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Abstract. Let a finite group G = AB be the product of the mutually per-
mutable subgroups A and B. We investigate the structure of G given by conditions
on conjugacy class sizes of elements in A ∪ B. Some recent results are extended.

1. Introduction

All groups considered in this paper are finite. For an element x in G,
by xG we denote the conjugacy class containing x and by |xG| the length
of xG, that is, the number of elements in xG. By π(G) we denote the set of
prime divisors of |G| and by Gp we denote a Sylow p-subgroup of G, where
p ∈ π(G). If G is p-soluble we denote by lp(G) the p-length of G. We call an
element x of G p-regular element (p-singular element) if o(x) is prime to p
(p divides o(x)).

The product G = AB of the subgroups A and B of a group G is said to
be a mutually permutable product of A and B if UB = BU for all subgroups
U of A and AV = VA for all subgroups V of B. The relation between proper-
ties of A and B and the properties of G and the relation between conditions
on conjugacy classes of a group and its structure have been extensively inves-
tigated. Surveys of these can be found at [1] and [3]. Recently conditions on
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the conjugacy classes of A and B have been used to investigate the structure
of a mutually permutable product G = AB ([2], [6]).

In this paper we prove an extension of [9, Theorem B].

Theorem 1. Let p be a prime in π(G). Suppose that G = AB is a mu-
tually permutable product of two p-soluble subgroups A and B of G. Suppose
that for every x of prime power order in A∪B, |xG| is not divisible by pp−1.
Then G is p-soluble and the p-length of G is at most one.

We also give examples to show that some of the results in [8] and [10]
can not be extended in the same way to mutually permutable products.

2. Preliminaries

The proofs of our results rely heavily on results from the book [1]. For
the convenience of the reader we state the results we use from this book.

Lemma 2.1 [1, Lemma 4.1.10]. Assume that the group G is a mutually
permutable product of the subgroups A and B and that N is a normal sub-

group of G. Then G/N is a mutually permutable product of AN/N and

BN/N .

Lemma 2.2 [1, Theorem 4.3.11]. Assume that the non-trivial group G is
a mutually permutable product of the subgroups A and B. Then AGBG is

non-trivial.

Lemma 2.3 [1, Lemma 4.1.21]. Assume that the group G is a mutually
permutable product of the subgroups A and B. If U is a normal subgroup

of G, then (U ∩A)(U ∩B) is a normal subgroup of G.

Lemma 2.4 [1, Theorem 4.1.15]. Assume that the group G is a mutually

permutable product of the subgroups A and B. If A and B are p-soluble, then
G is p-soluble.

Lemma 2.5 [1, Theorem 4.3.3]. Assume that the group G is a mutually

permutable product of the subgroups A and B.
(1) If N is a minimal normal subgroup of G, then {A ∩N,B ∩N} ⊆

{N, 1}.
(2) If N is a minimal normal subgroup of G contained in A and

B ∩N = 1, then N ≤ CG(A) or N ≤ CG(B). If furthermore N is not cyclic,
then N ≤ CG(B).

Lemma 2.6 [9, Theorem B]. Let G be a p-soluble group, where p is a

fixed prime integer. Suppose that for every element x of prime power order

in G, |xG| is not divisible by pp−1. Then the p-length of G is at most one.
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The following facts are well known and we will use them without further
reference.

(1) If N is a subnormal subgroup of G then |xN |
∣

∣ |xG| for any x ∈ G;

(2) |(xN)G/N |
∣

∣ |xG| if x ∈ G and N is normal in G.
(3) Let N be a normal subgroup of G and p a prime. If xN is a p-element

of G/N , then there is a p-element x1 of G such that xN = x1N .

3. Proof of Theorem 1

We know that G is p-soluble by Lemma 2.4.
Assume the the theorem is false and G is a counterexample with min-

imal order. Then Op′(G) = 1. If N is a minimal normal subgroup of G
then N is an elementary abelian p-group. By Lemma 2.1, we know that
G/N = AN/N ·BN/N satisfies the condition of the theorem and lp(G/N)
≤ 1. The minimality of G gives N = Soc(G) = Op(G) = F (G) = CG(N) and
Φ(G) = 1 by standard arguments. We can write G = NH and H ∩N = 1
and lp(H) ≤ 1. By Lemma 2.2, we know that AGBG �= 1. Hence we can as-
sume that AG �= 1 and N ≤ A. If N �≤ B, then N ∩B = 1 by Lemma 2.5(1).
If N is cyclic, then H is cyclic of order dividing p− 1 , giving lp(G) = 1, a
contradiction. Hence N is not cyclic and so N ≤ CG(B) by Lemma 2.5(2).
Then B ≤ CG(N) = N ≤ A. So G = AB = A. By Lemma 2.6, lp(G) ≤ 1,
a contradiction. Hence N ≤ A ∩B. Note also that since Op′(A) ≤ CA(N)
≤ CG(N) = N , we have Op′(A) = 1.

Next we set L = Op′

(G) and K = (A∩L)(B ∩L). Then, by Lemma 2.3,
K is a normal subgroup of G. Since K ≤ L, A ∩K ≤ A ∩ L. On the other
hand, A ∩ L ≤ K, so A ∩ L ≤ A ∩K. Hence A ∩K = A ∩ L. Now we have

A/(A ∩K) = A/(A ∩ L) ∼= AL/L,

which is a p′-group. This implies that AK/K is a p′-group. Similarly BK/K
is a p′-group. Hence G/K is a p′-group. Hence L ≤ K and so K = L. So L
satisfies the hypotheses of the theorem. If L < G, then lp(L) ≤ 1 by the
minimal choice of G. Then lp(G) ≤ 1, a contradiction. Hence L = G.

We now have Op′

(G/N) = G/N and so Op′

(H) = H . Since the p-length
of H is at most 1, if P is a Sylow p-subgroup of H then POp′(H) is normal in

H and H/(POp′(H)) is a p′-group. Since Op′

(G) = G we have H = POp′(H)
is p-nilpotent.

We now prove that for any x ∈ H , CG(x) = CN (x)CH(x). To do this
we only need to prove that CG(x) ≤ CN (x)CH(x). Pick g ∈ CG(x). Then

g = nh, where n ∈ N and h ∈ H . If xg = xnh = x then xn = xh
−1

and so

x−1xn = x−1xh
−1

.
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Since x−1xn ∈ N and x−1xh
−1

∈ H we have x−1xn = x−1xh
−1

∈ N ∩H = 1.
Hence n ∈ CN (x) and h ∈ CH(x). So CG(x) ≤ CN (x)CH(x).

Since Gp = (A ∩H)p(B ∩H)p �= 1, we can assume that (A ∩H)p �= 1.
Since

(B ∩H)p′(A ∩H)p

= (A ∩H)p′(A ∩H)p(B ∩H)p′ ∩ (A ∩H)p′(B ∩H)p(B ∩H)p′ ,

(B∩H)p′(A∩H)p is a group. SinceH is p-nilpotent, so are (A∩H)p′(A∩H)p
and (B∩H)p′(A∩H)p. Similarly, (B∩H)p′(A∩H)p and (B∩H)p′(B∩H)p
are also p-nilpotent groups.

We now consider the actions of (A∩H)p on (A∩H)p′ and (B∩H)p′ . As-
sume that (A∩H)p does not act trivially on both (A∩H)p′ and (B ∩H)p′ .
Hence we can assume that (A ∩H)p acts non-trivially on (A ∩H)p′ . Hence
there exists a p-element x in (A ∩H)p such that x acts non-trivially on
(A ∩H)p′ . Let Q be an �x�-invariant subgroup of (A ∩H)p′ such that �x�
acts non-trivially on Q and �x� acts trivially on any proper �x�-invariant
subgroup of Q. Since CA∩H(N) = 1, Q�x� acts faithfully on N . Now apply-
ing [9, Lemma 3.2], there exists an element y ∈ Q�x� of prime power order
such that |N : CN (y)| ≥ pp−1. We know that CG(x) = CN (x)CH(x) for any
x ∈ H , hence

|yG| = [G : CG(y)] =
|G|

|CG(y)|
=

|H|

|CH(y)|
·

|N |

|CN (y)|
.

So |yG| is divisible by pp−1. Since y ∈ A, this is a contradiction.
Now suppose that (A∩H)p acts trivially on both (A∩H)p′ and (B∩H)p′ .

If (B∩H)p = 1, then (A∩H)p is a normal p-group ofH ∼= G/CG(N) = G/N .
By [5, Theorem B 3.12], this is impossible. Hence assume that (B ∩H)p �= 1.
Now consider the actions of (B∩H)p on (A∩H)p′ and (B∩H)p′ . If (B∩H)p
acts trivially on both (A∩H)p′ and (B ∩H)p′ , then Hp = (A∩H)p(B ∩H)p
is normal in H . By [5, Theorem B. 3.12], this is impossible. Hence (B ∩H)p
does not act trivially on (A∩H)p′(B∩H)p′ = Hp′ . Repeating the arguments
in the above, we get a contradiction. �

4. Remarks

It is not always possible to extend results in the manner above. As an
example, [8, Theorem B] tells us: if p is a prime and P a Sylow p-subgroup
of a group G then |xG| is not divisible by p for every p-singular element x
of G if and only if P is an abelian TI-subgroup and NG(P )/CG(P ) acts
Frobeniusly on P if NG(P ) > CG(P ).

If we replace the condition on p-singular elements of G by the same con-
dition on p-singular elements of A∪B, the same conclusion would imply that
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the p-singular elements x of G would satisfy |xG| not divisible by p. It is easy
to find counterexamples even for totally permutable products. If G = A×B
with A ∼= B ∼= S3, then |xG| = 2 for all 3-singular elements of A∪B, but the
3-singular element xu with x ∈ A3 and y ∈ B2 has |(xy)G| = 6.

Another example is given by the following well known result [10, Theo-
rem 5.4]. Suppose that G is a finite group and p is a prime. Then p does
not divide χ(1) for every χ ∈ Irr(G) if and only if G has a normal abelian
Sylow p-subgroup ([10, Theorem 5.4]). If we replace the condition on char-
acters of G by the same condition on Irr(A) ∪ Irr(B) then any non-abelian
product (including mutually permutable and totally permutable) of abelian
subgroups A and B will give a counterexample.
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