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Abstract. We combine here Tao’s slice-rank bounding method and Gröbner
basis techniques and apply it to the Erdős–Rado Sunflower Conjecture.

Let 0 ≤ k ≤ n be integers. We prove that if F is a k-uniform family of subsets
of [n] without a sunflower with 3 petals, then

|F| ≤ 3

(

n

⌊n/3⌋

)

.

This result allows us to improve slightly a recent upper bound of Naslund
and Sawin for the size of a sunflower-free family in 2[n].

1. Introduction

Let [n] stand for the set {1,2, . . . , n}. We denote the family of all subsets
of [n] by 2[n]. Let X be a fixed subset of [n]. For an integer 0 ≤ k ≤ n we

denote by
(

X
k

)

the family of all k element subsets of X . This is the complete

k-uniform family. We say that a family F is k-uniform, if |F | = k for each
F ∈ F .

A family F = {F1, . . . , Ft} of subsets of [n] is a sunflower (or a ∆-system)
with t petals if

Fi ∩ Fj =

t
⋂

s=1

Fs

for each 1 ≤ i < j ≤ t. Here the intersection of the members of a sunflower
form its kernel.

Erdős and Rado conjectured the following famous statement in [6].
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Conjecture 1. For each t > 2, there exists a constant C(t) such that if
F is a k-uniform set system with more than C(t)k members, then F contains
a sunflower with t petals.

Erdős offered 1000 dollars for the proof or disproof of this conjecture for
t = 3 (see [5]).

Erdős and Rado gave also an upper bound for the size of a k-uniform
family without a sunflower with t petals in [6].

Theorem 1.1 (Sunflower theorem). If F is a k-uniform set system with
more than

k! (t− 1)k

members, then F contains a sunflower with t petals.

Define F (n, t) to be the largest integer so that there exists a family F
of subsets of [n] which does not contain a sunflower with t petals and |F| =
F (n, t).

Define βt as

βt := lim sup
n→∞

F (n, t)1/n.

Naslund and Sawin gave the following upper bound for the size of a sunflower-
free family in [8]. Their proof based on Tao’s slice-rank bounding method
(see [9]).

Theorem 1.2. Let F be a family of subsets of [n] without a sunflower
with 3 petals. Then

|F| ≤ 3(n+ 1)

⌊n/3⌋
∑

i=0

(

n

i

)

.

As a simple consequence of Theorem 1.2 Naslund and Sawin derived the
following upper bound for β3:

β3 ≤
3

22/3
= 1.88988 . . . .

Our main result is the following new upper bound for the size of a
sunflower-free family. In the proof we mix Tao’s slice-rank bounding method
with Gröbner basis techniques. Our proof is a simple modification of the
proof of [8, Theorem 1].

Theorem 1.3. Let F be a k-uniform family of subsets of [n] without a
sunflower with 3 petals. Then

|F| ≤ 3

(

n

⌊n/3⌋

)

.
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Theorem 1.3 implies easily the following Corollary.

Corollary 1.4. Let F be a sunflower-free family of subsets of [n].
Then

|F| ≤ 3(n+ 1)

(

n

⌊n/3⌋

)

In Section 2 we collected some useful preliminaries about the slice rank
of functions and Gröbner bases. We present our proofs in Section 3.

2. Preliminaries

2.1. Slice rank. We define first the slice rank of functions. This def
inition appeared first in Tao’s blog [9]. Let A be a fixed finite set, m ≥ 1
be a fixed integer and F be a field. Recall that a function F : Am → F has
slice-rank one, if it has the form

(x1, . . . , xm) �→ f(xi)g(x1, . . . , xi−1, xi+1, . . . , xm),

for some i = 1, . . . ,m and some functions f : A → F, g : Am−1 → F. The
slice rank rank(F ) of a function F : Am → F is the least number of rank
one functions needed to generate F as a linear combination. For instance,
if m = 2, then we get back the usual definition of the rank of a function
F : A2 → F.

Let δα(x) denote the Kronecker delta function. Tao proved the following
result about the slice rank of diagonal hypermatrices in [9, Lemma 1] (see
also [2, Lemma 4.7]).

Theorem 2.1. Let F be a fixed field, A be a finite subset and denote
cα ∈ F a coefficient for each α ∈ A. Let m ≥ 2 be a fixed integer. Consider
the function

F (x1, . . . ,xm) :=
∑

α∈A

cαδα(x1) . . . δα(xm) : Am → F.

Then

rank(F ) =
∣

∣{α ∈ A : cα �= 0}
∣

∣ .

2.2. Gröbner theory. Let F be a field. In the following F[x1, . . . , xn] =
F[x] denotes the ring of polynomials in commuting variables x1, . . . ,
xn over F. For a subset F ⊆ [n] we write xF =

∏

j∈F xj . In particu

lar, x∅ = 1. We denote by vF ∈ {0, 1}n the characteristic vector of a set
F ⊆ [n]. For a family of subsets F ⊆ 2[n], define V (F) as the subset
{vF : F ∈ F} ⊆ {0, 1}n ⊆ F

n. A polynomial f ∈ F[x1, . . . , xn] can be con
sidered as a function from V (F) to F in a natural way.
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We can describe several interesting properties of finite set systems F ⊆
2[n] as statements about polynomial functions on V (F). As for polynomial
functions on V (F), it is natural to consider the ideal I(V (F)):

I(V (F)) :=
{

f ∈ F[x] : f(v) = 0 whenever v ∈ V (F)
}

.

Clearly the substitution gives an F algebra homomorphism from F[x] to the
F algebra of F-valued functions on V (F). It is easy to verify that this ho-
momorphism is surjective, and the kernel is exactly I(V (F)). Hence we can
identify the algebra F[x]/I(V (F)) and the algebra of F valued functions on
V (F). It follows that

dimF F[x]
/

I(V (F)) = |F|.

Now we recall some basic facts about to Gröbner bases and standard
monomials. For details we refer to [1], [3], [4].

A linear order≺ on the monomials over variables x1, x2, . . . , xm is a term
order, or monomial order, if 1 is the minimal element of ≺, and uw ≺ vw

holds for any monomials u, v, w with u ≺ v. Two important term orders
are the lexicographic order ≺l and the deglex order ≺d. We have

xi11 x
i2
2 · · · ximm ≺l x

j1
1 xj22 · · · xjmm

iff ik < jk holds for the smallest index k such that ik �= jk. The definition
of the deglex order is similar: we have u ≺d v iff either degu < degv, or
degu = degv, and u ≺l v.

The leading monomial lm(f) of a nonzero polynomial f ∈ F[x] is the
≺-largest monomial which appears with nonzero coefficient in the canonical
form of f as a linear combination of monomials. We denote by lc(f) the
leading coefficient of f , where f ∈ F[x] is a a nonzero polynomial.

Let I be an ideal of F[x]. We say that a finite subset G ⊆ I is a Gröbner

basis of I if for every f ∈ I there exists a g ∈ G such that lm(g) divides
lm(f). In other words, the leading monomials lm(g) for g ∈ G generate the
semigroup ideal of monomials {lm(f) : f ∈ I}. Consequently G is actually
a basis of I , i.e. G generates I as an ideal of F[x] ( cf. [4, Corollary 2.5.6]).
A well-known fact is (cf. [3, Chapter 1, Corollary 3.12] or [1, Corollary 1.6.5,
Theorem 1.9.1]) that every nonzero ideal I of F[x] has a Gröbner basis.

A monomial w ∈ F[x] is a standard monomial for I if it is not a leading
monomial for any f ∈ I . We denote by sm(I) the set of standard monomials
of I .

Let F ⊆ 2[n] be a set family. Then the characteristic vectors in V (F)
are all 0,1-vectors, consequently the polynomials x2i − xi all vanish on V (F).
It follows that the standard monomials of the ideal I(F) := I(V (F)) are
square-free monomials.
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Now we give a short introduction to the notion of reduction. Let ≺ be
a fixed term order. Let G be a set of polynomials in F[x1, . . . , xn] and let
f ∈ F[x1, . . . , xn] be a fixed polynomial. We can reduce f by the set G with
respect to ≺. This gives a new polynomial h ∈ F[x1, . . . , xn].

Here reduction means that we possibly repeatedly replace monomials in f
by smaller ones (with respect to ≺) in the following way: if w is a mono-
mial occurring in f and lm(g) divides w for some g ∈ G (i.e. w = lm(g)u for
some monomial u), then we replace w in f with u(lm(g)− g

lc(g)). It is easy

to verify that the monomials in u(lm(g)− g
lc(g)) are ≺-smaller than w.

It is a key fact that sm(I) gives a basis of the F-vector-space F[x]/I
in the sense that every polynomial g ∈ F[x] can be uniquely expressed as
h+ f where f ∈ I and h is a unique F-linear combination of monomials from
sm(I). Hence if g ∈ F[x] is an arbitrary polynomial and G is a Gröbner basis
of I , then we can reduce g with G into a linear combination of standard
monomials for I . In particular, f ∈ I if and only if f can be G-reduced to 0.

Let 0 ≤ k ≤ n/2, where k and n are integers. Denote by Mk,n the set of
all monomials xG such that G = {s1 < s2 < · · · < sj} ⊂ [n] for which j ≤ k
and si ≥ 2i holds for every i, 1 ≤ i ≤ j. These monomials xG are the ballot
monomials of degree at most k. If n is clear from the context, then we write
Mk instead of the more precise Mk,n. It is known that

|Mk| =

(

n

k

)

.

Let Mk,n denote the set of all sets H = {s1 < s2 < · · · < sj} ⊂ [n] for
which j ≤ k and si ≥ 2i holds for every i, 1 ≤ i ≤ j.

In [7] we described completely the Gröbner bases and the standard mono-
mials of the complete uniform families of all k element subsets of [n].

Theorem 2.2. Let ≺ an arbitrary term order such that x1 ≺ · · · ≺ xn.
Let 0 ≤ k ≤ n and j := min(k, n− k). Then

sm

(

V

(

[n]

k

))

= Mj,n.

Let 0 ≤ k ≤ n be arbitrary integers. Define the vector system

F(n, k, 3) := V

((

[n]

k

))

× V

((

[n]

k

))

× V

((

[n]

k

))

⊆ {0, 1}3n.

It is easy to verify the following Corollary.

Corollary 2.3. Let ≺ an arbitrary term order such that x1 ≺ · · · ≺ xn.
Let 0 ≤ k ≤ n be arbitrary integers. Let j := min(k, n− k). Then

sm(F(n, k, 3)) =
{

xM1
· yM2

· zM3
: M1,M2,M3 ∈ Mj,n

}

⊆ F[x,y, z].
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3. Proofs

We use in our proof essentially the same argument as the one appeared
in [8, Theorem 1], but we extended their proof with a simple Gröbner basis
technique.

Proof of Theorem 1.3. Let F be a k-uniform sunflower–free fam-
ily of subsets of [n]. Let H1,H2,H3 ∈ F be arbitrary subsets. Since F is
sunflower-free, if

v(H1) + v(H2) + v(H3) ∈ {0, 1, 3}n,

then H1 = H2 = H3. Namely first suppose that H1 �= H2, H1 �= H3 and
H2 �= H3. Then the triple (H1,H2,H3) is not a sunflower, hence there ex-
ist indices 1 ≤ i < j ≤ 3 such that (Hi ∩Hj) \ (H1 ∩H2 ∩H3) �= ∅. Let t ∈
(Hi ∩Hj) \ (H1 ∩H2 ∩H3). Then v(H1)t + v(H2)t + v(H3)t = 2.

Suppose that H1 �= H2 but H2 = H3. Since |H1| = |H2| = k, we have
H2 \H1 �= ∅. Let t ∈ H2 \H1. Then it is easy to see that v(H1)t +v(H2)t+
v(H3)t = 2.

Consider the polynomial function

T : (V (F))3 → R

given by

T (x,y, z) :=
n
∏

i=1

(2− (xi + yi + zi))

for each x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn) ∈ V (F) ⊆ V
([n]
k

)

.
Let G denote a deglex Gröbner basis of the ideal I := I(F(n,k,3)). LetH

denote the reduction of T via G.
Then

(1) H(x,y, z) = T (x,y, z)

for each x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn) ∈ V (F) ⊆ V
([n]
k

)

,
because we reduced T with a Gröbner basis of the ideal I .

On the other hand

T (x,y, z) �= 0 if and only if x = y = z ∈ V (F),

hence by equation (1)

(2) H(x,y, z) �= 0 if and only if x = y = z ∈ V (F).

Let j := min(k, n− k).
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Since V (F) ⊆ V
([n]
k

)

, it follows from Corollary 2.3 that we can write
H(x,y, z) as a linear combination of standard monomials

xIyKzL,

where xI , yK , zL ∈ Mj,n and deg(xIyKzL) ≤ n. Here we used that G is a
deglex Gröbner basis of the ideal I .

It follows from the pigeonhole principle that at least one of |I|, |K| and
|L| is at most ⌊n/3⌋. First we can consider the contribution of the standard
monomials to the sum for which |I| ≤ ⌊n3 ⌋. We can regroup this contribution
as

∑

M

xMgM(y, z),

where M ranges over those subsets {i1, . . . , it} of [n] with t ≤ ⌊n/3⌋ and
is ≥ 2s for every 1 ≤ s ≤ t. Here gM : (V (F))2 → R are some explicitly com-
putable functions. The number of such sets M is at most

(

n
⌊n/3⌋

)

, so this

contribution has slice-rank at most
(

n
⌊n/3⌋

)

.

The cases |K| ≤ ⌊n3 ⌋ and |L| ≤ ⌊n3 ⌋ can be treated the same way.
H and T are the same functions on F(n, k, 3), hence we get that

rank(H) = rank(T ) ≤ 3

(

n

⌊n/3⌋

)

.

It follows from Theorem 2.1 and equation (2) that

rank(H) = |F|.

These together imply

|F| ≤ 3

(

n

⌊n/3⌋

)

. �

Proof of Corollary 1.4. Let F ⊆ {0, 1}n be a fixed sunflower-free
subset. Define the families

cF (s) := F ∩

(

[n]

s

)

for each 0 ≤ s ≤ n. We can apply Theorem 1.3 for the family F(s) and we
get

|F(s)| ≤ 3

(

n

⌊n/3⌋

)

.
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These together imply

|F| =
n
∑

s=0

|F(s)| ≤ 3(n+ 1)

(

n

⌊n/3⌋

)

. �
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