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Abstract. A hierarchy of topological Ramsey spaces Rα (α < ω1), gener-
alizing the Ellentuck space, were built by Dobrinen and Todorcevic in order to
completely classify certain equivalent classes of ultrafilters Tukey (resp. Rudin–
Keisler) below Uα (α < ω1), where Uα are ultrafilters constructed by Laflamme
satisfying certain partition properties and have complete combinatorics over the
Solovay model. We show that Nash–Williams, or Ramsey ultrafilters in these
spaces are preserved under countable-support side-by-side Sacks forcing. This is
achieved by proving a parametrized theorem for these spaces, and showing that
Nash–Williams ultrafilters localizes the theorem. We also show that every Nash–
Williams ultrafilter in Rα is selective.

1. Introduction

In [11] Laflamme constructed forcings Pα to add the ultrafilters Uα for
α < ω1 in order to obtain different combinatorics and related Rudin–Keisler
ordering. These ultrafilters satisfy certain partition properties: U1 is weakly
Ramsey; Un (n < ω) is n­Ramsey; Uα (ω ≤ α < ω1) satisfies analogous Ram­
sey partition properties. Inspired by the work of Laflamme, Dobrinen and
Todorcevic [7,8] constructed a new hierarchy of topological Ramsey spaces
Rα (α < ω1), which are modified versions of dense subsets of Pα, and proved
extensions of the Pudlak–Rödl Theorem, canonizing equivalent relations on
barriers of these spaces. This enabled their complete classification of the
structure of the Tukey (resp. Rudin–Keisler) ultrafilters reducible to Uα, as
well as the Rudin–Keisler structure of ultrafilters Tukey reducible to Uα.

Among other properties, each Uα is Nash–Williams in the corresponding
space Rα. We would like to show that Uα, and in fact every Nash–Williams
ultrafilter, is preserved under countable­support side­by­side Sacks forcing:
the upward closure of the ultrafilter is still a Nash–Williams ultrafilter in
the forcing extension.
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Theorem 1.1. Let α be a countable ordinal, κ be an infinite cardinal
and Pκ be countable-support side-by-side Sacks forcing adding κ Sacks reals.
Let U be a Nash–Williams ultrafilter in Rα in the ground model, and V̇ a
name for the upward closure {Y : (∃[X] ∈ U)([X] ⊆ Y )} of U . Then �Pκ

(V̇ is a Nash–Williams ultrafilter in Rα).

Mathias [15,16] introduced selective coideals and Louveau [13,14] was
the first to consider the U -topology on N[∞]. This started the whole area
of local Ramsey theory. Baumgartner and Laver [2], [1] showed that the
selective ultrafilters on N are preserved under both side-by-side and iterated
Sacks forcing. In the 1990s, Todorcevic conjectured that many topological
Ramsey spaces have an ultrafilter associated to them analogous to the way
selective ultrafilters on N are related to the Ellentuck space, when he proved
using large cardinals that selective ultrafilters are generic over L(R) in [9].
Mijares [17] defined (weakly) selective and Ramsey ultrafilters in general
for topological Ramsey spaces, and showed that every Ramsey ultrafilter
is (weakly) selective. The author [22] showed in the Milliken space that
selective ultrafilters are preserved under Sacks forcing, and that (weakly)
selective and Ramsey coincide. On the contrary, for the spaces Rα under
consideration here, Trujillo [21] showed that Ramsey is strictly stronger than
(weakly) selective in R1. Motivated by Trujillo’s work, a recent paper [5] of
Di Prisco, Mijares and Nieto [22] has a new definition of selective. The two
notions coincide in the Milliken space. The stronger definition is the one we
will be using, and we refer to Mijares’ [17] version as weakly selective.

In this paper, however, the Ramsey ultrafilters in [7,8] are renamed
Nash–Williams ultrafilters since it is stronger, and may be strictly stronger
in some spaces, than Ramsey ultrafilters in [17]. We will see that every
Nash–Williams ultrafilter in Rα is selective and that the ultrafilter being
Nash–Williams is necessary for the Local Parametrized Rα Theorem below
to hold.

The proof of Theorem 1.1 is similar to that of [22, Theorem 0.3]. Firstly
we prove the following Parametrized Rα Theorem using the infinite ver-
sion of the Hales–Jewett theorem in Laver [12]. The proof mimics the steps
in [20, Section 9], where it is proved that the Ellentuck space N[∞] can
be parametrized by infinite product trees of finite sets. The parametrized
Ramsey theory was developed in the papers [4] of Di Prisco, Llopis and
Todorcevic, and [6] of Di Prisco and Todorcevic.

Theorem 1.2 (Parametrized Rα Theorem). Let α < ω1. For every
finite Souslin-measurable colouring of Rα × R

N there exists X ∈ Rα and
p ∈ Pω such that [∅,X] × [p] is monochromatic.

Then we show that a Nash–Williams ultrafilter localizes the Parametrized
Rα Theorem, hence proving the Local Parametrized Rα Theorem.
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Theorem 1.3 (Local Parametrized Rα Theorem). Let α < ω1 and U
be a Nash–Williams ultrafilter in Rα. For every finite Souslin-measurable
colouring of Rα × RN there exists X ∈ Rα with [X] ∈ U and p ∈ Pω such
that [∅,X]× [p] is monochromatic.

Both proofs make essential use of U -trees, introduced by Blass [3], and
combinatorial forcing, introduced by Nash–Williams [18] and developed by
Galvin and Prikry [10].

In Section 2, we remind ourselves of the topological Ramsey spaces Rα

and Sacks forcing. In Section 3 we prove the Parametrized Rα Theorem.
In Section 4 we recall the definition of Nash–Williams ultrafilters and se-
lective ultrafilters. We check that every Nash–Williams ultrafilter in Rα

is selective and then show the Local Parametrized Rα Theorem. In Sec-
tion 5 we see that Nash–Williams ultrafilters are preserved under countable-
support side-by-side Sacks forcing. Section 6 is a remark that the property
of Nash–Williams is necessary for an ultrafilter to localize the Parametrized
Rα Theorem.

I am grateful to Professor Stevo Todorcevic for his guidance. I would also
like to thank Professor Natasha Dobrinen for suggesting possible improve-
ments, and Dr. Diana Ojeda-Aristizabal for her remarks on the Hales–Jewett
Theorem. This work was partially supported by the Ontario Graduate Schol-
arship.

2. Preliminaries

2.1. The topological Ramsey spaces Rα. In [8] Dobrinen and
Todorcevic recursively designed the more and more elaborate tree structures
Tα for each α < ω1. They then built the topological Ramsey spaces Rα on
each Tα. Intuitively, an element in Rα is a subtree of Tα which has the
same shape as Tα. For example, T0 = {��} ∪ {�n� : n < ω} and R0 is the
Ellentuck space N[∞]. We have T1 as another example.
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Fig. 1: T1
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Definition 2.1 (R1) [7, Definition 3.7]. Let

T1 = {��}∪{�n� : n < ω}∪
⋃

n>0

{

�n, i� : 1
2n(n+1) ≤ i < 1

2n(n+1)+(n+1)
}

.

We may think of T1 as an infinite sequence of finite trees of height 2, where
the nth subtree of T1 is

T1(n) =
{

��, �n�, �n, i� : 1
2n(n+ 1) ≤ i < 1

2n(n+ 1) + (n+ 1)
}

for n > 0 and the 0th subtree is T1(0) = {��, �0�}. A subtree X ⊆ T1 is in R1

if and only if there is a strictly increasing sequence (kn)n<ω ⊆ ω such that
X ∩ T1(kn) ∼= T1(n) for each n < ω and X ∩ T1(j) = ∅ for j ∈ ω \ (kn)n∈ω.

In general, for α < ω1, Tα is always a union of an infinite sequence of fi-
nite trees: Tα =

⋃

{Tα(n) : n < ω}, and Tα(n) is called the nth subtree of Tα

for n < ω. A subtreeX ⊆ Tα is in Rα if and only if there is a strictly increas-
ing sequence (kn)n<ω ⊆ ω such that X ∩Tα(kn) ∼= Tα(n) for each n < ω and
X ∩ Tα(j) = ∅ for j ∈ ω \ (kn)n<ω. We refer to [8, Section 2] for a detailed
construction of Tα and a rigorous definition of the relation ∼= involving a
function ψα and an auxiliary structure Sα. However, the materials aboutRα

presented here should be sufficient for the purpose of this paper.

Definition 2.2 [8, Definition 2.7]. Let α < ω1, X ∈ Rα and (kn)n<ω ⊆ ω
be the sequence associated with X as described above. For n < ω, the nth
tree of X is X(n) = X ∩ Tα(kn). The nth approximation of X is X ↾n =
⋃

i<nX(i). The set of all nth approximations is ARα
n = {X ↾n : X ∈ Rα}

and the set of all finite approximations is ARα =
⋃

n<ω ARα
n .

If a = X ↾m for some m < ω, then we say a is an initial segment of X ,
and write a ⊑ X . In this case, the length of a, denoted by |a|, is m. For
n < m, the nth tree of a is a(n) = X(n). Similarly, if b ∈ ARα satisfies
|a| < |b| and ∀n < |a|, a(n) = b(n), then we write a ⊑ b.

Since Tα is fixed for each α, an element X ∈ Rα is completely deter-
mined by the set of all maximal numbers in the top nodes of the tree X . For
X ∈ Rα ∪ARα, let [X] denote the collection of all maximal numbers in the
⊑-maximal nodes in X , where we use ⊑ to denote end-extension of nodes
in a tree. It is also useful to know which of the subtrees Tα(n) a node in X
belongs to. So for a node t ∈ X \ {∅}, let �t� = n if t ∈ Tα(n). Similarly, for
i < ω, �X(i)� = n if X(i) ⊆ Tα(n) and �X� = {�t� : t ∈ X}.

In the following example of X ∈ R2 (Fig. 2), ��3, 6, 23�� = 3, �X� =
{1, 2, 3, . . .}, and [X] = {2, 3, 5, 16, 18, 19, 21, 23, 25, 27, . . .}.

Definition 2.3. If α < ω1 and X,Y ∈ Rα ∪ ARα, we write X ≤ Y if
X ⊆ Y . For a ∈ ARα and X ∈ Rα, a ≤ X if there is Y ≤ X and n < ω such
that a = Y ↾n. Let [a,X] = {Y ∈ Rα : (a ⊑ Y ) ∧ (Y ⊆ a ∪X)}, and X/a =

Acta Mathematica Hungarica

Y. Y. ZHENG4



Acta Mathematica Hungarica 154, 2018

PRESERVED UNDER SACKS FORCING AGAIN? 5

∅

· · ·�3�

�3, 6�

�3
, 6
, 2
7�

�3
, 6
, 2
5�

�3
, 6
, 2
3�

�3
, 6
, 2
1�

�3, 5�

�3
, 5
, 1
9�

�3
, 5
, 1
8�

�3
, 5
, 1
6�

�2�

�2, 2�

�2
, 2
, 5
�

�2
, 2
, 3
�

�1�

�1
, 2
�

Fig. 2: X ∈ R2

⋃

{X(n) : (n ∈ ω) ∧ (max �a� < �X(n)�)}. If k ∈ ω, then X/k =
⋃

{X(n) :
�X(n)� > k}.

The following notation is also used. Let α < ω1, X ∈ Rα and a ∈ ARα.
The set ARα(X) = {b ∈ ARα : b ≤ X} is the collection of all finite ap-
proximations of subtrees Y ∈ Rα of X . We further define ARα[a,X] =
{b ∈ ARα : a ⊑ b ≤ X}. Let Rα(n) = {X(n) : X ∈ Rα} be the set of all fi-
nite subtrees of Tα having the same shape as Tα(n).

From now on we assume α < ω1 and may omit the subscription α in Tα

when there is no confusion. Unless otherwise stated, we equip Rα with the
topology induced by the first-difference metric ρ , where ρ is defined as fol-
lows. For X,Y ∈ Rα, ρ(X,Y ) = 1

k
where k = min{n < ω : X(n) �= Y (n)}.

Therefore the basic open subsets of Rα are of the form

[a,T] = {X ∈ Rα : a ⊑ X} for a ∈ ARα.

This metric topology is coarser than the Ellentuck topology usually associ-
ated with the spaces Rα.

2.2. Sacks forcing. Let 2ω and (2ω)ω be equipped with the product
topology. We use 2ω interchangeably with R, and (2ω)ω interchangeably with
RN. On the set of all finite 01-sequences 2<ω, the symbols “| · |”, “⊑” and
“↾” respectively denote length of the sequence, initial segment and restric-
tion to an initial segment of certain length as usual. Two finite 01-sequences
are comparable if one is an initial segment of the other; otherwise they are
incomparable.

Definition 2.4 [1]. We call a nonempty set p ⊆ 2<ω a tree if it is
⊑-downwards closed. A tree p is perfect if every s ∈ p has incomparable
end-extensions t, u ∈ p. In particular, every perfect tree is infinite.

For a perfect tree p, let [p] = {f ∈ 2ω : (∀n ∈ ω)(f ↾n ∈ p)} be the set of
all infinite branches of p. Then [p] ⊆ 2ω is a perfect set.

Acta Mathematica Hungarica
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Definition 2.5 [19]. Sacks forcing P is the set of all perfect trees, or-
dered by p ≤ q if p ⊆ q.

Note that p ≤ q if and only if [p] ⊆ [q].

Definition 2.6 [1]. For p ∈ P and s ∈ p, let p|s = {t ∈ p : (t ⊑ s) ∨
(s ⊑ t)}. The number of branchings below s in the tree p is called the
branching level of s in p, which is
∣

∣

{

i < |s| : (∃t ∈ p)((|t| > i) ∧ (t ↾ i = s ↾ i) ∧ (t ↾ (i+ 1) �= s ↾ (i+ 1)))
}∣

∣ .

The nth branching level l(n, p) of the tree p is the set of all s ∈ p which have
branching level n and are ⊑-minimal with this property. If p, q ∈ P , q ⊆ p,
n ∈ ω and l(n, p) = l(n, q), then we write q ≤n p.

Note that l(n, p) ⊆ p is a collection of nodes in p.

Lemma 2.7 (Fusion 1) [1, Lemma 1.4]. Suppose (pk)k∈ω ⊆ P and (mk)k∈ω
⊆ ω is unbounded and increasing such that pk+1 ≤

mk pk for all k ∈ ω. Then
q =

⋂

k∈ω pk ∈ P and q ≤mk pk for all k ∈ ω. We call (pk)k∈ω a fusion se-
quence and q the fusion of the sequence.

Now we are ready to define countable-support side-by-side Sacks forcing.

Definition 2.8 [1]. Let κ be an infinite cardinal. Let Pk be the set
of all sequences p = (pi)i<κ such that, for every i < κ, pi ∈ P and for all
but countably many i < κ, pi = 2<ω. We say pi is the ith tree of p. For
p = (pi)i<κ and q = (qi)i<κ in Pκ, p ≤ q if pi ⊆ qi for all i < κ.

For p ∈ Pκ, let [p] =
∏

i<κ[p
i]. For ε ∈ [p] and i < κ, let εi be the ith

component in ε, so εi ∈ [pi]. The support of p is supp(p) = {i < κ : pi �=
2<ω}. So each p ∈ Pκ has countable support.

Notation. For a set S, [S]<ω denotes the set of all finite subsets of S.

Definition 2.9. Let κ be an infinite cardinal. Let F ∈ [κ]<ω, n ∈ ω
and p ∈ Pκ. The set l(F, n, p) is defined as follows

l(F, n, p) =
∏

i∈F

l(n, pi).

For σ ∈ l(F,n, p) and i ∈ F , let σi denote the ith component of σ, so σi ∈ pi.
If there exists k ∈ ω such that F = {0, 1, . . . , k − 1}, then we may write
l(k, n, p) for l(F, n, p).

For p, q ∈ Pκ, we write q ≤F,n p if q ≤ p and qi ≤n pi for all i ∈ F .
For F , n, p, q as above and σ ∈ l(F, n, p), we write q ≤σ p if q ≤ p and

σi ∈ qi for every i ∈ F . We also define p|σ = ((p|σ)i)i<κ, where, for i < κ,

(p|σ)i =

{

pi|σi if i ∈ F ;

pi otherwise.
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Y. Y. ZHENG6



Acta Mathematica Hungarica 154, 2018

PRESERVED UNDER SACKS FORCING AGAIN? 7

Moreover, let ε ∈ [p] and σ ∈ l(F, n, p). We say σ is a pre-initial segment
of ε and ε is a post-end-extension of σ, and write σ ⊑∗ ε, if σi ⊑ εi for every
i ∈ F .

Lemma 2.10 (Fusion 2) [1, Lemma 1.6]. Let κ be an infinite cardinal.
Suppose (pk)k∈ω ⊆ Pκ. Suppose also that (Fk)k∈ω ⊆ [κ]<ω is an ⊆-increasing
sequence with

⋃

k∈ω Fk ⊇
⋃

{supp(pk) : k ∈ ω} and that (mk)k∈ω ⊆ ω is un-

bounded and increasing. Define q = (qi)i<κ where qi =
⋂

k∈ω pik for each

i < κ. Then q ∈ Pκ and q ≤Fk,mk pk for all k ∈ ω.

Recall that 2ω has the product topology. So it has basic open sets of
the form [s] = {f ∈ 2ω : s ⊑ f}, for s ∈ 2<ω. Let κ be an infinite cardinal.
The set (2ω)κ also has the product topology, with basic open sets of the
form [σ] = {ε = (εi)i∈κ ∈ (2ω)κ : σ ⊑∗ ε}, where σi ∈ 2<ω for every i in some
F ∈ [κ]<ω . If κ = ω, we may think of such σ as an element of (2<ω)<ω.
For p ∈ Pκ, [p] inherits the subspace topology from (2ω)κ. Unless otherwise
stated, Rα×RN has the product topology, with Rα having the metric topol-
ogy and R

N = (2ω)ω having the product topology. Every subspace has the
inherited subspace topology.

From now on, we fix an arbitrary α < ω1 and an arbitrary infinite car-
dinal κ. We keep in mind that ⊑ denotes end-extension in different cases:
Between finite approximations and elements in ARα ∪Rα, we use ⊑⊆ ARα

× (ARα ∪Rα) to denote end-extension of a tree. The symbol is also used
to denote end-extensions of a node inside a tree, e.g. 2<ω or X ∈ Rα.

3. Parametrized Rα theorem

In this section, we aim to prove the Parametrized Rα Theorem 1.2. The
work in this section is an extension of an adaptation of the results for the
Ellentuck space N

[∞] in [20, §9] to Rα. Instead of parametrization with the
infinite product trees

⋃

k∈ω

∏

i<k Hi of finite sets (see [20, §3.3]), we consider
parametrization with perfect trees p ∈ P , and we extend the result to infinite
sequences of perfect trees p ∈ Pκ using the Halpern–Läuchli theorem.

First we consider open subsets of Rα ×RN, then we generalize the result
to all Souslin-measurable subsets.

3.1. Open subsets of Rα × R
N.

Lemma 3.1. For p ∈ Pω and O ⊆ [p] open, there exists q ≤ p such that
[q] ⊆ O or [q] ∩O = ∅.

Proof. If there exists ε ∈ (2ω)ω such that ε ∈ O ∩ [p], then since O is
open, there exists a pre-initial segment σ ∈ (2<ω)<ω of ε such that [p|σ] ⊆ O.
So let q = p|σ. Otherwise, there exists no such ε hence [p] ∩ O = ∅. �

Acta Mathematica Hungarica
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Definition 3.2. Let p ∈ Pω, k ∈ ω, F ∈ [ω]<ω and S ⊆ (2ω)ω. Let Θ
be a set of pre-initial segments of elements in [p]. We say S ∩ [p] depends
only on Θ if, for each σ ∈ Θ, either all or none of the post-end-extensions
of σ are in S, i.e. either [σ] ⊆ S or [σ] ∩ S = ∅.

A finite number of applications of Lemma 3.1 gives the following.

Lemma 3.3. Let p ∈ Pω, n ∈ ω and F ∈ [ω]<ω . Then for every open set
O ⊆ [p] there exists q ≤F,n p such that O ∩ [q] depends only on l(F, n, q).

Applying Lemma 3.3 and the method of fusion we have the following
corollary.

Corollary 3.4. Suppose p ∈ Pω, n ∈ ω, F ∈ [ω]<ω and Ol (l ∈ ω) is a
family of open subsets of (2ω)ω. Suppose also that for each l, nl ∈ ω and Fl ∈
[ω]<ω are such that n < nl < nl+1, F ⊆ Fl ⊆ Fl+1 and

⋃

l Fl = ω. Then there

exists q ≤F,n p such that for every l ∈ ω, Ol ∩ [q] depends only on l(Fl, nl, q).

We will be using the infinite version of the Halpern–Läuchli theorem and
its immediate corollary below.

Notation. For p ∈ P and n ∈ ω, by p(n) we denote the set of nodes
in p with length n, i.e. p(n) = {s ∈ p : |s| = n}.

Theorem 3.5 (HLω) [12]. If p = (pi)i∈ω ∈ Pω and
⋃

n<ω

∏

i<ω pi(n) =
G0 ∪G1, then there exists j ∈ 2, A ∈ [ω]ω and for each i < ω there exists
qi ≤ pi such that

⋃

n∈A

∏

i<ω q
i(n) ⊆ Gj .

Corollary 3.6. For p ∈ Pω, n ∈ ω, F ∈ [ω]<ω and
⋃

n<ω

∏

i<ω p
i(n) =

G0 ∪G1 there exists A ∈ [ω]ω and q ≤F,n p such that

∀σ ∈ l(F, n, p) ∃j ∈ 2
⋃

n∈A

∏

i<ω

(q|σ)i(n) ⊆ Gj.

Lemma 3.7. Suppose M ∈ N[∞] and Ol (l ∈ M) is a family of open sub-
sets of (2ω)ω. Then for every p ∈ Pω, n ∈ ω and F ∈ [ω]<ω there exists
q ≤F,n p, an infinite subset N ⊆ M and a clopen subset G ⊆ [q] such that for
every l ∈ N , Ol ∩ [q] = G.

Proof. Let (nl)l∈M be an increasing sequence above n and (Fl)l∈ω ⊆
[ω]<ω be such that F ⊆ Fl ⊆ Fl+1 for every l ∈ ω. Applying Corollary 3.4
to shrink p, we may assume that

∀l ∈ M Ol ∩ [p] depends only on l(Fl, nl, p).

By increasing each nl if necessary, we may assume that

∀l ∈ M Ol ∩ [p] depends only on
∏

i∈Fl

{

t ∈ pi : |t| = nl

}

.
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We define a colouring c : p → 2 as follows. Let s = (si) ∈ p = (pi)i<ω. If there
does not exist k ∈ M such that nk ≤ |si| for each i ∈ Fk then let c(s) = 0.
Otherwise, let k(s) = max{k : (∀i ∈ Fk)(nk ≤ |si|)} and define

s̄ = (s̄i)i<ω where s̄i =

{

si ↾nk(s) if i ∈ Fk(s)

si if i ∈ ω \ Fk(s).

Since Ok(s) ∩ [p] depends only on
∏

i∈Fk(s)
{t ∈ pi : |t| = nk(s)} either [p|s̄] ⊆

Ok(s) or [p|s̄] ∩Ok(s) = ∅. We let c(s) = 1 if and only if [p|s̄] ⊆ Ok(s).

Take n̄ > n. By Corollary 3.6, there exist N ∈ [M ]ω and q ≤F,n̄ p such
that c is constant on

⋃

k∈N

∏

i<ω(q|σ)
i(nk) for every σ ∈ l(F, n̄, q). Without

loss of generality, we may assume nk > n̄ for all k ∈ N . Now we check that
the map l �→ Ol ∩ [q] is constant on N , hence q, N satisfy the lemma: Let l, l′

∈ N . Suppose ε ∈ Ol ∩ [q]. Let t = (εi ↾nl)i∈ω. As ε ∈ Ol, by the definition
of c, c(t) = 1. There exists a unique σ ∈ l(F, n̄, q) with σ ⊑∗ ε. Since t ∈
∏

i<ω(q|σ)
i(nl) and c(t) = 1, it must be the case that c is constantly 1 on

⋃

k∈N

∏

i<ω(q|σ)
i(nk). Therefore, as l

′ ∈ N , c ↾
∏

i<ω(q|σ)
i(nl′) ≡ 1. Let t′ =

(εi ↾nl′)i<ω. Then c(t′) = 1, so ε ∈ Ol′ . Thus we have proved that, for l, l′ ∈
N and ε ∈ [q], if ε ∈ Ol then ε ∈ Ol′ . Hence by symmetry, Ol ∩ [q] = Ol′ ∩ [q]
as required. Moreover, since Ol∩ [q] depends only on

∏

i∈Fl
{t ∈ qi : |t| = nl},

the set Ol ∩ [q] is clopen. �

Notation. For a family F and a set X , let F|X = {Y ∈ F : Y ⊆ X}.

Theorem 3.8 (finite version of the pigeonhole principle for Rα(n)) [8,
Theorem 3.13]. Let n ≤ k < ω and X ∈ Rα be given. Then there is an l such
that for each 2-colouring f : Rα(n)|X(l)→ 2 there is a ζ ∈ Rα(k)|X(l) such
that f is monochromatic on Rα(n)|ζ .

Lemma 3.9. Let m ∈ ω and A ∈ Rα. Let Ob (b ∈ Rα(m)|A) be a family
of open subsets of (2ω)ω. Then for every p ∈ Pω there exist q ≤ p,B ≤ A
and a clopen subset G ⊆ [q] such that Ob ∩ [q] = G for every b ∈ Rα(m)|B.

Proof. For k ∈ ω, the setRα(m)|A(m+k) is finite. So by Corollary 3.4,
we may assume

(1)

{

∀k ∈ ω ∀b ∈ Rα(m)|A(m+ k) ∃F ∈ [ω]<ω

∃n ∈ ω Ob depends only on l(F, n, p).

Starting from A0 = A and p0 = p, we construct decreasing sequences (Ak)k∈ω
and (pk)k∈ω together with (Fk)k∈ω ⊆ [ω]<ω and (mk)k∈ω ⊆ ω such that for
every k ∈ ω,

(i) Ak+1 ↾ (m+k+1) = Ak ↾ (m+k+1) and pik+1 ≤
k−i pik for every i ≤ k;

and
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(ii) the mapping b �→ Ob ∩ [pk] is constant on Rα(m)|Ak(m+ k) and the
constant value is a clopen subset of [pk].

We also define auxiliary sets Tk at each step k, where Tk =
∏

i<ω T
i
k and

T i
k ⊆ pik for every i < ω. Moreover, we require that, for i ≤ k and s ∈ T i

k

there are exactly k− i branchings below s in pik, and |T i
k| = 2k−i. For i ≥ k,

T i
k is a singleton.

First notice that (ii) holds for k = 0 since Rα(m)|A0(m) is a singleton.
Let F0 = ∅, m0 = 0 and T0 =

∏

i<ω{∅}. Suppose we have constructedAk, pk,
Fk and mk. By Theorem 3.8, there exists l ∈ ω such that for every colour-

ing Rα(m)|Ak(l) → 22
1
2
(k+1)(k+2)

there exists ζ ∈ Rα(m+ k + 1)|Ak(l) with
Rα(m)|ζ monochromatic. By assumption (1), we can find Fk+1 ⊇ (k + 1)
∪ Fk and mk+1 > mk such that

∀b ∈ Rα(m)|Ak(l) Ob depends only on l(Fk+1,mk+1, pk).

We define Tk+1 =
∏

i<ω T
i
k+1 as follows:

• For i ≤ k, by construction, every s ∈ T i
k has exactly k − i branchings

below it in pik. For each s ∈ T i
k, choose u, v ∈ l(mk+1, p

i
k) such that u, v are

respectively end-extensions of two distinct elements u′, v′ ∈ l(k + 1− i, pik)
end-extending s, as shown in the left figure below. Thus, T i

k+1 is a set of

end-extensions of elements in T i
k and |T i

k+1| = 2|T i
k|. The idea is to construct

a sequence (Tk) as shown in the right figure below.

T i
k

T i
k+1 ⊆ l(mk+1, p

i
k)

l(k + 1− i, pik)

s
u′ v′

u v

· · ·T0 :

· · ·T1 :

· · ·
T2 :

...

· · ·
T3 :

• If i > k then T i
k = {s} for some s ∈ pik. Pick an arbitrary t ∈ l(mk+1, p

i
k)

end-extending s, and let T i
k+1 = {t}. So |T i

k+1| = 1.
Then

∣

∣

∣

∣

∏

i∈Fk+1

T i
k+1

∣

∣

∣

∣

=
∏

i≤k

2|T i
k| =

∏

i<k+1

2k+1−i = 2
1

2
(k+1)(k+2).

By the choice of Fk+1 and mk+1, for every b ∈ Rα(m)|Ak(l) and every
σ ∈

∏

i∈Fk+1
T i
k+1, either [pk|σ] ⊆ Ob or [pk|σ] ∩Ob = ∅. For each b there are

22
1
2
(k+1)(k+2)

possibilities for [pk|σ]
(

σ ∈
∏

i∈Fk+1
T i
k+1

)

to be inside or disjoint
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from Ob. Thus, by the choice of l, there exists ζ ∈ Rα(m+ k+1)|Ak(l) such
that for each σ ∈

∏

i∈Fk+1
T i
k+1,

either ∀b ∈ Rα(m)|ζ [pk|σ] ⊆ Ob, or ∀b ∈ Rα(m)|ζ [pk|σ] ∩Ob = ∅.

Now let Ak+1 ≤ Ak be such that Ak+1 ↾ (m+ k + 1) = Ak ↾ (m+ k + 1) and
Ak+1(m+ k + 1) = ζ . For i ∈ ω, let pik+1 =

⋃

s∈T i

k+1
pik|s, so pik+1 ≤

k−i pik
for i ≤ k. Let pk+1 = (pik+1)i<ω. Then the mapping b �→ Ob ∩ [pk+1] is con-
stant on Rα(m)|Ak+1(m+ k + 1) and the constant value is a clopen subset
of [pk+1], hence (ii) is satisfied.

This finishes the construction of the sequences (Ak)k∈ω and (pk)k∈ω. Let

A∞ = A ↾m ∪
⋃

k∈ω

Ak(m+ k), and p∞ = (pi∞)i<ω =

(

⋂

k′<ω

pii+k′

)

i<ω

.

Clearly, A∞ ∈ Rα. By (i), for every i, k′ ∈ ω, pii+k′+1 ≤
k′

pii+k′ , so
⋂

k′<ω p
i
i+k′

∈ P . Hence p∞ ∈ Pω. Then for k ∈ ω, the mapping b �→ Ob∩ [p∞] is constant
on Rα(m)|A∞(m+ k). Let the constant value be denoted by O∗

�A∞(m+k)�.

Note that O∗
�A∞(m+k)� is clopen in [p∞]. Now we have �A∞� ∈ N[∞] and a

family O∗
j (j ∈ �A∞�) of open subsets of [p∞]. By Lemma 3.7, there exists

an infinite N ⊆ �A∞�, q ≤ p∞ and a clopen G ⊆ [q] such that O∗
j ∩ [q] = G

for every j ∈ N . Then we can find B ∈ Rα with B ≤ A∞ and �B� = N .
Thus Ob ∩ [q] = G for all b ∈ Rα(m)|B as required. �

We would like to generalize Lemma 3.9 to Lemma 3.13 below.

Definition 3.10. Let F ⊆ ARα. We say that F is Nash–Williams if
s �⊑ t for distinct s, t ∈ F ; F is Sperner if s �⊆ t for distinct s, t ∈ F .

Definition 3.11. Let a ∈ ARα and A ∈ Rα. We say that F ⊆ ARα is
a barrier on [a,A] if F is Sperner and every X ∈ [a,A] has an initial segment
in F . We say F is a barrier on A if it is a barrier on [∅, A].

Definition 3.12 (rank of barriers). Let F be a barrier on [a,A]. Con-
sider T (F) := {s ∈ ARα : (a ⊑ s ≤ A) ∧ (∃t ∈ F)(s ⊑ t)} as a tree ordered
by ⊑. We define a strictly decreasing map ρT (F) as follows.

ρT (F) : T (F) → Ord;

s �→ sup{ρT (F)(t) + 1 : t ∈ T (F) ∧ (s ⊏ t)},

where sup ∅ = 0. The rank of F on [a,A] is defined to be rk(F) = ρT (F)(a).

Lemma 3.13. Let a ∈ ARα and A ∈ Rα. Suppose F is a barrier on
[a,A] and Ob (b ∈ F) is a family of open subsets of (2ω)ω. Then for every
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p ∈ Pω, n ∈ ω and F ∈ [ω]<ω , there exist q ≤F,n p, B ∈ [a,A] and a clopen
subset G ⊆ [q] such that Ob ∩ [q] = G for every b ∈ F ∩ ARα[a,B].

Proof. We prove it by induction on the rank of F . The base case,
where rk(F) = 0 and F = {a}, is trivial. If rk(F) = 1 then F = Rα(|a|)|A
and the statement holds by Lemma 3.9. So we assume rk(F) > 1 and the
statement holds for barriers of smaller ranks.

For ζ ∈ Rα(|a|)|A, let Fζ = {b ∈ F : a⊔ ζ ⊑ b}. Note that Fζ is a barrier
on [a ⊔ ζ,A] of smaller rank than F . We construct sequences (pk)k∈ω and
(Ak)k∈ω as follows: Let ζ0 = A(|a|). By the induction hypothesis, for Ob

(b ∈ Fζ0 ⊆ F) and p, F, n given,

∃p0 ≤
F,n p ∃A0 ∈ [a ⊔ ζ0, A]

such that b �→ Ob ∩ [p0] is constant on F ∩ ARα[a ⊔ ζ0, A0],

and the constant value is clopen in [p0]. Suppose we have constructed pk
and Ak. Let Fk+1 = Fk ∪ k. By applying the induction hypothesis finitely
many times, we find pk+1 ≤

Fk,n+k pk and Ak+1 ≤ Ak such that Ak+1 ↾ (|a|+
k + 2) = Ak ↾ (|a|+ k + 2) and

∀ζ ∈ Rα(|a|)|Ak+1(|a|+ k + 1)

b �→ Ob ∩ [pk+1] is constant on F ∩ARα[a ⊔ ζ,Ak+1],

and the constant value is clopen in [pk+1]. Let p∞ =
(
⋂

pik
)

i<ω
and A∞ = a

∪
⋃

k∈ω Ak(|a|+ k).
By construction, the set b �→ Ob ∩ [p∞] for b ∈ F ∩ARα[a,A∞] depends

only on b(|a|). For ζ ∈ Rα(|a|)|A∞, let O∗
ζ be the constant value of the

mapping on F ∩ ARα[a ⊔ ζ,A∞], which is clopen in [p∞]. Now we have
A∞ ∈ Rα and O∗

ζ (ζ ∈ Rα(|a|)|A∞) open in [p∞]. By Lemma 3.9,

∃q ≤F,n p∞ ∃B ≤ A∞∃G ⊆ [q] clopen

such that O∗
ζ ∩ [q] = G for every ζ ∈ Rα(|a|)|B,

where we may assume that B ∈ [a,A∞]. Thus Ob ∩ [q] = G for every b ∈
F ∩ARα[a,B]. �

Corollary 3.14. Let a ∈ ARα and A ∈ Rα. Suppose F is a bar-
rier on [a,A] and Ob (b ∈ F) are open subsets of (2ω)ω. Then for every
p ∈ Pω there exists q ≤ p and B ∈ [a,A] such that either [q] ⊆ Ob for all
b ∈ F ∩ ARα[a,B], or [q] ∩Ob = ∅ for every b ∈ F ∩ARα[a,B].
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3.1.1. Combinatorical forcing parametrized. In this subsubsec-
tion, let O ⊆ Rα × RN be an open subset.

Definition 3.15. Let A ∈ Rα, a ∈ ARα, p ∈ Pω and σ ∈ l(F, n, p) for
some n ∈ ω and F ∈ [ω]<ω . We say (A,p) accepts (a, σ) if [a,A]× [p|σ] ⊆ O;
(A,p) rejects (a, σ) if there does not exist q ≤σ p and B ≤ A such that (B, q)
accepts (a, σ). We say (A, p) decides (a, σ) if it either accepts or rejects
(a, σ).

The following are immediate facts.

Lemma 3.16. Let A ∈ Rα, a ∈ ARα, p ∈ Pω and σ ∈ l(F, n, p) for some
n ∈ ω and F ∈ [ω]<ω .

(a) If (A,p) accepts (a, σ) then for every q ≤ p and B ≤ A, (B, q) accepts
(a, σ).

(b) If (A,p) rejects (a, σ) then for every q ≤σ p and B ≤ A, (B, q) rejects
(a, σ).

(c) For every pair (A, p) and (a, σ) there exists q ≤σ p and B ≤ A such
that (B, q) decides (a, σ).

(d) If (A, p) decides (a, σ), B/a ⊆ A and q ≤σ p, then (B, q) decides
(a, σ).

(e) If (A,p) decides (a, τ), where τ ∈ l(F,m,p) for some F,m, and τi ⊑ σi
for every i ∈ F , then (A, p) decides (a, σ).

Let us recall the symbol � · � from Section 2.1. For X ∈ Rα ∪ ARα and
a node t ∈ X , �t� = n if t is in the nth subtree T(n) of T. We let �X� =
{�t� : t ∈ X}.

Lemma 3.17. Let p ∈ Pω, A ∈ Rα, n ∈ ω and F ∈ [ω]<ω . Then there
exist q ≤F,n p and B ≤ A such that

∀a ∈ ARα ∀l ∈ �B� with l ≥ max �a� ∀σ ∈ l(l, l, q) (B, q) decides (a, σ).

Proof. By shrinking A, we may assume n,maxF < min �A�. We build
(pk)k∈ω, (Ak)k∈ω and (nk)k∈ω recursively, starting from p0 = p, A0 = A and
n0 = min �A�. Suppose we have constructed pk, Ak. Let nk = �Ak(k)�. Ap-
plying Lemma 3.16(c) and (d) finitely many times, we have pk+1 ≤

nk,nk pk
and Ak+1 ⊆ Ak/nk such that (Ak+1, pk+1) decides (a, σ) for every a ≤ T(0)
∪ · · · ∪ T(nk) and every σ ∈ l(nk, nk, pk).

Let q =
(
⋂

k∈ω p
i
k

)

i<ω
and B =

⋃

k∈ω Ak(k). So q ≤nk,nk pk and B/nk ⊆

Ak+1 for every k ∈ ω and �B� = {nk : k ∈ ω}. We check that q and B
satisfy the lemma: Let a ∈ ARα and nl ∈ �B� with nl ≥ max �a� and
σ ∈ l(nl, nl, q). Let nk ∈ �B� be minimal such that max �a� ≤ nk. So
nk ≤ nl. Let τ ∈ l(nk, nk, q) be such that τi ⊑ σi for every i < nk. By con-
struction, (Ak+1, pk+1) decides (a, τ). As B/a = B/nk⊆Ak+1 and q ≤τ pk+1,
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by Lemma 3.16(d), (B, q) decides (a, τ). Then by Lemma 3.16(e), (B, q) de-
cides (a, σ) as required. �

We would like to apply the following abstract Galvin lemma to the space

R
(a)
α defined below, in order to obtain a desired result for the space Rα.

Theorem 3.18 (Abstract Galvin Lemma) [20, Theorem 5.15]. Suppose
R is a topological Ramsey space. Then for every family F ⊆ AR and every
X ∈ R there is Y ≤ X such that either F|Y = ∅ or every B ≤ Y has an
initial segment in F .

Recall that for a ∈ ARα |a| is the length of a, i.e. |a| = m if a = X ↾m
for some X ∈ Rα. Note that |a| is different from �a�.

Definition 3.19. For a ∈ ARα, letR
(a)
α = {Y \a : Y ∈ [a,T]}. So mem-

bers of R
(a)
α are tails of members of [a,T] above a. Let k = max �a�+ 1. If

X = Y \ a ∈ R
(a)
α and n ∈ ω, then we define X(n) = Y (n)− k.

More precisely, we define the spaceR
(a)
α as follows. Let T(k) =

⋃

n≥k Tα(n).

Then the nth subtree of T
(k) is T(k)(n) = Tα(n+ k). The members of R

(a)
α

are infinite subtrees X of T(k) with the same structure as T(|a|), that is,

X ∈ R
(a)
α if X ⊆ T(k) such that there exists a strictly increasing sequence

(kn)n<ω such that X ∩T(k)(kn) ∼= T(|a|)(n) for all n ∈ ω, and X ∩T(k)(j) = ∅
for all j ∈ ω \ (kn)n∈ω. Let the nth tree of X be X(n) = X ∩ T

(k)(kn). For

n < ω, ↾ , AR
(a)
α , ARα

n
(a), ≤(a), are defined in the same way as those for Rα.

Basic open sets of R
(a)
α are of the form [b,T(k)] with b ∈ AR

(a)
α .

It follows from the fact that (Rα,≤, r) is a topological Ramsey space

that (R
(a)
α ,≤(a), r) is also a topological Ramsey space.

Theorem 3.20. The space (R
(a)
α ,≤(a), r) is a topological Ramsey space.

Corollary 3.21 (R
(a)
α -Galvin). For a ∈ ARα, F ⊆ ARα[a,T] and

X ∈ Rα, there exists Y ∈ [a,X] such that either F|Y = ∅ or F|Y contains
a barrier on [a, Y ].

Proof. If F = {a}, then the second alternative must hold. So we as-

sume F �= {a}. Let G = {c ∈ AR
(a)
α : a∪ c ∈ F} ⊆ AR

(a)
α . Since X/a ∈ R

(a)
α ,

by Theorem 3.18, there exists Y ′ ∈ R
(a)
α with Y ′ ≤ X/a such that one of the

following two cases holds: If G|Y ′ = ∅, then for every c ≤(a) Y ′, c �∈ G so
a ∪ c �∈ F . Let Y = a ∪ Y ′. Then F|Y = ∅. Otherwise, every c ≤(a) Y ′ has
an initial segment c̄ ∈ G. Again let Y = a∪Y ′. Then every c ∈ AR[a, Y ] has

an initial segment a ∪ (c \ a) ∈ F . Thus F|Y contains a barrier on [a, Y ].
�
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Now we are ready to prove the main theorem of this subsection.

Theorem 3.22. Let O ⊆ Rα × RN be open. For p ∈ Pω, A ∈ Rα and a
∈ ARα, there exist q ≤ p and B ≤ A such that [a,B]× [q] ⊆ O or [a,B] × [q]
∩ O = ∅.

Proof. We concentrate on the case a = ∅. The proof for a �= ∅ is similar

and utilizes the space R
(a)
α .

By Lemma 3.17, shrinking p and A if necessary, we assume
(2)
∀a ∈ ARα ∀l ∈ �A� with l ≥ max �a� ∀σ ∈ l(l, l, p) (A, p) decides (a, σ).

For b ∈ ARα, let

Ob =
⋃

{[p|τ ] : ([b,A] × [p|τ ] ⊆ O) ∧ (∃F ∈ [ω]<ω)(∃n ∈ ω)(τ ∈ l(F, n, p))}

B = {b ∈ ARα : (Ob �= ∅) ∧ (b �= ∅)}.

Applying Corollary 3.21 to B and [∅, A], we consider two cases.
Case 1: ∃B ≤ A with B|B = ∅. We check that [∅,B]× [p]∩O = ∅: Oth-

erwise, there is (X,ε) ∈ [∅,B]× [p]∩O. Since O is open, there is b ⊑ X and a
pre-initial segment σ of ε such that [b,T]× [p|σ] ⊆ O. Then [b,A]× [p|σ] ⊆ O
and Ob �= ∅. Thus b ∈ B|B, a contradiction.

Case 2: ∃B ≤ A such that B|B contains a barrier F on B. By Corol-
lary 3.14, there exist C ≤ B and q ≤ p such that either

(i) [q] ⊆ Ob for every b ∈ F|C, or
(ii) [q] ∩ Ob = ∅ for every b ∈ F|C.
If (i) holds, then by the definition of Ob and that F contains a barrier

on C, [∅, C]× [q] ⊆
⋃

b∈F|C [b, C]× [q] ⊆ O as required. So we assume (ii)

holds.

Claim 3.22.1. If (ii) holds, then for every F ∈ [ω]<ω , n ∈ ω, b ∈ F|C
and D ≤ C, there exists q̄ ≤F,n q such that [b,E] × [q̄] ∩ O = ∅.

We postpone the proof of this claim to the end of this proof of the the-
orem. Now using the claim, we can construct decreasing sequences (Ck)k∈ω
and (qk)k∈ω, with C0 = C, q0 = q and qk+1 ≤

k,k qk for k ∈ ω, such that

∀k ∈ ω ∀b ∈ F with b ⊆
⋃

i<k+1

Ci(i) [b, Ck+1]× [qk+1] ∩ O = ∅.

Let C∞ =
⋃

k∈ω Ck(k) and q∞ =
⋂

k∈ω qk. As F contains a barrier on
C∞, [∅, C∞]× [q∞] ⊆

⋃

{[b, Ck]× [qk] : b ∈ F|(C∞ ↾ k), k ∈ ω} which is dis-
joint from O, as required.
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Now it is sufficient to prove the claim. Fix F ∈ [ω]<ω, n ∈ ω, b ∈ F|C
and D ≤ C. Let

Bb = {c ∈ ARα[b, C] : Oc ∩ [q] �= ∅}.

Applying Corollary 3.21 to Bb and [b,D], we have two cases.
Case 2.1: ∃E ≤ D such that Bb|E = ∅. Then similar to Case 1,

[b,E] × [q] ∩ O = ∅.
Case 2.2: ∃E ≤ D such that Bb|E contains a barrier Fb on [b,E].

By Lemma 3.13 applied to Fb on [b,E] and Oc(c ∈ Fb), we find q̄ ≤F,n q,
E′ ∈ [b,E] and a clopen G ⊆ [q̄] such that Oc ∩ [q̄] = G for every c ∈ Fb

∩ ARα[b,E
′].

If G = ∅, then [b,E′]× [q̄]∩O = ∅ as required. So we assume G �= ∅ and
show that Ob ∩ [q] �= ∅, contradicting (ii). Pick l ∈ �A� with l ≥ max �b�
and l large enough that there exists σ ∈ l(l, l, p) ∩ l(l, l′, q̄), for some l′ < l,
such that [q̄|σ] ⊆ G. So [q̄|σ] ⊆ Oc for every c ∈ Fb ∩ ARα[b,E

′]. Therefore

[b,E′]× [q̄|s] ⊆
⋃

{

[c,E′]× [q̄|σ] : c ∈ Fb ∩ ARα[b,E
′]
}

⊆ Oc.

By assumption (2) and the choice of σ, (A, p) decides (b, σ). As q̄ ≤ q,
σ ∈ l(l, l′, q̄) and E′ ≤ A are such that [b,E′]× [q̄|σ] ⊆ O, (A, p) must ac-
cept (b, σ). So [p|σ] ⊆ Ob. Hence [q̄|σ] ⊆ Ob ∩ [q] and the intersection is
non-empty as required. �

3.2. Souslin-measurable subsets of Rα × RN. As in the previous
subsection, this subsection adapts the results in [20, §9] to the topological
Ramsey space Rα parametrized by infinite sequences of perfect trees.

Definition 3.23. A subset X ⊆ Rα ×RN is perfectly Ramsey if for ev-
ery a ∈ ARα, A ∈ Rα and p ∈ Pω, there exists B ∈ [a,A], q ≤ p such that
[a,B]× [q] ⊆ X or [a,B]× [q] ∩ X = ∅.

So we can rephrase Lemma 3.22 as follows.

Lemma 3.24. Every open subset of Rα × RN is perfectly Ramsey.

Lemma 3.25. The perfectly Ramsey subsets of Rα ×RN form a σ-field.

Proof. The perfectly Ramsey subsets clearly form a field. We check
only that it is closed under countable union. Let (Xk)k∈ω be a given sequence
of perfectly Ramsey sets. Let a ∈ ARα, A ∈ Rα and p ∈ Pω be given. We
show that X :=

⋃

k∈ω Xk is perfectly Ramsey.
We build a sequence (Ak, pk) recursively, starting from (A0, p0) = (A,p).

Assuming (Ak, pk) built, we construct (Ak+1, pk+1). By the fact that Xk
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is perfect Ramsey and that the set a ∪
⋃

i≤k Ai(|a|+ i) is finite, we ob-

tain pk+1 ≤
k,k pk and Ak+1 ⊆

⋃

i≥k Ak(|a|+ i) such that for every b ≤ a

∪
⋃

i≤k Ai(|a|+ i) and every σ ∈ l(k, k, pk), either [b,Ak+1]× [pk+1|σ] ⊆ Xk

or [b,Ak+1]× [pk+1|σ] ∩ Xk = ∅.
Let A∞ = a ∪

⋃

k Ak(|a|+ k) and p∞ = (
⋂

k p
i
k)i<ω. Note that [a,A∞]

× [p∞] ∩ X is open in [a,A∞]× [p∞]. Thus by Lemma 3.24, the conclusion
holds. �

Theorem 3.26. The field of perfectly Ramsey subsets of Rα × RN is
closed under the Souslin operation.

Proof. Let Xv (v ∈ ω<ω) be a given Souslin scheme of perfectly Ram-
sey subsets of Rα×RN. Without loss of generality, we assume that Xu ⊇ Xv

if u ⊑ v. Let a ∈ ARα, A ∈ Rα and p ∈ Pω be given. We aim to show
that X :=

⋃

f∈ωω

⋂

n∈ω Xf↾n is also perfectly Ramsey. For each v ∈ ω<ω, let

X ∗
v =

⋃

v⊑f∈ωω

⋂

n∈ω Xf↾n. Note that X ∗
v ⊆ Xv .

We build a sequence (Ak, pk) such that for every k < ω, σ ∈ l(k, k, pk),
b ⊆ a ∪

⋃

i≤k Ai(|a|+ i) and v ∈ ω<ω with max(v) < k, either

(1) [b,Ak+1]× [pk+1|σ] ∩ X ∗
v = ∅, or

(2) there does not exist q ≤σ pk+1,B ≤ Ak+1 with [b,B]× [q|σ]∩X ∗
v = ∅.

Let A0 = A and p0 = p. Let (σl, bl, vl)l≤m be an enumeration of

l(k, k, pk)×
{

b ∈ ARα : b ⊆ a ∪
⋃

i≤k

Ai(|a|+ i)
}

×
{

v ∈ ω<ω : max(v) < k
}

.

(i) Suppose there exist q ≤σl+1
ql and B ≤ Bl such that [bl+1,B]× [q|σl+1]

∩ X ∗
vl+1

= ∅. Let ql+1 be the ⊆-maximal such q and Bl+1 the correspond-

ing B. Then ql+1 ≤
k,k pk and [bl+1, Bl+1]× [ql+1|σl+1] ∩ X ∗

vl+1
= ∅.

(ii) If there does not exist q ≤σl+1
ql, and B ≤ Bl such that [bl+1, B]×

[q|σl+1] ∩ X ∗
vl+1

= ∅, let ql+1 = ql and Bl+1 = Bl.

Proceeding this way for all l ≤ m, we arrive at qm ≤k,k pk and Bm ≤ Ak.
Let pk+1 = qm, Ak+1 = Bm. This finishes the construction of (Ak, pk)k∈ω.
Let p∞ = (

⋂

k∈ω pik)i<ω and A∞ = a ∪
⋃

{Ak(|a|+ k) : k ∈ ω}. So for every
k < ω, σ ∈ l(k, k, p∞), b ≤ A∞ ↾ (|a|+ k) and v < ω<ω with max(v) < k, ei-
ther [b,A∞]× [p∞|σ]∩X ∗

v = ∅ or there does not exist q ≤ p∞, B ≤ A∞ with
[b,B] × [q|σ] ∩ X ∗

v = ∅.
For v ∈ ω<ω, let

Ψ(X ∗
v ) =

⋃

{[b,A∞]× [p∞|σ] : [b,A∞]× [p∞|σ] ∩ X ∗
v = ∅} , and

Φ(X ∗
v ) = (Xv ∩ [a,A∞]× [p∞]) \Ψ(X ∗

v ).

By Lemma 3.25, Φ(X ∗
v ) is perfectly Ramsey. The set Mv := Φ(X ∗

v ) \
⋃

l<ω Φ(X ∗
v�l

) is also perfectly Ramsey, and Mv ⊆ Φ(X ∗
v ) \ X

∗
v . Since Mv
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is perfectly Ramsey, starting from B0 = A∞ and q0 = p∞, we can build
Bk+1 ∈ [|a| + k,Bk] and qk+1 ≤

k,k qk such that for every σ ∈ l(k, k, qk), b ⊆
a ∪

⋃

i≤k Bi(|a|+ i) and v ∈ ω<ω with max(v) < k, either
(a) [b,Bk+1]× [qk+1|σ] ⊆ Mv, or
(b) [b,Bk+1]× [qk+1|σ] ∩Mv = ∅.
We check that alternative (b) always holds: Suppose not. We assume, for

some k, there are σ, b, v as above with [b,Bk+1]× [qk+1|σ] ⊆ Mv . Note qk+1

≤ pk+1, Bk+1 ≤ Ak+1 are such that [b,Bk+1]× [qk+1|σ] ⊆ Φ(X ∗
v )\X

∗
v disjoint

from X ∗
v , i.e. alternative (2) above does not hold. So [b,Ak+1]× [pk+1|σ]

∩X ∗
v = ∅. Then by definition, [b,Ak+1]× [pk+1|σ] ⊆ Ψ(X ∗

v ). So Mv ∩Ψ(X ∗
v )

�= ∅, contradicting that Mv ⊆ Φ(X ∗
v ) is disjoint from Ψ(X ∗

v ).
Let B∞ = a ∪ {Bk(|a|+ k) : k ∈ ω} and q∞ = (

⋂

k q
i
k)i<ω. As alterna-

tive (b) always holds, [a,B∞]× [q∞] ∩Mc
v = ∅ for all v ∈ ω<ω. Then

it is straightforward to check
(

[a,B∞]× [q∞]
)

∩ X ∗
∅ =

(

[a,B∞]× [q∞]
)

∩ Φ(X ∗
∅ ). As Φ(X ∗

∅ ) is perfectly Ramsey, ∃B ≤ B∞ ≤ A ∃q ≤ q∞ ≤ p such
that [a,B]× [q] ⊆ [a,B∞]× [q∞] ∩ Φ(X ∗

∅ ) or [a,B] × [q] ∩ Φ(X ∗
∅ ) = ∅, so

[a,B]× [q] ⊆ X or [a,B]× [q] ∩ X = ∅ as required. �

Thus we have proved the main theorem of this section, Theorem 1.2.

4. Local parametrized Rα theorem

In this section, we recall the definition of selective [5] and Nash–Williams
[8] ultrafilters, and aim to prove the Local Parametrized Rα Theorem 1.3.

Definition 4.1. Let U be an ultrafilter on the base set [T] of all maxi-
mal nodes of the tree T. We say U is Nash–Williams if U is generated by sets
of the form [X], X ∈ Rα, and for every Nash–Williams set G ⊆ ARα and
every partition G = G0 ⊔G1, there exist [X] ∈ U with X ∈ Rα and i ∈ 2 such
that Gi|X = ∅. We say U is selective if it is generated by sets of the form [X],
X ∈ Rα, and for every family {[Xa] : a ∈ ARα} ⊆ U such that Xa ∈ Rα for
all a ∈ ARα there exists [X] ∈ U with X ∈ Rα such that X/a ⊆ Xa for all
a ≤ X .

When we write [X] ∈ U , we tacitly assume X ∈ Rα. Let us first check
that every Nash–Williams ultrafilter is selective in Rα.

Definition 4.2 [17, Definition 3.4]. An ultrafilter U on [T] is weakly
selective if for every family {[Ab] : b ∈ ARα

1 } ⊆ U there exists [B] ∈ U such
that B/b ⊆ Ab for each b ∈ ARα

1 (B).

Lemma 4.3 [17, Lemma 3.8]. In a topological Ramsey space every Ram-
sey ultrafilter is weakly selective.

The definition of Ramsey ultrafilter ([17, Definition 3.2]) is not crucial
here. It is straightforward to check that every Nash–Williams ultrafilter is
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Ramsey. From Lemma 4.3 and the lemma below, we can easily conclude
that every Nash–Williams ultrafilter, as well as every Ramsey ultrafilter, is
selective in Rα.

Lemma 4.4. Every weakly selective ultrafilter on [T] is selective.

Proof. Let U be a weakly selective ultrafilter on [T]. Let {[Xa] : a ∈
ARα} ⊆ U . We aim to find [X] ∈ U such that X/a ⊆ Xa for all a ≤ X .

We recursively construct a ≤-decreasing sequence ([Yn])n<ω ⊆ U . For
n = 0, consider the set S0 = {b ∈ ARα : max[b] = 0}. Since S0 is finite and
U is an ultrafilter, we can find [Y0] ∈ U such that [Y0] ⊆

⋂

b∈S0
[Xb]. Suppose

we have constructed Y0, . . . , Yn. The set Sn+1 = {b ∈ ARα : max[b] = n+1}
is finite. We can find [Yn+1] ∈ U such that [Yn+1] ⊆

⋂

b∈Sn+1
[Xb]∩ [Yn]. This

finishes the construction of the sequence ([Yn])n<ω. In particular, for all
n ∈ ω, [Yn] ∈ U and Yn ≤ Xb for all b ∈ ARα with max[b] = n.

In order to apply the property that U is weakly selective, for each
b ∈ ARα

1 , let Ab = Yn where n = max[b]. Then there exists [X] ∈ U such
that X/b ⊆ Ab for all b ∈ ARα

1 (X). Let us check that X is a witness to the
selectivity of U . Suppose a ≤ X . Let b ∈ ARα

1 be such that max[b] = max[a].
So b ≤ X . Thus

X/a = X/b ⊆ Ab = Ymax[b] = Ymax[a] ≤ Xa

as required. �

From now on in this section, we fix a Nash–Williams ultrafilter U in Rα.

4.1. Open subsets of Rα × RN. Firstly we relativise the ultra-
Ramsey theory. The definitions in this subsection are adapted to Rα from
those in [20, §7]. Consider ARα as a tree ordered by ⊑ with root ∅. From
now on by a tree we mean a downward closed subtree of ARα.

Notation. For a tree T , let [T ] denote the set of all infinite branches
of T , that is, [T ] = {X ∈ Rα : X ↾n ∈ T for all n ∈ ω}. Let the stem of T ,
denoted by st(T ), be the maximal node of T that is ⊑-comparable with
every node in T . For s ∈ T , by T/s we denote the set of nodes in T above s,
i.e. T/s = {t ∈ T : s ⊑ t}.

In [7,8], U -trees for the spaces Rα are seen in well-founded form, and
used together with the Ramsey-classification Theorem canonizing the equiv-
alent relations on fronts, to determine the Rudin–Keisler structure inside
each of the Tukey types of ultrafilters Tukey reducible to U . We recall the
definition of a U -tree:

Definition 4.5. A U -tree T is a tree such that for all t ∈ T with st(T )
⊑ t there exists [X] ∈ U such that t∪ a ∈ T for every a ∈ Rα(|t|)|X . For two
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U -trees T and T ′, we say T ′ is a pure refinement of T , and write T ′ ≤0 T ,
if T ′ ⊆ T and st(T ′) = st(T ). Similarly, T ′ ≤n T if T ′ ≤0 T and T agrees
with T ′ on the first n levels above the common stem.

Definition 4.6. A sequence (Tn) of U -trees is a fusion sequence if Tn+1

≤n Tn for all n ∈ ω. In this case T∞ :=
⋂

n∈ω Tn is also a U -tree and is called
the fusion of the sequence.

Lemma 4.7. Suppose T,T ′ are U -trees such that st(T ′) ∈ T/ st(T ). Then
T ∩ T ′ is also a U -tree.

Proof. Let t ⊒ st(T ′) ⊒ st(T ) be such that t ∈ T ∩ T ′. By assumption,
there exist [X] and [X ′] in U such that t∪ a ∈ T for every a ∈ Rα(|t|)|X and
t∪a ∈ T ′ for every a ∈ Rα(|t|)|X

′. Since [X], [X ′] ∈ U and U is an ultrafilter,
there exists [Y ] ∈ U such that [Y ] ⊆ [X]∩ [X ′]. Then t∪ a ∈ T ∩T ′ for every
a ∈ Rα(|t|)|Y as required. �

Definition 4.8. A subset G ⊆ ARα is U -open if for every t ∈ G there
exists a U -tree T such that st(T ) = t and T/t ⊆ G.

Lemma 4.9. For every subset G ⊆ ARα and every s ∈ ARα, since U is
Nash–Williams, there exists [X] ∈ U with s ≤ X such that either

(∀a ∈ Rα(|s|)|X)(s ∪ a ∈ G) or (∀a ∈ Rα(|s|)|X)(s ∪ a �∈ G).

Proof. For G ⊆ ARα, consider G = {b ∈ ARα
|s|+1 : s ⊑ b} ⊆ ARα and

the partition G = G0 ∪G1 where G0 = G ∩ G. Since U is Nash–Williams,
there exist [X] ∈ U and i ∈ 2 such that Gi|X = ∅. Thus, if i = 1, then the
first alternative in the lemma holds; if i = 0, then the second alternative
holds. �

The lemma below follows immediately from the definition of U -open sets
and Lemma 4.9.

Lemma 4.10. A subset G ⊆ ARα is U -open if and only if (∃[X] ∈ U)
(∀a ∈ Rα(|s|)|X)(s ∪ a ∈ G) holds for every s ∈ G.

Definition 4.11. A subset G ⊆ Rα is U -open if for every X ∈ G there
exists a U -tree T such that X ∈ [T ] ⊆ G.

By Lemma 4.7, the basic U -open sets [T ] (T a U -tree) generates a topol-
ogy on Rα, containing the metric topology.

Definition 4.12. A subset X ⊆ Rα is U -Ramsey if for every U -tree T
there exists T ′ ≤0 T such that [T ′] ⊆ X or [T ′]∩X = ∅. It is U -Ramsey null
if the second alternative always holds.
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Lemma 4.13. Every U -open set is U -Ramsey.

Proof. Let X ⊆ Rα be a given U -open set. Let G = {s ∈ ARα :
(∃U-tree T )((st(T ) = s) ∧ ([T ] ⊆ X ))}. Note G is a U -open subset of ARα.
Also note that if s �∈ G then there does not exist [X] ∈ U such that s∪ a ∈ G
for all a ∈ Rα(|s|)|X : If every s∪ a has a U -tree in X above it, then putting
them together we would get a U -tree in X above s. By Lemma 4.9, s �∈ G
implies that (∃[X] ∈ U)(∀a ∈ Rα(|s|)|X)(s ∪ a �∈ G). Let F = ARα \G, so
F satisfies the criterion of Lemma 4.10 for being U -open. It follows that F is
U -clopen.

We prove that for every t ∈ F there exists a U -tree T ′ with stem t such
that [T ′] ∩ X = ∅. Then given T with stem s: either s ∈ G, so there exists
U -tree T ′ such that [T ′ ∩ T ] ⊆ X by the definition of G; or s ∈ F , so there
exists T ′ such that [T ′ ∩ T ] ∩ X = ∅.

Claim 4.13.1. If T is a U -tree with st(T ) = t such that T/t ⊆ F , then
[T ] ∩ X = ∅.

First note that such tree exists since F is U -open. Suppose X ∈ [T ]∩X .
Since X is U -open, there exists T ′ such that X ∈ [T ′] ⊆ X . Let s = st(T ′).
Then s ∈ G. But this contradicts that s ∈ T/t ⊆ F . �

The proofs of the following three lemmas below closely follow those of
Lemma 7.40, 7.41 and Theorem 7.42 in [20], respectively. The corollary then
easily follows.

Lemma 4.14. Every U -nowhere dense sets is U -Ramsey null.

Lemma 4.15. The U -Ramsey null sets form a σ-ideal.

Lemma 4.16. A subset of Rα has the property of Baire with respect to
the U -topology if and only if it is U -Ramsey.

Corollary 4.17. If X ⊆ Rα is Souslin-measurable, then it is U -
Ramsey.

This finishes the relativization of ultra-Ramsey theory. Now we show
that selectivity helps us obtain a U -tree from an element [X] ∈ U , and vice
versa.

Lemma 4.18. For a U -tree T with stem s there is [X] ∈ U such that
[s,X] ⊆ [T ]. Conversely for s ⊑ X with [X] ∈ U there is a U -tree T with
stem s such that [T ] ⊆ [s,X].

Proof. Consider t ∈ ARα. If t ∈ T/s, then there exists [Xt] ∈ U such
that t ∪ a ∈ T for every a ∈ Rα(|t|)|Xt. If t ∈ ARα \ (T/s) is such that
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|t| > |s| and s ∪ t \ (t(0) ∪ · · · ∪ t(|s| − 1)) ∈ T/s, then we can find [Xt] ∈ U
such that

[

s ∪ t \
(

t(0) ∪ · · · ∪ t(|s| − 1)
)]

∪ a ∈ T for every a ∈ Rα(|t|)|Xt.

Otherwise, let Xt = T. (Note that [T] ∈ U since U is an ultrafilter on the
base set [T].) Applying selectivity of U to {[Xt] : t ∈ ARα} ⊆ U , we get
[X] ∈ U such that X/t ⊆ Xt for all t ≤ X .

We check that [s,X] ⊆ [T ]: Suppose A ∈ [s,X]; we prove A ↾n ∈ T for
all n by induction. Firstly, A ↾ |s| = s ∈ T by assumption. Now consider
A ↾ (n+1) = A ↾n∪A(n), where n ≥ |s|. By the induction hypothesis, A ↾n
∈ T . As s ⊑ A ≤ a ∪X , there exists t ≤ X such that

A ↾n = s ∪ t \
(

t(0) ∪ · · · ∪ t(|s| − 1)
)

.

So

A(n) ∈ Rα(n)|(X/t) ⊆ Rα(n)|Xt.

Then by the definition of Xt, A ↾n ∪A(n) ∈ T , that is, A ↾ (n+ 1) ∈ T as
required.

Now suppose s ⊑ X and [X] ∈ U . Starting with the stem s we con-
struct T recursively. For t ∈ T , let the set of the immediate descendants of t
in T be {t∪ b : b ∈ Rα(|t|)|X}. Note that [X] ∈ U implies that T is a U -tree.
�

Theorem 4.19. For every finite Souslin-measurable colouring of Rα

there exists [X] ∈ U such that [∅,X] is monochromatic.

Proof. Without loss of generality, consider a two colouring of Rα given
by Rα = X ∪ X c where X is Souslin-measurable. By Corollary 4.17, X
is U -Ramsey, so there is a U -tree T such that [T ] ⊆ X or X c. Then by
Lemma 4.18, there exists [X] ∈ U such that [∅,X] ⊆ [T ] ⊆ X or X c as re-
quired. �

Now, as in [22], we define uniform families in Rα, in order to obtain
Theorem 4.22 below.

Notation. For S ⊆ ARα and a ∈ ARα, let S[a] = {y : a ⊑ y ∈ S}.

Definition 4.20. Let γ be a countable ordinal and S ⊆ ARα. Let
X ∈ Rα and b ∈ ARα. We say S is a γ-uniform family on [b,X] if

• γ = 0 and S = {b}; or
• γ = β+1, b �∈S and S[a] is β-uniform on [a,X] for every a∈ARα

|b|+1[b,X];
or

• γ is a limit ordinal, b �∈ S and there exists a sequence (γa)a∈ARα

|b|+1[b,X]

of ordinals, with
⋃

{γa : a ∈ ARα
|b|+1[b,X]} = γ, such that S[a] is γa-uniform

on [a,X] for every a ∈ ARα
|b|+1[b,X].
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We say S is a uniform family on [b,X] if it is γ-uniform on [b,X] for
some γ < ω1.

For example, if n < ω, the only n-uniform family on [b,X] is ARα
|b|+n[b,X].

For every k ∈ ω, the family S = {y : (b ⊑ y ≤ X) ∧ (|y| = �y(|b|+ 1)�+ k)}
is ω-uniform, and the family T = {y : (b ⊑ y ≤ X)∧ (|y| = �y(|b|+2)�+ k)}
is (ω + 1)-uniform.

We have the following lemma relating fronts and uniform families.

Lemma 4.21 [22, Lemmas 2.13, 2.14]. Let b ∈ ARα and X ∈ Rα. If S is
a uniform family on [b,X], then it is a front on [b,X]. Conversely, if F is
a front on [b,X], then there exists a uniform family S on [b,X] such that
every s ∈ S has an initial segment in F .

A proof similar to that of Theorem 2.15 in [22] gives the following theo-
rem.

Theorem 4.22. For every open set O ⊆ Rα × RN there exist [X] ∈ U
and p ∈ Pω such that [∅,X]× [p] ⊆ O or [∅,X]× [p] ∩ O = ∅.

4.2. Perfectly U-Ramsey sets. In this subsection, we strengthen
Theorem 4.22 from open sets O to all Souslin-measurable sets B.

Definition 4.23 [22, Definition 2.18]. A subset B ⊆ Rα×RN is perfectly
U -Ramsey if for all U -tree T and p ∈ Pω there exist T ′ ≤0 T and p′ ≤ p such
that [T ′]× [p′] ⊆ B or [T ′]× [p′] ∩ B = ∅. We say B is perfectly U -Ramsey
null if the second alternative always holds.

The following lemma is immediate.

Lemma 4.24 [22, Lemma 2.20]. A subset B ⊆ Rα × RN is perfectly U -
Ramsey if and only if for arbitrary F ∈ [ω]<ω , n ∈ ω, U -tree T and p ∈ Pω,

∃T ′ ≤0 T ∃p′ ≤F,n p ∀σ ∈ l(F, n, p′) [T ′]× [p′|σ] ⊆ B or [T ′]× [p′|σ] ∩ B = ∅.

For a ∈ ARα, recall the space R
(a)
α from Definition 3.19. Exactly the

same as the case for Rα, we have the following.

Definition 4.25. An ultrafilter Ua on the base set [T(k)] is selective if

it is generated by sets of the form [X] with X ∈ R
(a)
α such that for every

family {[Xb] : b ∈ AR
(a)
α } ⊆ Ua there exists [X] ∈ Ua such that X/b ⊆ Xb for

all b ≤(a) X . Moreover, it is Nash–Williams if, in addition, for every Nash–

Williams subset G ⊆ AR
(a)
α and partition G = G0 ⊔ G1 there exist [X] ∈ Ua

and i ∈ 2 such that Gi|X = ∅.

Theorem 4.26. If Ua is a Nash–Williams ultrafilter on [T(k)] then for

every open set B ⊆ R
(a)
α ×RN there exist [X] ∈ Ua and p ∈ Pω such that [∅,X]

× [p] ⊆ B or [∅,X]× [p] ∩ B = ∅.
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The proof closely follows the procedure in Section 4.1 leading to Theo-
rem 4.22.

Lemma 4.27. If B ⊆ Rα × RN is open, then B is perfectly U -Ramsey.

Proof. Let a U -tree T and p ∈ Pω be given. Let a = st(T ). Let

Ba = {(X/a, ε) : (a ⊑ X) ∧ ((X, ε) ∈ B)} ⊆ R
(a)
α × RN, and Ua be the ultra-

filter generated by {[X/a] : (a ⊑ X) ∧ ([X] ∈ U)}. Note that Ba is open in

R
(a)
α × RN. We check that Ua is Nash–Williams: Let G ⊆ AR

(a)
α be Nash–

Williams and G = G0 ⊔ G1. For i = 0, 1, let G′
i = {a ∪ y : y ∈ Gi}, and simi-

larly for G′. We obtain a Nash–Williams subset G′ ⊆ ARα and a partition
G′ = G′

0 ⊔ G′
1. Since U is Nash–Williams, there exists [X] ∈ U and i ∈ 2 such

that G′
i|X = ∅. So [X/a] ∈ Ua and Gi|(X/a) = ∅.

So by Theorem 4.26 there exist [Xa] ∈ Ua and p′ ≤ p such that [∅,Xa]×
[p′] ⊆ Ba or Bc

a. Thus [a, a∪Xa]× [p′] ⊆ B or [a, a∪Xa]× [p′]∩B = ∅. Hence
by Lemma 4.18 we can find a U -tree T ′ with stem a such that [T ′]× [p′] ⊆ B
or Bc. �

Then by a standard procedure (see [22, §2.2]), we have the following.

Theorem 4.28. The field of perfectly U -Ramsey subsets of Rα ×RN is
closed under the Souslin operation.

Corollary 4.29. Every Souslin-measurable subset of Rα × RN is per-
fectly U -Ramsey.

Restating the above corollary, we have the main theorem of this subsec-
tion, Theorem 1.3.

5. Preservation under countable-support side-by-side Sacks

forcing

Let κ be a cardinal. Recall that the countable-support side-by-side Sacks
forcing is the set Pκ consisting of conditions p = (pi)i<κ, where, for all i < κ,
pi is a perfect tree and, for all but countably many i < κ, pi is the full binary
tree 2<ω. The partial order is given by p ≤ q if pi ⊆ qi for every i < κ. Recall
also that supp(p) = {i < κ : pi �= 2<ω}.

Let U be a Nash–Williams ultrafilter in Rα. We show that the upward
closure of U , after forcing by Pκ, is still Nash–Williams. First we see it is
selective.

Lemma 5.1 [1, Lemma 1.9]. Let p ∈ Pκ, n ∈ ω and F ⊆ κ be finite. If
q ≤ p then there exists σ ∈ l(F, n, p) such that q and p|σ are compatible.

Corollary 5.2 [1, Corollary 1.10]. Suppose p ∈ Pκ, n ∈ ω, and F ⊆ κ
finite. If p � (τ ∈ V ) then there exists q ≤F,n p such that for every σ ∈
l(F, n, q) there exists aσ ∈ V such that q|σ � (τ = aσ).
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If q and τ are as in Corollary 5.2 then we say q determines τ with re-
spect to (F, n). We say q determines τ if there exist F ∈ [ω]<ω and n ∈ ω
such that q determines τ with respect to (F, n). For q � (τ : [Tα] → V ),
q determines τ if q determines τ(x) for every x ∈ [Tα].

As [Tα] is countable, we can write it as [Tα] = {xn : n ∈ ω}, and refine p
step by step, considering xn at step n, and achieve the following as in [22].

Lemma 5.3. If p ∈ Pκ and p � (τ : [Tα] → 2), then ∃q ≤ p such that q
determines τ .

Exactly the same as in [22], using Theorem 1.3, we have the following
theorem saying that the upward closure of U is still “ultra” in the extension.

Theorem 5.4 [22, Theorem 3.4]. If p ∈ Pκ and p � τ ⊆ [Tα], then there
exist q ≤ p and [B] ∈ U such that q � ([B] ⊆ τ) or q � ([B] ∩ τ = ∅).

It is then straightforward to show that the upward closure is selective in
the extension. Now we check that it is also Nash–Williams in the extension.

Theorem 5.5. Suppose p ∈ Pκ and p � ((G ⊆ ARα is Nash–Williams)
∧ (G = G0 ⊔ G1)). Then there exists q ≤ p, i < 2 and [X] ∈ U such that
q � (Gi|X = ∅).

Proof. Let p ∈ Pκ as in the statement of the theorem. We may con-
sider G ⊆ ARα with G = G0 ⊔ G1 as a function g : ARα → 3 given by the
following formula. For a ∈ ARα,

g(a) =











0 if a ∈ G0;

1 if a ∈ G1;

2 if a ∈ ARα \ G.

Since ARα is countable, we enumerate it as ARα = {ak : k ∈ ω}.
We construct (pk)k recursively as follows, starting with p−1 = p. Suppose

we have pk ≤ p. By Corollary 5.2, there exists pk+1 ≤
k+1,k+1 pk such that for

every σ ∈ l(k+1, k+1, pk) there is iσ ∈ 3 such that pk+1|σ � (g(ak+1) = iσ).
Let p∞ =

�
�

k∈ω p
i
k

�

i<ω
. Then p∞ ∈ Pκ and for each k < ω,

∀σ ∈ l(k, k, p∞) ∃iσ ∈ 3 p∞|σ � (g(ak) = iσ).

Let

F =
�

(ak, ε) : ∃σ ∈ l(k, k, p∞)((σ ⊑∗ ε) ∧ (p∞|σ � g(ak) = 0 or 2))
�

⊆ ARα × [p∞],

X =
�

(X, ε) : (∀ak ⊑ X)((ak, ε) ∈ F)
�

⊆ Rα × [p∞].
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Note that X c = {(X, ε) : (∃ak ⊑ X)((ak, ε) �∈ F)} is an open subset of Rα

× [p∞]. Then by Theorem 1.3, there exists [X] ∈ U and q ≤ p∞ such that
[∅,X]× [q] ⊆ X or [∅,X]× [q] ∩ X = ∅.

Suppose first [∅,X]× [q] ⊆ X . We show that ak ≤ X implies q � (g(ak) =
0 or 2), so q � (G1|X = ∅): Assume r ≤ q is such that r � (g(ak) = 1). We
aim for a contradiction. By Lemma 5.1, there is σ ∈ l(k, k, p∞) such that
r is compatible with q|σ and q|σ �= ∅. Let ε ∈ [q] be such that σ ⊑∗ ε, and
let Y ≤ X be such that ak ⊑ Y . As (Y, ε) ∈ [∅,X]× [q] ⊆ X , (ak, ε) ∈ F .
Hence q|σ ≤ p∞|σ � (g(ak) = 0 or 2), contradicting that r � g(ak) = 1 and
r is compatible with q|σ.

Now suppose [∅,X]× [q] ⊆ X c. We check that ak ≤ X implies

q � (∃al ≤ X)(((al ⊑ ak) ∨ (al ⊒ ak)) ∧ (g(al) = 1)).

Then, as q � (G is Nash–Williams), q � (G0|X = ∅). Assume r ≤ q is such
that r � ((∀al ≤ X)((al ⊑ ak or al ⊒ ak) → (g(al) = 0 or 2)). We aim for a
contradiction. Let ε ∈ [r] and Y ≤ X be such that ak ⊑ Y . Then (Y, ε)
∈ X c. So there is al ⊑ Y such that (al, ε) �∈ F . Let τ ∈ l(l, l, p∞) be such
that τ ⊑∗ ε. Then p∞|τ � (g(al) = 1). This contradicts that r|τ ≤ p∞|τ and
r|τ ≤ r � ((∀al ≤ X)((al ⊑ ak or al ⊒ ak) → (g(al) = 0 or 2)). �

Thus we have proved that every Nash–Williams ultrafilter in Rα is pre-
served under countable-support side-by-side Sacks forcing (Theorem 1.1).

6. Necessity of Nash–Williams

In this section, we show that the ultrafilter being Nash–Williams is a
necessary condition for the Local Parametrized Rα Theorem 1.3 to hold.

For a subset X ⊆ Rα, we say X is weakly U -Ramsey if for every
[X] ∈ U there exists [Y ] ∈ U with Y ≤ X such that either [∅, Y ] ⊆ X or
[∅, Y ] ∩ X = ∅. Note that, if U is selective, then by Lemma 4.18, every
U -Ramsey set is weakly U -Ramsey.

Lemma 6.1. If every open subset of Rα is weakly U -Ramsey, then U is
Nash–Williams. Namely,

(∀X ⊆ Rα open)(∀[X] ∈ U)(∃[Y ] ∈ U)

((Y ≤ X) ∧ ([∅, Y ] ⊆ X ) ∨ ([∅, Y ] ∩ X = ∅))

⇒ (∀G ⊆ ARα Nash–Williams)(∀G0 ⊔ G1 = G)(∃[X] ∈ U)(∃i ∈ 2)(Gi|X = ∅).

Proof. Let G ⊆ ARα be Nash–Williams, G = G0 ⊔ G1. Then the set
X =

⋃

a∈G0
[a,T] is open in Rα. As every open set is weakly U -Ramsey, there

is [Y ] ∈ U such that Y ≤ X and [∅, Y ] ⊆ X or [∅, Y ] ∩ X = ∅.
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In the first case, [∅, Y ] ⊆
⋃

a∈F0
[a,T]. So for every Z ≤ Y , Z has an

initial segment in G0. But G is Nash–Williams so Z cannot have initial
segment in G1. i.e. a �∈ G1 for all a ≤ Y , so G1|Y = ∅. In the second case,
[∅, Y ] ∩

(
⋃

a∈G0
[a,T]

)

= ∅, so a �∈ G0 for all a ≤ Y , i.e. G0|Y = ∅. �

From the above lemma, we know that if U is selective and every open
subset of Rα is U -Ramsey, then U must be Nash–Williams. Moreover, it
follows from the Local Parametrized Rα Theorem 1.3 that every open sub-
set of Rα is weakly U -Ramsey. So for Theorem 1.3 to hold for a selective
ultrafilter, it is necessary that the ultrafilter is Nash–Williams.

Thus, we see that Nash–Williams ultrafilters in Rα are analogous to
selective ultrafilters in the Ellentuck space: They are preserved under
countable-support side-by-side Sacks forcing. In particular, the ultrafilters
Uα are preserved under such forcings.

We showed in Section 4 that selective and weakly selective coincide in Rα.
In [21], Trujillo constructed an ultrafilter that is weakly selective but not
Ramsey in R1, answering a question of Dobrinen. So the ultrafilter is selec-
tive but not Ramsey. We also showed that every Nash–Williams ultrafilter
is selective. It remains to be seen the exact relation among the notions of
weakly selective, selective, Nash–Williams and Ramsey in Rα. It is not dif-
ficult to see that these four notions coincide in the Milliken space (see [22])
and the Ellentuck space. It would also be interesting to see how the rela-
tion among the notions and their preservation under Sacks forcing depend
on the structure of topological Ramsey spaces.
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