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Abstract. For positive integers N and M, the general hypergeometric
Cauchy polynomials cyr,nn(z) (M, N > 1; n > 0) are defined by

1 1 o tn
(14 )2 oFL(M,N; N + 15 —t) ;CM,N,n(z) e

where 2F(a,b;c;z) is the Gauss hypergeometric function. When M = N =1,
¢n = c1,1,n are the classical Cauchy numbers. In 1875, Glaisher gave several in-
teresting determinant expressions of numbers, including Bernoulli, Cauchy and
Euler numbers. In the aspect of determinant expressions, hypergeometric Cauchy
numbers are the natural extension of the classical Cauchy numbers, though many
kinds of generalizations of the Cauchy numbers have been considered by many
authors. In this paper, we show some interesting expressions of generalized hy-
pergeometric Cauchy numbers. We also give a convolution identity for generalized
hypergeometric Cauchy polynomials.

1. Introduction

Let

00 () () () 7
2F1(CL, b7 C; Z) = Z ( )(C)En)) ’I’L'

n=0

be the Gauss hypergeometric function with the rising factorial (z) =
z(z4+1)---(x4+n—-1) (n>1) and () =1. For N > 1, define the hy-
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pergeometric Cauchy numbers ¢y, ([20]) by

1 B (~D)N-U4N/N Z
oF1(1,N; N +1;-1)  log(141t) — VN (—=1)n—1n/n N"

n=1

When N =1, ¢, = ¢1,, are the classical Cauchy numbers ([5,33]) defined by

ey =
=Y ¢ .
log(1+1) 4= " nl

Notice that b, = ¢, /n! are sometimes called the Bernoulli numbers of the sec
ond kind. In [20], the general hypergeometric Cauchy polynomials cps N n(2)
(M,N >1;n > 0) are defined by

1 1 > tm
(2) = ZCM,N,n(z) nl’
n=0

(14+t)? 21 (M,N;N +1; —t)
so that ey, = c1,80(0).
Similar hypergeometric numbers are hypergeometric Bernoulli numbers

By, and hypergeometric Euler numbers. For N > 1, define hypergeometric
Bernoulli numbers By, ([10-13,15,34]) by

1 tN/N!
3 - - n )

where 1 F(a; b; z) is the confluent hypergeometric function defined by

(a)(n) prg
Fi(abiz) = .
HF(a;52) =0 ()™ n!

When N =1, By, = B, are classical Bernoulli numbers, defined by

The hypergeometric Euler numbers Ey ,, ([24,30]) are defined by

1
EnNn
\Fy(1;N + 1, (2N +1)/2;£2/4) Z N o)

where

n

by N (@ 2
1F2(0L, b, C; Z) - 7;) (b)(”)(c)(”) n!
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384 T. KOMATSU and P. YUAN

is the hypergeometric function. When N = 0, then E, = Ey,, are classical
Euler numbers defined by

1 e
= E .
cosht HZZO " n!

Several kinds of generalizations of the Cauchy numbers (or the Bernoulli
numbers of the second kind) have been considered by many authors. For ex-
ample, poly-Cauchy number [18], multiple Cauchy numbers, shifted Cauchy
numbers [28], generalized Cauchy numbers [25], incomplete Cauchy numbers
[21,23,26], various types of g-Cauchy numbers [3,19,22,29], Cauchy Carlitz
numbers [16,17]. The situations are similar and even more so for Bernoulli
numbers and Euler numbers. One of the advantages of hypergeometric num-
bers is the natural extension of determinant expressions of the numbers. In
[24,30], the hypergeometric Euler numbers E 2, can be expressed as

(2N)! 1
(2N+2)!
(2N)! .
Engn = (—1)"(2n)!| @GN (N>0,n>1).
: - 1
(2N)! (2N)! (2N)!
(2N+2n)! "7 (2N4+4)! (2N+2)!

When N =0, this is reduced to a famous determinant expression of FEuler
numbers (cf. cite[p. 52|Glaisher):

o1
T T
(4) Bon = (—1)"2n)!| o
1 1 1 1
(2n—2)!  (2n—4)! 2!
1 1 11
(2n)! (2n—2)! 4 2

In addition, when N =1, Fy, can be expressed by Bernoulli numbers as
E,, =—(n—-1)B, ([30]).
In [1], the hypergeometric Bernoulli numbers By, can be expressed as

N! 1

(N+1)!
N! N!

(N+2)! (N+1)!

Byn = (—1)"n! : : o1 (N>1,n>1).
N! N! N! 1
(N+n—1)!  (N4+n—2)! ~°°  (N+1)!

N! N! N! N!

(N+n)!  (N4+n-1)! 7 (N42)! (N+1)!
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When N =1, we have a determinant expression of Bernoulli numbers ([7,

p. 53)):

2!

3!

1

n!

1
(n+1)!

1
(n—1)!
1
n!

1

1
2!
1
3!

1

1
2!

In addition, relations between By, and By_, are shown in [1].

In this paper, we shall give a similar determinant expression of general-
ized hypergeometric Cauchy numbers and their generalizations. This allows
us to find a more different expression of generalized hypergeometric Cauchy
numbers as well as a converted expression. We also study the sums of prod-
ucts of generalized hypergeometric Cauchy polynomials.

2. Basic properties of generalized hypergeometric Cauchy
numbers

Since

Z(M)PIN (=)™
2F1(M7N;N+1;—t):Z(N)_|_n (n')

)

from the definition (2), we have

= (2 VW) (S )

=0 m=0
i n <T7, (M)(n—m)N( 1)n—mc "
= M,N,m
= = \m N+n—m !
Thus, we get
n n (_1)n—m(M)(n—m)
m = >1
® 3 () N =0 21

with ¢ar,n0 = 1. By (6), we have

n—1
n —1)—m=L(pf (n—m)N
CM,Nn = Z ( ) ( ) ( ) CM,N,m -

m N+n—m
m=0
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Then, generalized hypergeometric Bernoulli numbers of the second kind
by, Nn = cu,Nn/n! satisfy the relation

n—1

bM,N,n — Z (_1)n—m—1

m=0

(M+n—-—m-—1)! N

b m >1).
(n—m)! N+n—m " (n=1)

By using this expression, the first few values of cps n,, are given by the
following:

. . _M-N _ 2M?N?*  M(M+1)N
M,No0 =1, M,N,l—N+17 M,N,2—(N+1)2 N2 )
_ 6M3N3  6M?*(M +1)N?* M(M+1)(M+2)N
MNSZ (N1 1)3 7 (N+1)(N +2) N+3 ’
. _ 24M*N* 36MP(M +1)N°® | 8M*(M +1)(M + 2)N?
MNAT (N4 14 (N+ 12N +2) (N +1)(N + 3)
6M?(M +1)°N*  M(M + 1)(M +2)(M + 3)N
(N +2)? N+4 '

An explicit expression of hypergeometric Cauchy numbers is given as
follows.

THEOREM 1. For N,n > 1, we have

n B M)(il)...(M)(ik)Nk
cM,Nn = n! —1)nF . ( . . -
MN, ;( ) il+.§k>:n il i LN 4 i1) - (N + i)
it yenyin 1

Such values of ¢y N, can be expressed in terms of the determinant in
the later section.

PRrROOF. Proof of Theorem 1 This is a special case of Theorem 2 in the
next section. [J

3. Multiple hypergeometric Cauchy numbers

In [14], the higher-order hypergeometric Bernoulli numbers and polyno-
mials are defined and studied. For positive integers M, N and r, define

the higher-order generalized hypergeometric Cauchy numbers cg\? N Dy the
generating function
1 B > 0 t"

8 . |
(8) (2F1(M, N;N + 1;_,5)) — M,Nn
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Whenr =1, cpynn = cg\? N.n are the generalized hypergeometric Cauchy
numbers.
From the definition (8),

o~ (MON)D (NS~ 19 "
1= ,
<§ (N +i)@ ! L MNn
_ (i 3 (=D)L (M@ - (M) (V)0 <. (7)) tl>
- 1=0 i+ i, =l 77! 'Lr'(N—Fl)(Zl)(N_Fl)(%) I

Zl? 77'7

(D) S5 ()

n=0m=0
Z (M)(u)...(M)(ir)(N)(il)...(N)(z‘r) o "

X il - (N 4 1)(z’1)...(N+ 1)(ir) CM,N.n ol

i1++i.=n—m
01 yeenyirn >0

Hence, for n > 1, we have the following.
PropoSsITION 1.

$ oy CUTeneeon® e

IS =
7.0 ...5 1 ) ... ; M,N,m
i ! ir! (N +idy)- (N +1i,)
B yeeyir >0

By using Proposition 1 or

n—1
(9) ilna=-nIN">

m=014,4++i,=n—m
01 yeenyir >0

(~1)m ()@ (M)
mligl - i V(N +dq) -« (N +4,)

with 05\21\,’0 =1 (N >1), some values of 05\21\,’” (0 < n < 4) are explicitly

given by the following.

N R rMN oy _r(r 1)M2N?rM(M + 1)N
M,N,0 — MN1™ N 417 “MN2T (N 41)2 N+2 ’
) r(r+1)(r +2)M3N3

M,N3 = (N +1)3
_ 3r(r+ 1)M*(M +1)N? N rM(M +1)(M +2)N
(N +1)(N+2) N +3 ’

Acta Mathematica Hungarica 153, 2017



388 T. KOMATSU and P. YUAN

O r(r+1)(r + 2)(r + 3)M4N*
CM,N,4 - (N + 1)4
CGr(r+ 1)+ 2)MA(M +1)N? | dr(r + 1)M?(M +1)(M +2)N?
(N +1)2(N +2) (N +1)(N+3)
3r(r4+ 1)M?*(M +1)2N?  rM(M +1)(M +2)(M + 3)N
(N +2)? - N +4 '

(r)

We have an explicit expression for ¢ M.N -

THEOREM 2. For M,N,n > 1, we have

CMN = n! Z ok Z D.(e1) - Dy(ex),

e1+--tex=n

e1,...,ep>1
where
' _i+--~+i— ip! i V(N +dq) - (N +4y)
i S0

The first few values of D,(e) are given by the following.

_TMN _rM(M+1)N | r(r—1)M>N?
D1 = N+1’ Dr(2) = 2(N +2) 2(N+1)2 7
D.(3) = rM(M +1)(M +2)N  r(r—1)M*M +1)N?  (r\ M3N3
~ rM(M +1)(M +2)(M + 3)N
D) = 24(N + 4)

+r(r—1)M2(M—i—1)(M—i—2)N2 <;> M?(M +1)2N?

6(N + 1)(N +3) A(N +2)2

T<T 2 1) zgvgf\f)julv) ]132) * <Z> (]]:f/[ i]\i;

We shall introduce the Hasse—Teichmiiller derivative in order to prove
Theorem 2 easily. Let F be a field of any characteristic, F[[z]] the ring of
formal power series in one variable z, and F((z)) the field of Laurent series
in z. Let n be a nonnegative integer. We define the Hasse—Teichmiiller
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derivative H™ of order n by

e}

H(n)< Z szm> = i Cm <m> ZmTn
m=R m=R "

for > 00 pcmz™ € F((2)), where R is an integer and ¢, € F for any m > R.
Note that (') =0 if m < n.

The Hasse-Teichmiiller derivatives satisfy the product rule [36], the quo
tient rule [8] and the chain rule [9]. One of the product rules can be described
as follows.

LEMMA 1. For f; € F[z]] (i=1,...,k) with k> 2 and for n > 1, we
have

HO(fifi)= > HO(f1)-- HW(f).
i1t tig=n
01 yeenyie >0
The quotient rules can be described as follows.

LEMMA 2. For f € F[[z]]\{0} and n > 1, we have

(11) H® (;) = (fki)l S HO(f) - HO(p)
k=1

i1t +ig=n
Zl, ,’Lk>l

- 1\ (—1)F ; ;
1 =230 T a .
' s

PROOF OF THEOREM 2. Put h(t) = (f(t))r, where

s N(NYG) (—t)d
= N + 1 4!
Since
HO(f)| _ = i (=IO N (1) (M)
=0 ~  (N+D1O i) ! =0 iV(N +4)
by the product rule of the Hasse—Teichmiiller derivative in Lemma 1, we get
H®© - (1) (D)
MWg= > HWW| - HI)|
FNASY
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oy CORONGIN e anN
i1+-+i-=e Zl' (N + Zl) ZT' (N + Zr)
81 yeenyir >0

. (M)(il)...(M)(ir)Nr .
=0 z‘ll-"z’r!(N—Irz'l)m(N—Irz'r)::(_1)DT(6)'

T
i1,0sin >0

Hence, by the quotient rule of the Hasse-Teichmiiller derivative in Lemma 2(11),
we have

() n

CM.Nm (—1)’“ o o
STEY L, 2 HOYW)| o H)

k=1 e1t-t+ex=n
e1,...,ep>1

= (_1)k Z (=1)"Dr(e1)--- Dy(eg). O
k=1 61+~~~+ek>:1n

4. Determinant expressions of generalized hypergeometric
Cauchy numbers

THEOREM 3. Forn > 1, we have

M-N 1
N+1
(M) N M-N
21 (N42) N+1
CMNpn = 1! : : 1
(M)»—VUN (M= N M-N 1
(n=D!(N+n—-1) (n=2)!(N4+n—-2) ' N+1
(M) N (M)"~DN (M)®N  M-N
n! (N4n) (n=D!(N+n—-1) "~~~ 21(N42) N+1

REMARK. When M = 1, Theorem 3 is reduced to a determinant expres-
sion of hypergeometric Cauchy numbers [2]:

N

N+1 1

N N

N+2 N+1

CNp = ! : : 1 (N,n>1).

N N .. N 1
N+4+n—1 N+4+n—2 N+1

N N N N

N+n N+n—1 N+2 N+1
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When N =1, we have a determinant expression of Cauchy numbers ([7,
p. 50]):

1

5 1

1 1

3 2

(13) cp=mnll .1

1 1 1
n n—1 T2 1
1 1 11
n+1 32

The values of this determinant, that is, b,, = ¢, /n! are called Bernoulli num-
bers of the second kind.

PrROOF OF THEOREM 3. This is a special case with r = 1 of the next
theorem. [

(r)

Now, we can also show a determinant expression of c¢;, » ..
b 9

THEOREM 4. For integers M, N,n > 1, we have

D,(1) 1
D, (2) D,(1)
(r) — .
CMNp =T : : 1
D.(n—1) Dy,(n—2) --- D.(1) 1
D.(n) Dy(n—1) --- D.(2) D.(1)

where D,(e) are given in (10).
REMARK. When r» = 1 in Theorem 4, we have the result in Theorem 3.

PrROOF OF THEOREM 4. For simplicity, put bg\?,N,n = cg\?’N’n/nl. Then,
we shall prove that for any n > 1

D, (1) 1
D.(2)  D.(1)
(14) Bine=| S
D.(n—1)D,(n—2)--- D,(1) 1
D,(n) Dy(n—1)--- D.(2) D,(1)

When n = 1, (14) is valid because

rN" rMN
D, (1) = — = .
W= Ny 1) T N1
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Assume that (14) is valid up to n — 1. Notice that by (9), we have

n

bg\?,N,n - Z(_l)l_lbg\?,N,n—zDr(l) .
1=1

Thus, by expanding the first row of the right-hand side (14), it is equal to

D,(2) 1
D.(3)  D.(1)
Dr(l)bg\?,N,n—l - : : R
D.(n—1)D,(n—3)--- D.(1) 1
D.(n) D,(n—2)---

= Dr(DW) s~ Dbyt | A
Dy(n—1) Dy(n—4)--- Dy(1) 1
Dy(n)  Du(n—3)--- Du(2) Dy(1)
r r n—a | Dpr(n—1 1
= Z(_l)l_lDT(l)bg\?,N,n—l = bg\?,N,n'
=1

Note that bg\?’N’1 = D, (1) and bg\?,N,o =1 U

We shall use the Trudi’s formula to obtain a different explicit expression

for the numbers cg\? N in Theorem 4.

LEMMA 3 (Trudi’s formula [27,31]). For a positive integer m, we have

ay az - Qm,
aO al e

00 al as
00 ap aq

t t
= (e

t1+2to+--+mt,,=m

Lyt . . .
where (tltjr ttm) = (zr,nj ,) are the multinomial coefficients.
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In [32], Merca gave the following interesting relation (see also [27]).

LEMMA 4. If {on }n>0 15 a sequence defined by oy =1 and

then

Moreover, if

then

From Trudi’s formula, it is possible to give the combinatorial expression
t s+t e
= > (") R RE)S - RO
.. tn
t1+2t2++ntn:n

By applying these lemmata to Theorem 4 we obtain an explicit expression
for the generalized hypergeometric Cauchy numbers.

THEOREM 5. Forn>1

(r) _ th+---+ity

x (=1)""h= D ()" D (2)2 - - Dy(n)t .
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Moreover,
CS\;),N,I 1
1!
Cgv?,z\f,z . .
2! : :
D,«(TL) — )
. .. . 1
cg&),N,n . Cg\;),N,Q Cg\;),N,l
n! 2! 1!
and
-1
1
1
CS\;),N,I 1
1! Dr(l) 1
(r) (r)
C C
1\42,?7,2 ]Wl,g\],l 1 — DT(Q) DT(]') 1
cg&),l\l,n . Cg\;),N,Q Cg\;),NJ 1 Dr(n) T DT(2) Dr(l) 1
n! 2! 1!

If M =r =1 in Theorem 5, we have a different expression for hyperge-
ometric Cauchy numbers ¢y, = ¢1,n,n-

COROLLARY 1. Forn >1

t e 4t
D SN G [T
s in

t1+2to+--+nt,=n

N 1 N t2 N tn
><<N+1> <N+2) "'<N+n) :

Moreover,
CN,1
1! 1
CN,2 *
N |
CNn  , CN,2 CN,1
n! 20 1!

If M =N =r =1 in Theorem 5, we have a different expression for the
original Cauchy numbers ¢,, = c1 1 5.

COROLLARY 2. Forn >1
bttt Lot 1ot L
cp =n! Z ( 1t+ —|t— n> (_1)n—t1—..._tn (2) (3) - ( ! 1) '
t1+2ts+-+nt,=n 1ye--slp .
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Moreover,

C
i1
C

N

n+1 1
Cn Co C1
nl 7T 2t 1l

5. Sums of products of generalized hypergeometric Cauchy
polynomials

As an application, we shall give a convolution identity for the generalized
hypergeometric Cauchy polynomials. Similar sums of products have been
studied for Bernoulli numbers, hypergeometric Bernoulli numbers, poly-
Bernoulli numbers, and Cauchy numbers (see, e.g. [6,15,20,35,37]).

The general hypergeometric Cauchy polynomials cpynn(2) (M, N > 1;
n > 0) are defined in (2). For convenience, put

1 1

t =
f( 72) (1+t)z F
with F := oFy (M, N; N + 1; —t). Since

n+l N) (n+1) (_t)n

oo
Z ) (1) nl

n=0
we have
d 1 B 1 > (M)(n—i-l)(N)(n—i-l) (_t)n
= " .
dt F F o (N + 1)( +1) n!
Thus,
d 1
2
N -F—tF Qi F
S (M)(n)(N)( n+1 )(n+l) (—t)”
=N
7;) (N + 1) tz N+1 ()l
- (M)M(N)0) (—t)m ) (=8)" N
= N =N MO =
7;)( ) (N+1)  nl HZ:;J( ) n! (14+t)M
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Hence, we get

1 (Q4+n)M (1+t)Mtd1

(15) r-  F N CatF’
Since
d z 1 d 1
t2)=— t
iD= Dt e

by dividing both sides of (15) by (1 + t)?, we have

L1 a+Mr 4™ ¢ d1

B 1+0)M d 1+ 2
=(@+tMfta) -t ) - t 62

The first term on the right-hand side of (16) is equal to

M

A+ M f(t2) = <M> 03 cunnl) -
Vi =0 n:

=0
MM\ X (4 5)! ¢n+i
- Z (j ) D emwale) (n+ j)!
o M m n! tn
> ( | ) (n— M=y

The second term on the right-hand side of (16) is equal to

M 00
1+t)M a 1 MY i t"
-y tdtf(t’z)__Njgo )P emnan (@),

n=0

M o) . ;
1 M (n+j+1)! gttt
=2 ()2  aeae

1 &M v . N
oy 7;); <j ) (n— j — 1 MNn=a(Z)
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HYPERGEOMETRIC CAUCHY NUMBERS AND POLYNOMIALS 397

The third term on the right-hand side of (16) is equal to
21+ )M t +1
SN - Nz( R SETRE

M-1 00 . .
oz M-1 (n+j+1)! VAR
- Nz< ) et

7=0 J n=0
z iM_l <M—1> n! ( )t”
= - . . CM,Nn—j—1\% .
— 4 _1)! wh |
N = = J (n—j—1)! n!

On the other hand, taking z = = + v,

(1 +t Z Z ( )CMNk )CM,N,n—k(y):: .

n=0 k=0
By comparing the coefficients on both sides, we have

n

> <Z> M, Nk (T)em Nk (Y) = % <M> " Tj)!CM,N,n—j(:E )

k=0 =0 \J

NZ( ) (n—j —1) | CM N (T + )

. h o c i—1(z +y)

- Zi ((J.\Q ]\En_—n;)r!j _Z<Aj4—_11> (n 1.7) ) ()

J=0

Therefore, we obtain a convolution identity for the sums of products of two
hypergeometric Cauchy polynomials. For convenience, take (_ ) =0 for
n > 0.

THEOREM 6. For M,N > 1 and n > M, we have

n

> <Z> er, Nk (T) e, Nn—k(Y)

k=0
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()G () Ly et

j=0

REMARK. When M =1 in Theorem 6, we have a convolution identity
for the sums of products of two original hypergeometric Cauchy polynomials

enn(z) =1 nn(T).

g <Z> en gk (T)enn—k(Y)
N —n

= cnp (T +y) +

N @4y +N—n+1)ennalz+y).

N

When M =1 and z =0 in Theorem 6, we have a convolution identity for
the sums of products of two original hypergeometric Cauchy numbers cy
([20, Theorem 2)).

n

n N —n n
kz_o (k‘) CN,kCNn—k = N CN.n + N(N —-n+ 1)CN,n—l .

When M = N =1 in Theorem 6, we have a convolution identity for the sums
of products of two classical Cauchy polynomials ¢, (z) (see e.g. [4]).

n

Z <Z> ce(x)en—k(y) = —(n—Dep(z+y) —n(z+y+n—2)cp—1(z+y).
k=0

When M = N =1 and z = 0 in Theorem 6, we have a convolution identity
for the sums of products of two classical Cauchy numbers ¢,. This is also a
special case of the result by Zhao for m = 2 (see [37]).

n

Z <Z> ckCn—t =—(n—1)cp —n(n —2)cy_1 .

k=0
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