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Firey also proved the Lp-Brunn–Minkowski inequality for p > 1

(1.3) |(1− λ) ·K +p λ · L|p/n ≥ (1− λ)|K|p/n + λ|L|p/n,

with equality for λ ∈ (0, 1) if and only if K and L are dilates.
In the mid 1990s, Lutwak and his colleagues brought the Minkowski–

Firey Lp theory to a great height of development (see e.g. [11–13]). Among
many others, it has been noticed that the Minkowski–Firey Lp-sum makes
sense for all p > 0. The case where p = 0 is the limit case, which is known
as the log-Minkowski sum, (1− λ) ·K +0 λ · L, of K and L that contain the
origin in their interiors, defined by

(1.4) (1− λ) ·K +0 λ · L =
⋂

u∈Sn−1

{x ∈ R
n : x · u ≤ hK(u)1−λhL(u)

λ}.

In [2], Böröczky et al. conjectured and proved the planar case of the following
log-Brunn–Minkowski inequality: If K and L are o-symmetric convex bodies
in R

n, then for all λ ∈ [0, 1],

(1.5) |(1− λ) ·K +0 λ · L| ≥ |K|1−λ|L|λ.

By Jensen’s inequality, it is easily seen that the log-Brunn–Minkowski in-
equality (1.5) is stronger than the Lp Brunn–Minkowski inequality (1.3)
for p > 0. Böröczky et al. also showed that the (conjectured) log-Brunn–
Minkowski inequality is equivalent to the following log-Minkowski mixed
volume inequality: If K and L are o-symmetric convex bodies in R

n, then

(1.6)

∫

Sn−1

log
hL

hK
dV K ≥

1

n
log

|L|

|K|
.

Here Sn−1 denotes the standard unit sphere in R
n and V K is the cone-volume

probability measure of K; see the next section for detailed definitions. Note
that one can easily find counterexamples of the log-Brunn–Minkowski in-
equality (equivalently, the log-Minkowski mixed volume inequality) for not
o-symmetric convex bodies. Inspired by this feature, recently Xi and Leng
[19] studied a “dilation” version of the log-Brunn–Minkowski inequality for
general convex bodies. For more recent progress on the conjectured log-
Brunn–Minkowski inequality, one can refer to [10,17] and the references
therein.

Grounded on the convexity of the function ϕ(t) = tp for p ≥ 1, Lutwak,
Yang, and Zhang [14,15] instituted the so-called Orlicz–Brunn–Minkowski
theory. The Orlicz–Brunn–Minkowski theory is a natural extension of the
Lp Brunn–Minkowski theory for p ≥ 1. Since it was set up, the theory has
attracted an increasing research interest, see e.g. [6,7,9,20,21].
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Abstract. For strictly increasing concave functions ϕ whose inverse func-
tions are log-concave, the ϕ-Brunn–Minkowski inequality for planar convex bodies
is established. It is shown that for convex bodies in R

n the ϕ-Brunn–Minkowski
is equivalent to the ϕ-Minkowski mixed volume inequalities.

1. Introduction

The Brunn–Minkowski theorem states that for convex bodies K, L in R
n

and for λ ∈ [0, 1],

(1.1) |(1− λ)K + λL|1/n ≥ (1− λ)|K|1/n + λ|L|1/n.

Equality for some λ ∈ (0, 1) holds if and only if K and L either lie in parallel
hyperplanes or are homothetic.

Over the decades, the Brunn–Minkowski inequality (1.1) and its exten
sions and ramifications have been playing the part of the foundationstone
in convex geometric analysis, with applications to extremal, uniqueness and
other problems. Excellent references for the Brunn–Minkowski theory are
[4,5,8,18].

In the 1960s, Firey [3] introduced for p ≥ 1 the socalled Minkowski–
Firey Lp sum of convex bodies that contain the origin in their interiors.
Let hK and hL be support functions (see the next section for definitions) of
convex bodies K and L that contain the origin in their interiors. If λ ∈ [0,1],
then the Minkowski–Firey Lpsum, (1− λ) ·K +p λ · L, is defined by
(1.2)

(1−λ) ·K+pλ ·L =
⋂

u∈Sn−1

{x ∈ R
n : x ·u ≤ ((1− λ)hK(u)p + λhL(u)

p)1/p }.
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Along the lines of extending the Minkowski–Firey Lp sum not only for
p ≥ 1 but also for 0 < p < 1, in this paper we shall introduce the ϕ-Minkowski
sum of convex bodies that contain the origin in their interiors, and then study
the ϕ-Brunn–Minkowski inequality for general functions ϕ. Following but
going beyond the pattern taken in the Orlicz–Brunn–Minkowski theory, we
shall replace the power function tp for all p > 0 by general ϕ (not necessarily
convex). Then, we shall study the so-called ϕ-Brunn–Minkowski inequal-
ity. Indeed, such a maneuver provides a unified treat for the Orlicz–Brunn–
Minkowski inequality, the Lp Brunn–Minkowski inequality for 0 < p < 1, as
well as the log-Brunn–Minkowski inequality.

To facilitate all of the mentioned cases, we first define the class of general
functions ϕ as follows.

Let Φ be the set of strictly increasing functions ϕ : (0,∞) → I ⊆ R which
are continuously differentiable on (0,∞) with positive derivative, and satisfy
that limt→∞ ϕ(t) = ∞ and that log ◦ ϕ−1 is concave. Observe that when-
ever ϕ ∈ Φ is convex, the composite function log ◦ ϕ−1 is log-concave. The
collection of convex functions from Φ shall be denoted by C.

There are many fundamental examples of the functions ϕ ∈ Φ. Convex
examples of functions in Φ include the power function ϕ(t) = tp with p ≥ 1;
the logistic function ϕ(t) = t+ 2 log(1 + e−t); the Laplace function ϕ(t) =
e−t, and so on. Non-convex examples of Φ include ϕ(t) = tp with 0 < p < 1,
the log function ϕ = log, and ϕ(t) = 1

q log(1 + t) with q ∈ (0, 1).

Let λ ∈ [0, 1] and ϕ ∈ Φ. For u ∈ Sn−1, we define a function hλ(u) as

(1.7) hλ(u) = inf
{

τ > 0 : (1− λ)ϕ
(hK(u)

τ

)

+ λϕ
(hL(u)

τ

)

≤ ϕ(1)
}

.

It then follows from the strict monotonicity of ϕ that

(1.8) ϕ(1) = (1− λ)ϕ
(hK

hλ

)

+ λϕ
(hL

hλ

)

.

Throughout, we denote by Kn
o the set of convex bodies in R

n that contain
the origin in their interiors.

We define the ϕ-combination Qϕ,λ = (1− λ) ·K +ϕ λ ·L of K,L ∈ Kn
o as

(1.9) Qϕ,λ =
⋂

u∈Sn−1

{

x ∈ R
n : x · u ≤ hλ(u)

}

.

Since the function hλ defined by (1.7) is both positive and continuous
on Sn−1, the ϕ-combination Qϕ,λ must be an element of Kn

o . Moreover, if
ϕ ∈ C, then Qϕ,λ has hλ as its support function. If ϕ ∈ Φ is non-convex, the
support function of Qϕ,λ may not precisely be hλ, but hQϕ,λ

= hλ a.e. with
respect to the surface area measure SQϕ,λ

.
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We note that if ϕ(t) = tp with p > 0, then the ϕ-combination reduces to
the Minkowski–Firey Lp-combination defined by (1.2); i.e.,

Qp,λ = (1− λ) ·K +p λ · L.

Further, if ϕ(t) = log(t), then we retrieve the log-combination, of K,L ∈ Kn
o ,

given by (1.4); i.e.,

Q0,λ = (1− λ) ·K +0 λ · L.

One main result of this paper is the following ϕ-Brunn–Minkowski in-
equality for planar o-symmetric convex bodies.

Theorem 1.1. Let λ ∈ [0,1] and let ϕ ∈ Φ be concave on (0,∞). If K,L
are o-symmetric convex bodies in the plane and Qϕ,λ = (1− λ) ·K +ϕ λ · L,
then

(1.10) (1− λ)ϕ

(

|K|1/2

|Qϕ,λ|1/2

)

+ λϕ

(

|L|1/2

|Qϕ,λ|1/2

)

≤ ϕ(1).

Equality for some λ ∈ (0, 1) holds if and only if K and L are dilates.

The above theorem follows by the planar log-Minkowski mixed volume
inequality [2, Theorem 1.4] and the following equivalence of the ϕ-Minkowski
mixed volume inequality and the ϕ-Brunn–Minkowski inequality. Even
though they remain open for convex bodies in R

n for n > 2, the equiva-
lence is of great significance. As will be shown, these two inequalities are
tied to the log-Minkowski mixed volume inequality (equivalently, the log-
Brunn–Minkowski inequality) in R

n for n > 2.

Theorem 1.2. Let λ ∈ [0, 1] and ϕ ∈ Φ be, in addition, convex (or con-

cave) on (0,∞). If K,L ∈ Kn
o are o-symmetric convex bodies in R

n, and
Qϕ,λ = (1− λ) ·K +ϕ λ · L, then the ϕ-Brunn–Minkowski inequality

(1.11) (1− λ)ϕ

(

|K|1/n

|Qϕ,λ|1/n

)

+ λϕ

(

|L|1/n

|Qϕ,λ|1/n

)

≤ ϕ(1)

is equivalent to the ϕ-Minkowski mixed volume inequality

(1.12)

∫

Sn−1

ϕ
( hL

hK

)

dV K ≥ ϕ

(

|L|1/n

|K|1/n

)

.

Note that if ϕ ∈ Φ is convex on (0,∞), then the assumption thatK and L
are o-symmetric, imposed on the ϕ-Brunn–Minkowski inequality (1.11) as
well as the ϕ-Minkowski mixed volume inequality (1.12), is not necessary.
In this instance, the corresponding ϕ-Brunn–Minkowski inequality on R

n is
exactly the Orlicz–Brunn–Minkowski inequality. The reader can refer to [20]
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for a symmetrization argument about it. For the case where ϕ ∈ Φ is concave
on (0,∞), the ϕ-Brunn–Minkowski inequality (as well as the ϕ-Minkowski
mixed volume inequality) remains open if n > 2. However, it turns out that
once the conjectured log-Brunn–Minkowski inequality (1.5) is proved, the
ϕ-Brunn–Minkowski inequality (1.11) will hold true consequently.

We also note that it is the log-concavity of ϕ−1 that allows us to unify
the log-Brunn–Minkowski inequality, the Lp-Brunn–Minkowski inequality
for 0 < p < 1, and the Orlicz Brunn–Minkowski inequality. Associated to the
log-concavity of ϕ−1 is the following comparison result linking the ϕ-means
to the log-means:

ϕ−1

(
∫

Sn−1

ϕ
( hL

hK

)

dV K

)

≥ exp

(
∫

Sn−1

log
( hL

hK

)

dV K

)

,

which in turn indicates that the (conjectured) log-Brunn–Minkowski inequal-
ity (1.5), or equivalently, the (conjectured) log-Minkowski mixed volume
inequality (1.6) is the sharpest one among all of the ϕ-Brunn–Minkowski
inequalities for ϕ ∈ Φ.

2. Preliminaries

The setting for this paper is the n-dimensional Euclidean space, Rn. We
shall write x · y for the standard inner product of x, y ∈ R

n. Let Bn
2 and

Sn−1 denote the standard unit ball and the unit sphere in R
n. The most

fundamental functional for convex body in R
n is the volume (Lebesgue mea-

sure), denoted by | · |. A convex body in R
n is understood as a compact,

convex subset of Rn with nonempty interior.
Let K be a convex body in R

n and νK : ∂′K → Sn−1 the Gauss map,
where ∂′K is the set of boundary points of K that have only one unit normal
vector. It is worth noting that ∂K\∂′K has Hn−1-measure equal to zero.
For each Borel set ω ⊆ Sn−1 the inverse spherical image ν−1

K (ω) is defined
as a subset of ∂′K such that the outer normal of x ∈ ∂′K belongs to ω. For
a convex body K in R

n, the classical surface area measure of K is defined
by

SK(ω) = Hn−1(ν−1
K (ω)),

for each Borel set ω ⊆ Sn−1. That is to say, SK(ω) is the (n−1)-dimensional
Hausdorff measure of the set of all points on ∂′K.

The support function of a convex body K in R
n is defined by

hK(x) = max{x · y : y ∈ K},

for x ∈ R
n\{0}.
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For real a, b ≥ 0 (not both zero), the Minkowski linear combination

aK + bL of convex bodies K, L can be defined either by

aK + bL = {ax+ by : x ∈ K, y ∈ L},

or by

(2.1) haK+bL = ahK + bhL.

More generally, if K,L ∈ Kn
o , then for p > 1 the Minkowski–Firey Lp-combi-

nation a ·K +p b · L can be defined by

(2.2) hp
a·K+pb·L

= ahp
K + bhp

L.

Obviously, a ·K +p b · L ∈ Kn
o .

Let I ⊆ [0,∞) be an interval in R. The left derivative and right deriva
tive of a function f : I → R are denoted by f ′

l and f ′
r, respectively.

For a convex body K ∈ Kn
o , the cone-volume measure VK of K is de

fined as

dVK =
1

n
hK dSK .

Observing that

|K| =

∫

Sn−1

dVK(u),

we can define the cone-volume probability measure V K of K by

V K =
dVK

|K|
.

Let I ⊂ R be an interval containing the origin and suppose that hλ(u) =
h(λ,u) : I ×Sn−1 → (0,∞) is continuous. For fixed λ ∈ I , one can define the
Wulff shape (or Alekdandrov body) associated with the function hλ as

Kλ =
⋂

u∈Sn−1

{

x ∈ R
n : x · u ≤ h(λ, u)

}

.

It is wellknown that

hKλ
≤ hλ and hKλ

= hλ, a.e. with respect to SKλ
,

for each λ ∈ I .
The following Aleksandrov lemma (see e.g., [1, p.103], [9, Lemma 1], or

[18, P.345]) will be needed.
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Lemma 2.1. Let h(λ, u) : I × Sn−1 → (0,∞) be continuous, where I is
an interval such that [0, 1] ⊆ I ⊂ R. Suppose that the convergence in

h′
+(0, u) = lim

λ→0+

h(λ, u)− h(0, u)

λ

is uniform on Sn−1. If {Kλ}λ∈I is the family of Wulff shapes associated
with hλ, then

lim
λ→0+

|Kλ| − |K0|

λ
=

∫

Sn−1

h′
+(0, u) dSK0

(u).

Suppose K,L ∈ Kn
o . For ϕ ∈ Φ, the ϕ-mixed volume Vϕ(K,L) can be

defined as

(2.3) Vϕ(K,L) =

∫

Sn−1

ϕ
( hL

hK

)

dVK

We define the normalized ϕ-mixed volume V ϕ(K,L) of K,L ∈ Kn
o as

(2.4) V ϕ(K,L) = ϕ−1

(

Vϕ(K,L)

|K|

)

= ϕ−1

(
∫

Sn−1

ϕ
( hL

hK

)

dV K

)

.

In particular, if ϕ(t) = tp with p > 0, the normalized ϕ-mixed volume
V ϕ(K,L) reduces to the normalized Lp mixed volume V p(K,L) ofK,L ∈ Kn

o :

V p(K,L) =

(
∫

Sn−1

( hL

hK

)p
dV K

)1/p

.

As p → 0, it leads to the normalized log-mixed volume V 0(K,L) of K,L
∈ Kn

o :

(2.5) V 0(K,L) = exp

(
∫

Sn−1

log
hL

hK
dV K

)

.

3. Equivalence of the ϕ-Minkowski mixed volume and the
ϕ-Brunn–Minkowski inequalities

In [2], Böröczky et al. proved the equivalence of the log-Brunn–Minkowski
and the log-Minkowski mixed volume inequalities, as well as the equivalence
of the Lp-Brunn–Minkowski and the Lp-Minkowski mixed volume inequal-
ities for p > 0. In this section, we shall establish the equivalence of the
ϕ-Brunn–Minkowski and the ϕ-Minkowski mixed volume inequalities. This
provides a unified treat for the log-case, the Lp-case, and the Orlicz case.
The last one of them is a natural generalization of the Lp-case for p > 1; see,
e.g., [6,20] for the details of the Orlicz–Brunn–Minkowski inequality.
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Lemma 3.1. Suppose ϕ ∈ Φ and K,L ∈ Kn
o . If λ ∈ (0, 1), then hλ con-

verges to hK uniformly on Sn−1 as λ → 0+.

Proof. We first prove limλ→0+ hλ = hK . In fact, we only need to show
that for any sequence {λi} ⊂ (0, 1) converging to λ̄ ∈ [0, 1] as i → ∞, it fol-
lows that limi→∞ hλi

= hλ̄ on Sn−1. Suppose λi ∈ (0, 1), we have

ϕ(1) = (1− λi)ϕ
(hK

hλi

)

+ λiϕ
( hL

hλi

)

< ϕ
(hK + hL

hλi

)

.

This, together with the strict monotonicity of ϕ−1, gives hλi
< hK + hL and

shows that hλi
is bounded. Thus, the sequence {hλi

} has a convergent sub-
sequence (denoted also by hλi

) converging to hλ̄′ for some λ̄′ ∈ [0,1]. By the
continuity of ϕ, we see that hλ̄′ > 0 and

ϕ(1) = lim
i→∞

[

(1− λi)ϕ
(hK

hλi

)

+ λiϕ
( hL

hλi

)

]

= (1− λ̄)ϕ
(hK

hλ̄′

)

+ λ̄ϕ
( hL

hλ̄′

)

.

That proves hλ̄′ = hλ̄. In particular, if λ̄ = 0, then from h0 = hK we achieve
the desired convergence.

Next we show that the convergence is uniform. It is easily seen that over
Sn−1 there exists a c̄ > 0 such that hλ > c̄ for any λ ∈ [0, 1]. To this end,
we let c̄1B

n
2 ⊂ K and c̄2B

n
2 ⊂ L with c̄1, c̄2 > 0, and set c̄ = min{c̄1, c̄2}. By

(1.7) and the log-concavity of ϕ−1, we obtain

= log ◦ ϕ−1
(

(1− λ)ϕ
(hK

hλ

)

+ λϕ
(hL

hλ

))

≥ (1− λ) log
hK

hλ
+ λ log

hL

hλ
= log

h1−λ
K hλ

L

hλ
.

Thus, hλ ≥ h1−λ
K hλ

L > c̄.
Let 0 < M < ∞ be such that L ⊂ MBn

2 , K ⊂ MBn
2 , and hλ ≤ M . De-

fine

α = sup
u∈Sn−1

hL(u)

hλ(u)
≤

M

c̄
< ∞; β = inf

u∈Sn−1

hL(u)

hλ(u)
≥

c̄

M
> 0.

If hK ≤ hλ, then from the fact that ϕ ∈ Φ is strictly increasing, and (1.8)
we have

ϕ(1)− λϕ(α) ≤ (1− λ)ϕ
(hK

hλ

)

≤ ϕ
(hK

hλ

)

.

If λ is small enough, then ϕ(1)− λϕ(α) > 0 and hence

hλϕ
−1(ϕ(1)− λϕ(α)) ≤ hK .

Acta Mathematica Hungarica

S.-J. LV232



Acta Mathematica Hungarica 156, 2018

8 S.-J. LV
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.
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< hK + hL and

shows that hλi
is bounded. Thus, the sequence {hλi
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sequence (denoted also by hλi

) converging to hλ̄′ for some λ̄′ ∈ [0,1]. By the
continuity of ϕ, we see that hλ̄′ > 0 and

ϕ(1) = lim
i→∞

[
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(hK

hλi

)

+ λiϕ
( hL

hλi

)

]

= (1− λ̄)ϕ
(hK

hλ̄′

)

+ λ̄ϕ
( hL

hλ̄′

)

.

That proves hλ̄′ = hλ̄. In particular, if λ̄ = 0, then from h0 = hK we achieve
the desired convergence.

Next we show that the convergence is uniform. It is easily seen that over
Sn−1 there exists a c̄ > 0 such that hλ > c̄ for any λ ∈ [0, 1]. To this end,
we let c̄1B

n
2 ⊂ K and c̄2B

n
2 ⊂ L with c̄1, c̄2 > 0, and set c̄ = min{c̄1, c̄2}. By

(1.7) and the log-concavity of ϕ−1, we obtain

= log ◦ ϕ−1
(

(1− λ)ϕ
(hK

hλ

)

+ λϕ
(hL

hλ

))

≥ (1− λ) log
hK

hλ
+ λ log

hL

hλ
= log

h1−λ
K hλ

L

hλ
.

Thus, hλ ≥ h1−λ
K hλ

L > c̄.
Let 0 < M < ∞ be such that L ⊂ MBn

2 , K ⊂ MBn
2 , and hλ ≤ M . De-

fine

α = sup
u∈Sn−1

hL(u)

hλ(u)
≤

M

c̄
< ∞; β = inf

u∈Sn−1

hL(u)

hλ(u)
≥

c̄

M
> 0.

If hK ≤ hλ, then from the fact that ϕ ∈ Φ is strictly increasing, and (1.8)
we have

ϕ(1)− λϕ(α) ≤ (1− λ)ϕ
(hK

hλ

)

≤ ϕ
(hK

hλ

)

.

If λ is small enough, then ϕ(1)− λϕ(α) > 0 and hence

hλϕ
−1(ϕ(1)− λϕ(α)) ≤ hK .
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It follows that

(3.1) 0 ≤ hλ − hK ≤ hλ(1− ϕ−1(ϕ(1)− λϕ(α))) ≤ M1(λ),

where M1(λ) = M(1− ϕ−1(ϕ(1)− λϕ(α))).
If hK ≥ hλ, then

ϕ(1)− λϕ(β) ≥ (1− λ)ϕ(hK/hλ),

which implies

hK ≤ hλϕ
−1

(ϕ(1)− λϕ(β)

1− λ

)

.

Observing ϕ(1)−λϕ(β)
1−λ > 0 and ϕ−1

( ϕ(1)−λϕ(β)
1−λ

)

> 1, we see that

(3.2) 0 ≤ hK − hλ ≤ hK

(

1−
1

ϕ−1
( ϕ(1)−λϕ(β)

1−λ

)

)

≤ M2(λ),

where M2(λ) = M
(

1− 1
ϕ−1(ϕ(1)−λϕ(β)

1−λ
)

)

.

Combining (3.1) with (3.2) shows that

|hλ(u)− hK(u)| ≤ M(λ) = max
{

M1(λ),M2(λ)
}

holds for all u ∈ Sn−1. Since M(λ) → 0+ as λ → 0+, we confirm that the
convergence limλ→0+ hλ = hK is uniform on Sn−1. �

Lemma 3.2. Suppose λ ∈ (0, 1) and K,L ∈ Kn
o . If ϕ ∈ Φ, then

(3.3) lim
λ→0+

hλ − hK

λ
=

hK

ϕ′(1)

[

ϕ
( hL

hK

)

− ϕ(1)

]

.

If, in addition, ϕ is convex (or concave) on (0,∞) then the convergence in

(3.3) is uniform on Sn−1.

Proof. From Lemma 3.1, (1.8), and the continuity of ϕ, we have

lim
λ→0+

hλ − hK

λ
= lim

λ→0+
hλ lim

λ→0+

1− hK/hλ

λ

= hK lim
λ→0+

1− hK/hλ

ϕ(1)− ϕ(hK/hλ)
lim
λ→0+

ϕ(1)− ϕ(hK/hλ)

λ

=
hK

ϕ′(1)
lim
λ→0+

[

ϕ(hL/hλ)− ϕ(hK/hλ)
]

=
hK

ϕ′(1)

[

ϕ(hL/hK)− ϕ(1)
]

.
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Let tλ = ϕ(hK

hλ
). Then hK

hλ
→ 1 as λ → 0+. Since ϕ ∈ Φ is convex (con-

cave) on (0,∞), ϕ−1 is concave (convex) on (0,∞). This together with the
facts that t0 = ϕ(1) and ϕ−1(tλ) = 1 gives

1

ϕ′(1)
≤
(≥)

1− ϕ−1(tλ)

t0 − tλ
≤
(≥)

1

ϕ′(ϕ−1(tλ))
.

Observing that

hλ − hK

λ
= hλ

1− ϕ−1(tλ)

t0 − tλ

[

ϕ
(hL

hλ

)

− ϕ
(hK

hλ

)

]

,

we have

(3.4)
hλ

[

ϕ(hL

hλ
)− ϕ(hK

hλ
)
]

ϕ′(1)
≤
(≥)

hλ − hK

λ
≤
(≥)

hλ

[

ϕ(hL

hλ
)− ϕ(hK

hλ
)
]

ϕ′(ϕ−1(tλ))
.

By Lemma 3.1, we see that hλ → hK uniformly on Sn−1 as λ→ 0+, which
implies that hL

hλ
, hK

hλ
converge uniformly to hL

hK
, 1, respectively, on Sn−1. Thus,

hL

hλ
, hK

hλ
are uniformly bounded on some compact interval I ⊂ (0,∞). From

the fact that ϕ is uniformly continuous on any compact subset of (0,∞), we
see that the left side of (3.4) converges uniformly to hK

ϕ′(1)

[

ϕ( hL

hK
)− ϕ(1)

]

.

In order to show that the right hand side of (3.4) also converges uniformly
to hK

ϕ′(1)

[

ϕ( hL

hK
)− ϕ(1)

]

, we need to prove that ϕ′(hK

hλ
) converges uniformly

to ϕ′(1) on Sn−1 as λ → 0+. But this is a direct consequence of the conti-
nuity of ϕ′ on an open interval I ⊂ (0,∞) such that 1 ∈ int I , and the fact
that the convergence in limλ→0+

hK

hλ
= 1 is uniform on Sn−1. �

Theorem 3.3. Let λ ∈ [0,1] and ϕ ∈ Φ be, in addition, convex (or con-
cave) on (0,∞). If K,L ∈ Kn

o are o-symmetric convex bodies in R
n, and

Qλ = (1− λ) ·K +ϕ λ · L, then the ϕ-Brunn–Minkowski inequality

(3.5) (1− λ)ϕ

(

|K|1/n

|Qλ|1/n

)

+ λϕ

(

|L|1/n

|Qλ|1/n

)

≤ ϕ(1)

is equivalent to the ϕ-Minkowski mixed volume inequality

(3.6) V ϕ(K,L)n ≥ |L|/|K|.

Proof. For λ ∈ [0, 1], let Qλ = (1− λ) ·K +ϕ λ · L.
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)
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Theorem 3.3. Let λ ∈ [0,1] and ϕ ∈ Φ be, in addition, convex (or con-
cave) on (0,∞). If K,L ∈ Kn

o are o-symmetric convex bodies in R
n, and

Qλ = (1− λ) ·K +ϕ λ · L, then the ϕ-Brunn–Minkowski inequality

(3.5) (1− λ)ϕ

(

|K|1/n

|Qλ|1/n

)

+ λϕ

(

|L|1/n
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Firstly, suppose that the ϕ-Minkowski mixed volume inequality (3.6)
holds. From (1.8), (2.4), the fact that hλ = hQλ

a.e. with respect to the
surface area measure SQλ

, and (3.6), we have

ϕ(1) =
1

n|Qλ|

∫

Sn−1

ϕ(1)hQλ
dSQλ

(3.7)

=
1

n|Qλ|

∫

Sn−1

[

(1− λ)ϕ
(hK

hλ

)

+ λϕ
(hL

hλ

)

]

hQλ
dSQλ

= (1− λ)

∫

Sn−1

ϕ
( hK

hQλ

)

dV Qλ
+ λ

∫

Sn−1

ϕ
( hL

hQλ

)

dV Qλ

= (1− λ)ϕ
(

V ϕ(Qλ,K)
)

+ λϕ
(

V ϕ(Qλ, L)
)

≥ (1− λ)ϕ

(

|K|1/n

|Qλ|1/n

)

+ λϕ

(

|L|1/n

|Qλ|1/n

)

.

Conversely, we shall show that if the ϕ-Brunn–Minkowski inequality (3.5)
holds, then the ϕ-Minkowski mixed volume inequality (3.6) holds accord-
ingly. To this end, we define a function f : [0, 1] �→ R as

f(λ) = (1− λ)ϕ

(

|K|1/n

|Qλ|1/n

)

+ λϕ

(

|L|1/n

|Qλ|1/n

)

− ϕ(1).

From (3.5) and the fact that f(0) = 0, we see that

0 ≥ lim
λ→0+

f(λ)− f(0)

λ
= lim

λ→0+

(1− λ)ϕ
( |K|1/n

|Qλ|1/n

)

+ λϕ
( |L|1/n

|Qλ|1/n

)

− ϕ(1)

λ

(3.8)

= ϕ

(

|L|1/n

|K|1/n

)

− ϕ(1) + lim
λ→0+

ϕ( |K|1/n

|Qλ|1/n )− ϕ(1)

λ
.

Since |K|1/n

|Qλ|1/n
→ 1 as λ → 0+, we obtain that

lim
λ→0+

ϕ( |K|1/n

|Qλ|1/n )− ϕ(1)

λ
(3.9)

= lim
λ→0+

ϕ( |K|1/n

|Qλ|1/n )− ϕ(1)

|K|1/n

|Qλ|1/n
− 1

· lim
λ→0+

|K|1/n

|Qλ|1/n
− 1

λ
= ϕ′(1) lim

λ→0+

|K|1/n

|Qλ|1/n
− 1

λ

=
ϕ′(1)

|K|1/n
lim

λ→0+

|K|1/n − |Qλ|
1/n

λ
= −

ϕ′(1)

n|K|

d

dλ

∣

∣

∣

∣

λ=0

|Qλ|.

Acta Mathematica Hungarica

12 S.-J. LV

Further, by Lemmas 2.1 and 3.2, we have

(3.10)
d

dλ

∣

∣

∣

λ=0
|Qλ| =

∫

Sn−1

hK

ϕ′(1)

[

ϕ
( hL

hK

)

− ϕ(1)
]

dSK .

It now follows from (3.8)–(3.10) and definition (2.3) that

(3.11) ϕ

(

|L|1/n

|K|1/n

)

−
Vϕ(K,L)

|K|
≤ 0.

In view of definition (2.4), we see that (3.11) is exactly the ϕ-Minkowski
mixed volume inequality (3.6). �

4. The ϕ-Brunn–Minkowski inequality for planar convex bodies

We shall show that once the log-Brunn–Minkowski inequality holds, then
so does the ϕ-Brunn–Minkowski inequality. This assertion is based on the
following fact: If ϕ ∈ Φ is such that ϕ−1 is strictly log-concave, then the log-
Minkowski mixed volume inequality is sharper than the ϕ-Minkowski mixed
volume inequality.

As mentioned in the Introduction, the authors in [2] showed that (see
[16] for an alternate proof): If K, L are o-symmetric convex bodies in the
plane, then

(4.1)

∫

S1

log
hL

hK
dV K ≥

1

2
log

|L|

|K|
,

with equality if and only if, either K and L are dilates or K and L are
parallelograms with parallel sides.

Theorem 4.1. Let ϕ ∈ Φ and K,L ∈ K2
o be o-symmetric convex bodies

in the plane. Then

(4.2)

∫

S1

ϕ
( hL

hK

)

dV K ≥ ϕ

(

|L|1/2

|K|1/2

)

,

with equality if and only if K and L are dilates.

Proof. We first claim that

(4.3) V ϕ(K,L) ≥ V 0(K,L),

with equality if and only if K and L are dilates. In fact, from the log-
concavity of ϕ−1, we have

(4.4)

∫

Sn−1

log
( hL

hK

)

dV K ≤ log ◦ ϕ−1

(
∫

Sn−1

ϕ
( hL

hK

)

dV K

)

.
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In view of definition (2.4), we see that (3.11) is exactly the ϕ-Minkowski
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4. The ϕ-Brunn–Minkowski inequality for planar convex bodies

We shall show that once the log-Brunn–Minkowski inequality holds, then
so does the ϕ-Brunn–Minkowski inequality. This assertion is based on the
following fact: If ϕ ∈ Φ is such that ϕ−1 is strictly log-concave, then the log-
Minkowski mixed volume inequality is sharper than the ϕ-Minkowski mixed
volume inequality.

As mentioned in the Introduction, the authors in [2] showed that (see
[16] for an alternate proof): If K, L are o-symmetric convex bodies in the
plane, then

(4.1)

∫

S1

log
hL

hK
dV K ≥

1

2
log

|L|

|K|
,

with equality if and only if, either K and L are dilates or K and L are
parallelograms with parallel sides.

Theorem 4.1. Let ϕ ∈ Φ and K,L ∈ K2
o be o-symmetric convex bodies

in the plane. Then

(4.2)

∫

S1

ϕ
( hL

hK

)

dV K ≥ ϕ

(

|L|1/2

|K|1/2

)

,

with equality if and only if K and L are dilates.

Proof. We first claim that

(4.3) V ϕ(K,L) ≥ V 0(K,L),

with equality if and only if K and L are dilates. In fact, from the log-
concavity of ϕ−1, we have

(4.4)

∫

Sn−1

log
( hL
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)

dV K ≤ log ◦ ϕ−1
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∫

Sn−1

ϕ
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hK

)

dV K

)

.
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Denote h(u) = hL(u)/hK(u) and define a function θ : Sn−1 → ϕ((0,∞)) by
θ(u) = ϕ(h(u)). We obtain that h(u) = ϕ−1(θ). Then (4.4) becomes

(4.5)

∫

Sn−1

log ◦ ϕ−1(θ(u)) dVK(u) ≤ log ◦ ϕ−1

(
∫

Sn−1

θ(u) dV K(u)

)

.

However, inequality (4.5) is equivalent to the concavity of the composite
function log ◦ ϕ−1. Moreover, if the concavity of log ◦ ϕ−1 is strict, then the
equality holds if and only if there exists a constant c > 0 such that ϕ(h(u)) =
c, that is, h(u) = ϕ−1(c) for all u ∈ Sn−1. That proves that equality in (4.3)
holds if and only if K and L are dilates.

Now the inequality (4.3) together with (4.1) gives the desired inequality
(4.2). The equality follows from the equality conditions of (4.1) and (4.3).
�

Theorem 4.2. Let λ ∈ [0,1] and let ϕ ∈ Φ be concave on (0,∞). If K,L
∈ K2

o are o-symmetric convex bodies in the plane and Qλ = (1−λ) ·K+ϕλ ·L,
then

(4.6) (1− λ)ϕ

(

|K|1/2

|Qλ|1/2

)

+ λϕ

(

|L|1/2

|Qλ|1/2

)

≤ ϕ(1).

When λ ∈ (0, 1), equality in the inequality holds if and only if K and L are

dilates.

Proof. Inequality (4.6) is an immediate consequence of Theorem 3.3
and Theorem 4.1.

From (3.7) and the equality conditions of Theorem 4.1, we see that the
equality in inequality (4.6) holds if and only if K and L are dilates. �

Acknowledgement. This work was carried out at the Chern Institute
of Mathematics (CIM) of Nankai University and the author is grateful for
the hospitality and the support provided by the CIM during his stay.

References

[1] A. D. Alexandrov, Selected Works, Part I, Selected scientific papers, translated from
Russian by P. S. V. Naidu, edited and with a preface by Yu. G. Reshetnyak
and S. S. Kutateladze, Classics of Soviet Mathematics, vol. 4, Gordon and
Breach Publishers (Amsterdam, 1996).
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