kS(d, θ). In fact, kS(d, θ) = kS(d) for θ → 0 and kS(d) = A(d, ϕ) if
ϕ < π/3 is close to π/3.

Currently, spherical kissing numbers are known only for d ≤ 3. Namely,
kS(1) = 2, kS(2) = 5 and kS(3) = 12. Our conjecture is that

kS(4) = 22.

The contact graph of an arbitrary finite packing P of unit spheres in R
d

is the graph whose vertices correspond to the packing spheres and whose two
vertices are connected by an edge if the corresponding two packing spheres
touch each other. Denote by c(n, d) the maximum number of touching pairs
in packings P of cardinality n. In other words, c(n, d) is the maximum
number of edges of the contact graph of a packing of n unit spheres in R

d.
It is clear that

c(n, d) <
1

2
k(d)n.

In 1974 Harborth [53] proved that

c(n, 2) = ⌊3n−
√
12n− 3⌋.

There are only particular results for higher dimensions [8–10].
Denote by s(n, d) the maximum number of touching pairs in packings of

S
d−1 by n congruent spherical caps. We have

cS(n, d) ≤
1

2
kS(d)n.

For d = 2, Robinson and Fejes Tóth found all cases when the equality
holds (see [84] for references and other results). It is interesting to solve this
problem in four dimensions.
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4.3. Two-distance sets in four dimensions. A set S in Euclidean
space R

d is called a two-distance set, if there are two distances a and b, and
the distances between pairs of points of S are either a or b. If a two-distance
set S lies in the unit sphere S

d−1, then S is called a spherical two-distance
set.

Let G be a graph on n vertices. Consider a Euclidean representation of
G in R

d as a two-distance set. In other words, there are two positive real
numbers a and b with b ≥ a > 0 and an embedding f of the vertex set of G
into R

d such that

dist(f(u), f(v)) :=

{

a if uv is an edge of G

b otherwise.

We will call the smallest d such that G is representable in R
d the Eu-

clidean representation number of G and denote it by dim2(G). Let G be a
simple graph on n vertices. It is clear that dim2(G) ≤ n− 1. Einhorn and
Schoenberg [37] proved the following theorem:

dim2(G) = n− 1 if and only if G is a disjoint union of cliques.

Denote by Σn the number of all two-distance sets with n vertices in R
n−2.

Then Einhorn–Schoenberg’s theorem yields

Σn = Γn − p(n),

where Γn is the number of all simple undirected graphs and p(n) is the
number of unrestricted partitions of n.

Einhorn and Schoenberg [37] enumerated all two-distance sets in dimen-
sions two and three. In other words, they enumerated all graphs G with
dim2(G) = 2 and dim2(G) = 3. This problem in dimension four is still open.

Einhorn–Schoenberg’s theorem gives a complete enumeration of two
distance-sets in R

4 of cardinality n ≤ 6. In particular, since Γ6 = 156 and
p(6) = 11, we have Σ6 = 145.

Lisoněk [65] proved that the maximum cardinality of two-distance sets
in R

4 is 10. Moreover, this representation is unique up to similarity. It
remains to solve the problem for n = 7, 8 and 9.

In [85], we consider the spherical representation number of G. We give
exact formulas for this number using multiplicities of polynomials that are
defined by the Caley–Menger determinant. We think that using this method
can enumerated all spherical two-distance sets in four dimensions.

Acknowledgement. I wish to thankWöden Kusner for helpful discus-
sions, comments and especially for detailed references on the Fejes Tóth/Hales
method (Subsections 2.1 and 2.2).
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sions, comments and especially for detailed references on the Fejes Tóth/Hales
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