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pergeometric Cauchy numbers cN,n ([20]) by
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When N = 1, cn = c1,n are the classical Cauchy numbers ([5,33]) defined by

t
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∞
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cn
tn

n!
.

Notice that bn = cn/n! are sometimes called the Bernoulli numbers of the sec
ond kind. In [20], the general hypergeometric Cauchy polynomials cM,N,n(z)
(M,N ≥ 1; n ≥ 0) are defined by
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so that cN,n = c1,N,n(0).
Similar hypergeometric numbers are hypergeometric Bernoulli numbers

BN,n and hypergeometric Euler numbers. For N ≥ 1, define hypergeometric
Bernoulli numbers BN,n ([10–13,15,34]) by
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where 1F1(a; b; z) is the confluent hypergeometric function defined by

1F1(a; b; z) =
∞
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(a)(n)

(b)(n)
zn

n!
.

When N = 1, B1,n = Bn are classical Bernoulli numbers, defined by

t

et − 1
=

∞
∑

n=0

Bn

tn

n!
.

The hypergeometric Euler numbers EN,n ([24,30]) are defined by

1
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,

where
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Abstract. For positive integers N and M , the general hypergeometric
Cauchy polynomials cM,N,n(z) (M,N ≥ 1; n ≥ 0) are defined by

1

(1 + t)z
1

2F1(M,N ;N + 1;−t)
=

∞∑

n=0

cM,N,n(z)
tn

n!
,

where 2F1(a, b; c; z) is the Gauss hypergeometric function. When M = N = 1,
cn = c1,1,n are the classical Cauchy numbers. In 1875, Glaisher gave several in-
teresting determinant expressions of numbers, including Bernoulli, Cauchy and
Euler numbers. In the aspect of determinant expressions, hypergeometric Cauchy
numbers are the natural extension of the classical Cauchy numbers, though many
kinds of generalizations of the Cauchy numbers have been considered by many
authors. In this paper, we show some interesting expressions of generalized hy-
pergeometric Cauchy numbers. We also give a convolution identity for generalized
hypergeometric Cauchy polynomials.

1. Introduction

Let

2F1(a, b; c; z) =
∞
∑

n=0

(a)(n)(b)(n)

(c)(n)
zn

n!

be the Gauss hypergeometric function with the rising factorial (x)(n) =
x(x+ 1) · · · (x+ n− 1) (n ≥ 1) and (x)(0) = 1. For N ≥ 1, define the hy-
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Acta Math. Hungar., 153 (2) (2017), 382–400
DOI: 10.1007/s10474-017-0744-0

First published online September 15, 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s10474-017-0744-0&domain=pdf


Acta Mathematica Hungarica 153, 2017

2 T. KOMATSU and P. YUAN

pergeometric Cauchy numbers cN,n ([20]) by

(1)
1

2F1(1,N ;N + 1;−t)
=

(−1)N−1tN/N

log(1 + t)−
∑N−1

n=1 (−1)n−1tn/n
=

∞
∑

n=0

cN,n

tn

n!
.

When N = 1, cn = c1,n are the classical Cauchy numbers ([5,33]) defined by

t

log(1 + t)
=

∞
∑

n=0

cn
tn

n!
.

Notice that bn = cn/n! are sometimes called the Bernoulli numbers of the sec
ond kind. In [20], the general hypergeometric Cauchy polynomials cM,N,n(z)
(M,N ≥ 1; n ≥ 0) are defined by

(2)
1

(1 + t)z
1

2F1(M,N ;N + 1;−t)
=

∞
∑

n=0

cM,N,n(z)
tn

n!
,

so that cN,n = c1,N,n(0).
Similar hypergeometric numbers are hypergeometric Bernoulli numbers

BN,n and hypergeometric Euler numbers. For N ≥ 1, define hypergeometric
Bernoulli numbers BN,n ([10–13,15,34]) by

(3)
1

1F1(1;N + 1; t)
=

tN/N !

et −
∑N−1

n=0 tn/n!
=

∞
∑

n=0

BN,n

tn

n!
,

where 1F1(a; b; z) is the confluent hypergeometric function defined by

1F1(a; b; z) =
∞
∑

n=0

(a)(n)

(b)(n)
zn

n!
.

When N = 1, B1,n = Bn are classical Bernoulli numbers, defined by

t

et − 1
=

∞
∑

n=0

Bn

tn

n!
.

The hypergeometric Euler numbers EN,n ([24,30]) are defined by

1

1F2(1;N + 1, (2N + 1)/2; t2/4)
=

∞
∑

n=0

EN,n

tn

n!
,

where

1F2(a; b, c; z) =

∞
∑

n=0

(a)(n)

(b)(n)(c)(n)
zn

n!

Acta Mathematica Hungarica

HYPERGEOMETRIC CAUCHY NUMBERS AND POLYNOMIALS 383



Acta Mathematica Hungarica 153, 2017

HYPERGEOMETRIC CAUCHY NUMBERS AND POLYNOMIALS 3

is the hypergeometric function. When N = 0, then En = E0,n are classical
Euler numbers defined by

1

cosh t
=

∞
∑

n=0

En

tn

n!
.

Several kinds of generalizations of the Cauchy numbers (or the Bernoulli
numbers of the second kind) have been considered by many authors. For ex-
ample, poly-Cauchy number [18], multiple Cauchy numbers, shifted Cauchy
numbers [28], generalized Cauchy numbers [25], incomplete Cauchy numbers
[21,23,26], various types of q-Cauchy numbers [3,19,22,29], Cauchy Carlitz
numbers [16,17]. The situations are similar and even more so for Bernoulli
numbers and Euler numbers. One of the advantages of hypergeometric num-
bers is the natural extension of determinant expressions of the numbers. In
[24,30], the hypergeometric Euler numbers EN,2n can be expressed as

EN,2n = (−1)n(2n)!

∣
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∣
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∣

∣

∣

∣

∣

∣

(N ≥ 0, n ≥ 1) .

When N = 0, this is reduced to a famous determinant expression of Euler
numbers (cf. cite[p. 52]Glaisher):

(4) E2n = (−1)n(2n)!
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.

In addition, when N = 1, E1,n can be expressed by Bernoulli numbers as
E1,n = −(n− 1)Bn ([30]).

In [1], the hypergeometric Bernoulli numbers BN,n can be expressed as

BN,n = (−1)nn!
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When N = 1, we have a determinant expression of Bernoulli numbers ([7,
p. 53]):

(5) Bn = (−1)nn!
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In addition, relations between BN,n and BN−1,n are shown in [1].
In this paper, we shall give a similar determinant expression of general-

ized hypergeometric Cauchy numbers and their generalizations. This allows
us to find a more different expression of generalized hypergeometric Cauchy
numbers as well as a converted expression. We also study the sums of prod-
ucts of generalized hypergeometric Cauchy polynomials.

2. Basic properties of generalized hypergeometric Cauchy

numbers

Since

2F1(M,N ;N + 1;−t) =
∞
∑

n=0

(M)(n)N

N + n

(−t)n

n!
,

from the definition (2), we have

1 =

( ∞
∑

l=0

(M)(l)N

N + l

(−t)l

l!

)( ∞
∑

m=0

cM,N,m
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)
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∑
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(

n

m

)
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tn

n!
.

Thus, we get

(6)
n
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(

n

m

)

(−1)n−m(M)(n−m)

N + n−m
cM,N,m = 0 (n ≥ 1)

with cM,N,0 = 1. By (6), we have

cM,N,n =

n−1
∑

m=0

(

n

m

)

(−1)n−m−1(M)(n−m)N

N + n−m
cM,N,m .
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Then, generalized hypergeometric Bernoulli numbers of the second kind
bM,N,n := cM,N,n/n! satisfy the relation
(7)

bM,N,n =
n−1
∑

m=0

(−1)n−m−1 (M + n−m− 1)!

(n−m)!

N

N + n−m
bM,N,m (n ≥ 1) .

By using this expression, the first few values of cM,N,n are given by the
following:

cM,N,0 = 1 , cM,N,1 =
M ·N

N + 1
, cM,N,2 =

2M2N2

(N + 1)2
−

M(M + 1)N

N + 2
,

cM,N,3 =
6M3N3

(N + 1)3
−

6M2(M + 1)N2

(N + 1)(N + 2)
+

M(M + 1)(M + 2)N

N + 3
,

cM,N,4 =
24M4N4

(N + 1)4
−

36M3(M + 1)N3

(N + 1)2(N + 2)
+

8M2(M + 1)(M + 2)N2

(N + 1)(N + 3)

+
6M2(M + 1)2N2

(N + 2)2
−

M(M + 1)(M + 2)(M + 3)N

N + 4
.

An explicit expression of hypergeometric Cauchy numbers is given as
follows.

Theorem 1. For N,n ≥ 1, we have

cM,N,n = n!
n
∑

k=1

(−1)n−k
∑

i1+···+ik=n
i1,...,ik≥1

(M)(i1) · · · (M)(ik)Nk

i1! · · · ir! (N + i1) · · · (N + ik)
.

Such values of cM,N,n can be expressed in terms of the determinant in
the later section.

Proof. Proof of Theorem 1 This is a special case of Theorem 2 in the
next section. �

3. Multiple hypergeometric Cauchy numbers

In [14], the higher-order hypergeometric Bernoulli numbers and polyno-
mials are defined and studied. For positive integers M , N and r, define

the higher-order generalized hypergeometric Cauchy numbers c
(r)
M,N,n by the

generating function

(8)
1

(

2F1(M,N ;N + 1;−t)
) r =

∞
∑

n=0

c
(r)
M,N,n

tn

n!
.
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When r = 1, cM,N,n = c
(1)
M,N,n are the generalized hypergeometric Cauchy

numbers.
From the definition (8),

1 =

( ∞
∑

i=0

(M)(i)(N)(i)

(N + i)(i)
(−t)i

i!

)r( ∞
∑

n=0

c
(r)
M,N,n

tn

n!

)

=

( ∞
∑

l=0

∑

i1+···+ir=l
i1,...,ir≥0

(−1)ll! (M)(i1) · · · (M)(ir)(N)(i1) · · · (N)(ir)

i1! · · · ir! (N + 1)(i1) · · · (N + 1)(ir)
tl

l!

)

×

( ∞
∑

n=0

c
(r)
M,N,n

tn

n!

)

=

∞
∑

n=0

n
∑

m=0

(

n

m

)

(−1)n−m(n−m)!

×
∑

i1+···+ir=n−m
i1,...,ir≥0

(M)(i1) · · · (M)(ir)(N)(i1) · · · (N)(ir)

i1! · · · ir! (N + 1)(i1) · · · (N + 1)(ir)
c
(r)
M,N,n

tn

n!
.

Hence, for n ≥ 1, we have the following.

Proposition 1.

n
∑

m=0

∑

i1+···+ir=n−m
i1,...,ir≥0

(−1)n−m(M)(i1) · · · (M)(ir)

m! i1! · · · ir! (N + i1) · · · (N + ir)
c
(r)
M,N,m = 0 .

By using Proposition 1 or

(9) c
(r)
M,N,n = −n!N r

n−1
∑

m=0

∑

i1+···+ir=n−m
i1,...,ir≥0

(−1)n−m(M)(i1) · · · (M)(ir)c
(r)
M,N,m

m! i1! · · · ir! (N + i1) · · · (N + ir)

with c
(r)
M,N,0 = 1 (N ≥ 1), some values of c

(r)
M,N,n (0 ≤ n ≤ 4) are explicitly

given by the following.

c
(r)
M,N,0 = 1 , c

(r)
M,N,1 =

rMN

N + 1
, c

(r)
M,N,2 =

r(r + 1)M2N2

(N + 1)2
rM(M + 1)N

N + 2
,

c
(r)
M,N,3 =

r(r + 1)(r+ 2)M3N3

(N + 1)3

−
3r(r + 1)M2(M + 1)N2

(N + 1)(N + 2)
+

rM(M + 1)(M + 2)N

N + 3
,
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c
(r)
M,N,4 =

r(r + 1)(r + 2)(r + 3)M4N4

(N + 1)4

−
6r(r + 1)(r + 2)M3(M + 1)N3

(N + 1)2(N + 2)
+

4r(r + 1)M2(M + 1)(M + 2)N2

(N + 1)(N + 3)

+
3r(r + 1)M2(M + 1)2N2

(N + 2)2
−

rM(M + 1)(M + 2)(M + 3)N

N + 4
.

We have an explicit expression for c
(r)
M,N,n.

Theorem 2. For M,N,n ≥ 1, we have

c
(r)
M,N,n = n!

n
∑

k=1

(−1)n−k
∑

e1+···+ek=n
e1,...,ek≥1

Dr(e1) · · ·Dr(ek) ,

where

(10) Dr(e) =
∑

i1+···+ir=e
i1,...,ir≥0

(M)(i1) · · · (M)(ir)N r

i1! · · · ir! (N + i1) · · · (N + ir)
.

The first few values of Dr(e) are given by the following.

Dr(1) =
rMN

N + 1
, Dr(2) =

rM(M + 1)N

2(N + 2)
+

r(r − 1)M2N2

2(N + 1)2
,

Dr(3) =
rM(M + 1)(M + 2)N

6(N + 3)
+

r(r − 1)M2(M + 1)N2

2(N + 1)(N + 2)
+

(

r

3

)

M3N3

(N + 1)3
,

Dr(4) =
rM(M + 1)(M + 2)(M + 3)N

24(N + 4)

+
r(r − 1)M2(M + 1)(M + 2)N2

6(N + 1)(N + 3)
+

(

r

2

)

M2(M + 1)2N2

4(N + 2)2

+ r

(

r − 1

2

)

M3(M + 1)N3

2(N + 1)2(N + 2)
+

(

r

4

)

M4N4

(N + 1)4
.

We shall introduce the Hasse–Teichmüller derivative in order to prove
Theorem 2 easily. Let F be a field of any characteristic, F[[z]] the ring of
formal power series in one variable z, and F((z)) the field of Laurent series
in z. Let n be a nonnegative integer. We define the Hasse–Teichmüller
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derivative H(n) of order n by

H(n)

( ∞
∑

m=R

cmzm
)

=
∞
∑

m=R

cm

(

m

n

)

zm−n

for
∑∞

m=R cmzm ∈ F((z)), where R is an integer and cm ∈ F for any m ≥ R.
Note that

(

m
n

)

= 0 if m < n.
The Hasse–Teichmüller derivatives satisfy the product rule [36], the quo

tient rule [8] and the chain rule [9]. One of the product rules can be described
as follows.

Lemma 1. For fi ∈ F[[z]] (i = 1, . . . , k) with k ≥ 2 and for n ≥ 1, we

have

H(n)(f1 · · · fk) =
∑

i1+···+ik=n
i1,...,ik≥0

H(i1)(f1) · · ·H
(ik)(fk) .

The quotient rules can be described as follows.

Lemma 2. For f ∈ F[[z]]\{0} and n ≥ 1, we have

H(n)
( 1

f

)

=
n
∑

k=1

(−1)k

fk+1

∑

i1+···+ik=n
i1,...,ik≥1

H(i1)(f) · · ·H(ik)(f)(11)

=
n
∑

k=1

(

n+ 1

k + 1

)

(−1)k

fk+1

∑

i1+···+ik=n
i1,...,ik≥0

H(i1)(f) · · ·H(ik)(f) .(12)

Proof of Theorem 2. Put h(t) =
(

f(t)
)r
, where

f(t) =
∞
∑

j=0

(M)(j)(N)(j)

(N + 1)(j)
(−t)j

j!
.

Since

H(i)(f)|
t=0

=
∞
∑

j=i

(−1)j(M)(j)(N)(j)

(N + 1)(j)

(

j

i

)

tj−i

j!

∣

∣

∣

t=0
=

(−1)i(M)(i)N

i! (N + i)

by the product rule of the Hasse–Teichmüller derivative in Lemma 1, we get

H(e)(h)|
x=0

=
∑

i1+···+ir=e
i1,...,ir≥0

H(i1)(f)
∣

∣

∣

x=0
· · ·H(ir)(f)

∣

∣

∣

x=0
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∣

∣
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∣

∣
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=
∑

i1+···+ir=e
i1,...,ir≥0

(−1)i1(M)(i1)N

i1! (N + i1)
· · ·

(−1)ir(M)(ir)N

ir! (N + ir)

= (−1)e
∑

i1+···+ir=e
i1,...,ir≥0

(M)(i1) · · · (M)(ir)N r

i1! · · · ir! (N + i1) · · · (N + ir)
:= (−1)eDr(e) .

Hence, by the quotient rule of the Hasse–Teichmüller derivative in Lemma 2(11),
we have

c
(r)
M,N,n

n!
=

n
∑

k=1

(−1)k

hk+1

∣

∣

∣

x=0

∑

e1+···+ek=n
e1,...,ek≥1

H(e1)(h)|
x=0

· · ·H(ek)(h)|
x=0

=
n
∑

k=1

(−1)k
∑

e1+···+ek=n
e1,...,ek≥1

(−1)nDr(e1) · · ·Dr(ek) . �

4. Determinant expressions of generalized hypergeometric

Cauchy numbers

Theorem 3. For n ≥ 1, we have

cM,N,n = n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M ·N
N+1 1

(M)(2)N
2! (N+2)

M ·N
N+1

...
...

. . . 1

(M)(n−1)N

(n−1)! (N+n−1)
(M)(n−2)N

(n−2)! (N+n−2) · · · M ·N
N+1 1

(M)(n)N

n! (N+n)
(M)(n−1)N

(n−1)! (N+n−1) · · · (M)(2)N
2! (N+2)

M ·N
N+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Remark. When M = 1, Theorem 3 is reduced to a determinant expres-
sion of hypergeometric Cauchy numbers [2]:

cN,n = n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
N+1 1
N

N+2
N

N+1

...
...

. . . 1
N

N+n−1
N

N+n−2 · · · N
N+1 1

N
N+n

N
N+n−1 · · · N

N+2
N

N+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(N,n ≥ 1) .
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When N = 1, we have a determinant expression of Cauchy numbers ([7,
p. 50]):

(13) cn = n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2 1
1
3

1
2

...
...

. . . 1
1
n

1
n−1 · · ·

1
2 1

1
n+1

1
n

· · · 1
3

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The values of this determinant, that is, bn = cn/n! are called Bernoulli num-

bers of the second kind.

Proof of Theorem 3. This is a special case with r = 1 of the next
theorem. �

Now, we can also show a determinant expression of c
(r)
M,N,n.

Theorem 4. For integers M,N,n ≥ 1, we have

c
(r)
M,N,n = n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dr(1) 1
Dr(2) Dr(1)

...
...

. . . 1
Dr(n− 1) Dr(n− 2) · · · Dr(1) 1
Dr(n) Dr(n− 1) · · · Dr(2) Dr(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

where Dr(e) are given in (10).

Remark. When r = 1 in Theorem 4, we have the result in Theorem 3.

Proof of Theorem 4. For simplicity, put b
(r)
M,N,n = c

(r)
M,N,n/n!. Then,

we shall prove that for any n ≥ 1

(14) b
(r)
M,N,n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dr(1) 1
Dr(2) Dr(1)

...
...

. . . 1
Dr(n− 1)Dr(n− 2) · · · Dr(1) 1
Dr(n) Dr(n− 1) · · · Dr(2)Dr(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

When n = 1, (14) is valid because

Dr(1) =
rN r

N r−1(N + 1)
=

rMN

N + 1
= b

(r)
M,N,1 .
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∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣
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When n = 1, (14) is valid because

Dr(1) =
rN r

N r−1(N + 1)
=

rMN

N + 1
= b

(r)
M,N,1 .

Acta Mathematica Hungarica

HYPERGEOMETRIC CAUCHY NUMBERS AND POLYNOMIALS 391



Acta Mathematica Hungarica 153, 2017

HYPERGEOMETRIC CAUCHY NUMBERS AND POLYNOMIALS 11

Assume that (14) is valid up to n− 1. Notice that by (9), we have

b
(r)
M,N,n =

n
∑

l=1

(−1)l−1b
(r)
M,N,n−lDr(l) .

Thus, by expanding the first row of the right-hand side (14), it is equal to

Dr(1)b
(r)
M,N,n−1 −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dr(2) 1
Dr(3) Dr(1)

...
...

. . . 1
Dr(n− 1)Dr(n− 3) · · · Dr(1) 1
Dr(n) Dr(n− 2) · · · Dr(2)Dr(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= Dr(1)b
(r)
M,N,n−1 −Dr(2)b

(r)
M,N,n−2 +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dr(3) 1
Dr(4) Dr(1)

...
...

. . . 1
Dr(n− 1)Dr(n− 4) · · · Dr(1) 1
Dr(n) Dr(n− 3) · · · Dr(2)Dr(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= Dr(1)b
(r)
M,N,n−1 −Dr(2)b

(r)
M,N,n−2 + · · · + (−1)n−2

∣

∣

∣

∣

Dr(n− 1) 1
Dr(n) Dr(1)

∣

∣

∣

∣

=
n
∑

l=1

(−1)l−1Dr(l)b
(r)
M,N,n−l

= b
(r)
M,N,n .

Note that b
(r)
M,N,1 = Dr(1) and b

(r)
M,N,0 = 1. �

We shall use the Trudi’s formula to obtain a different explicit expression

for the numbers c
(r)
M,N,n in Theorem 4.

Lemma 3 (Trudi’s formula [27,31]). For a positive integer m, we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 · · · am
a0 a1 · · ·
...

...
. . .

...
0 0 · · · a1 a2
0 0 · · · a0 a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

t1+2t2+···+mtm=m

(

t1 + · · · + tm
t1, . . . , tm

)

(−a0)
m−t1−···−tmat11 a

t2
2 · · · atmm ,

where
(

t1+···+tm
t1,...,tm

)

= (t1+···+tm)!
t1! ···tm! are the multinomial coefficients.
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In [32], Merca gave the following interesting relation (see also [27]).

Lemma 4. If {αn}n≥0 is a sequence defined by α0 = 1 and

αn =

�

�

�

�

�

�

�

�

�

R(1) 1

R(2)
. . .

. . .
...

. . .
. . . 1

R(n) · · · R(2)R(1)

�

�

�

�

�

�

�

�

�

,

then

R(n) =

�

�

�

�

�

�

�

�

�

α1 1

α2
. . .

. . .
...

. . .
. . . 1

αn · · · α2 α1

�

�

�

�

�

�

�

�

�

.

Moreover, if

A =









1
α1 1
...

. . .
. . .

αn · · · α1 1









,

then

A−1 =









1
R(1) 1
...

. . .
. . .

R(n) · · · R(1) 1









.

From Trudi’s formula, it is possible to give the combinatorial expression

αn =
�

t1+2t2+···+ntn=n

�

t1 + · · · + tn
t1, . . . , tn

�

(−1)n−t1−···−tnR(1)t1R(2)t2 · · ·R(n)tn .

By applying these lemmata to Theorem 4 we obtain an explicit expression
for the generalized hypergeometric Cauchy numbers.

Theorem 5. For n ≥ 1

c
(r)
M,N,n = n!

�

t1+2t2+···+ntn=n

�

t1 + · · · + tn
t1, . . . , tn

�

× (−1)n−t1−···−tnDr(1)
t1Dr(2)

t2 · · ·Dr(n)
tn .
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Moreover,

Dr(n) =

�

�

�

�

�

�

�

�

�

�

�

�

�

c
(r)
M,N,1

1! 1

c
(r)
M,N,2

2!

. . .
. . .

...
. . .

. . . 1

c
(r)
M,N,n

n! · · ·
c
(r)
M,N,2

2!

c
(r)
M,N,1

1!

�

�

�

�

�

�

�

�

�

�

�

�

�

,

and





















1

c
(r)
M,N,1

1! 1

c
(r)
M,N,2

2!

c
(r)
M,N,1

1! 1

...
. . .

c
(r)
M,N,n

n! · · ·
c
(r)
M,N,2

2!

c
(r)
M,N,1

1! 1





















−1

=



















1

Dr(1) 1

Dr(2) Dr(1) 1

...
. . .

Dr(n) · · · Dr(2)Dr(1) 1



















.

If M = r = 1 in Theorem 5, we have a different expression for hyperge-
ometric Cauchy numbers cN,n = c1,N,n.

Corollary 1. For n ≥ 1

cN,n = n!
�

t1+2t2+···+ntn=n

�

t1 + · · · + tn
t1, . . . , tn

�

(−1)n−t1−···−tn

×
� N

N + 1

�t1
� N

N + 2

�t2
· · ·

� N

N + n

�tn
.

Moreover,

N

N + n
=

�

�

�

�

�

�

�

�

�

�

cN,1

1! 1

cN,2

2!

. . .
. . .

...
. . .

. . . 1
cN,n

n! · · · cN,2

2!
cN,1

1!

�

�

�

�

�

�

�

�

�

�

.

If M = N = r = 1 in Theorem 5, we have a different expression for the
original Cauchy numbers cn = c1,1,n.

Corollary 2. For n ≥ 1

cn = n!
�

t1+2t2+···+ntn=n

�

t1 + · · · + tn
t1, . . . , tn

�

(−1)n−t1−···−tn
�1

2

�t1
�1

3

�t2
· · ·

� 1

n+ 1

�tn
.
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Moreover,

1

n+ 1
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1
1! 1

c2
2!

. . .
. . .

...
. . .

. . . 1
cn
n! · · · c2

2!
c1
1!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

5. Sums of products of generalized hypergeometric Cauchy

polynomials

As an application, we shall give a convolution identity for the generalized
hypergeometric Cauchy polynomials. Similar sums of products have been
studied for Bernoulli numbers, hypergeometric Bernoulli numbers, poly-
Bernoulli numbers, and Cauchy numbers (see, e.g. [6,15,20,35,37]).

The general hypergeometric Cauchy polynomials cM,N,n(z) (M,N ≥ 1;
n ≥ 0) are defined in (2). For convenience, put

f(t, z) :=
1

(1 + t)z
1

F

with F := 2F1(M,N ;N + 1;−t). Since

d

dt
F = −

∞
∑

n=0

(M)(n+1)(N)(n+1)

(N + 1)(n+1)

(−t)n

n!
,

we have

d

dt

1

F
=

1

F 2

∞
∑

n=0

(M)(n+1)(N)(n+1)

(N + 1)(n+1)

(−t)n

n!
.

Thus,

N · F − tF 2 d

dt

1

F

= N
∞
∑

n=0

(M)(n)(N)(n)

(N + 1)(n)
(−t)n

n!
− t

∞
∑

n=0

(M)(n+1)(N)(n+1)

(N + 1)(n+1)

(−t)n

n!

=
∞
∑

n=0

(N + n)
(M)(n)(N)(n)

(N + 1)(n)
(−t)n

n!
= N

∞
∑

n=0

(M)(n)
(−t)n

n!
=

N

(1 + t)M
.
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Moreover,

1

n+ 1
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1
1! 1

c2
2!

. . .
. . .

...
. . .

. . . 1
cn
n! · · · c2

2!
c1
1!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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studied for Bernoulli numbers, hypergeometric Bernoulli numbers, poly-
Bernoulli numbers, and Cauchy numbers (see, e.g. [6,15,20,35,37]).

The general hypergeometric Cauchy polynomials cM,N,n(z) (M,N ≥ 1;
n ≥ 0) are defined in (2). For convenience, put
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1
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∞
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we have
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=

1

F 2

∞
∑
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.

Thus,
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F

= N
∞
∑
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∞
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=
∞
∑
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∞
∑
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Hence, we get

(15)
1

F 2
=

(1 + t)M

F
−

(1 + t)M

N
t
d

dt

1

F
.

Since

d

dt
f(t, z) = −

z

1 + t
f(t, z) +

1

(1 + t)z
d

dt

1

F
,

by dividing both sides of (15) by (1 + t)z, we have

1

(1 + t)z
1

F 2
=

(1 + t)M

(1 + t)z
1

F
−

(1 + t)M

N

t

(1 + t)z
d

dt

1

F
(16)

= (1 + t)Mf(t, z)−
(1 + t)M

N
t
d

dt
f(t, z)−

(1 + t)M

N
t

z

1 + t
f(t, z) .

The first term on the right-hand side of (16) is equal to

(1 + t)Mf(t, z) =
M
∑

j=0

(

M

j

)

tj
∞
∑

n=0

cM,N,n(z)
tn

n!

=

M
∑

j=0

(

M

j

) ∞
∑

n=0

(n+ j)!

n!
cM,N,n(z)

tn+j

(n+ j)!

=
∞
∑

n=0

M
∑

j=0

(

M

j

)

n!

(n− j)!
cM,N,n−j(z)

tn

n!
.

The second term on the right-hand side of (16) is equal to

−
(1 + t)M

N
t
d

dt
f(t, z) = −

1

N

M
∑

j=0

(

M

j

)

tj+1
∞
∑

n=0

cM,N,n+1(z)
tn

n!

= −
1

N

M
∑

j=0

(

M

j

) ∞
∑

n=0

(n+ j + 1)!

n!
cM,N,n+1(z)

tn+j+1

(n+ j + 1)!

= −
1

N

∞
∑

n=0

M
∑

j=0

(

M

j

)

n!

(n− j − 1)!
cM,N,n−j(z)

tn

n!
.
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The third term on the right-hand side of (16) is equal to

−
z(1 + t)M−1t

N
f(t, z) = −

z

N

M−1
∑

j=0

(

M − 1

j

)

tj+1
∞
∑

n=0

cM,N,n(z)
tn

n!

= −
z

N

M−1
∑

j=0

(

M − 1

j

) ∞
∑

n=0

(n+ j + 1)!

n!
cM,N,n(z)

tn+j+1

(n+ j + 1)!

= −
z

N

∞
∑

n=0

M−1
∑

j=0

(

M − 1

j

)

n!

(n− j − 1)!
cM,N,n−j−1(z)

tn

n!
.

On the other hand, taking z = x+ y,

1

(1 + t)z
1

F 2
=

∞
∑

n=0

n
∑

k=0

(

n

k

)

cM,N,k(x)cM,N,n−k(y)
tn

n!
.

By comparing the coefficients on both sides, we have

n
∑

k=0

(

n

k

)

cM,N,k(x)cM,N,n−k(y) =
M
∑

j=0

(

M

j

)

n!

(n− j)!
cM,N,n−j(x+ y)

−
1

N

M
∑

j=0

(

M

j

)

n!

(n− j − 1)!
cM,N,n−j(x+ y)

−
z

N

M−1
∑

j=0

(

M − 1

j

)

n!

(n− j − 1)!
cM,N,n−j−1(x+ y)

=
n!

N

M
∑

j=0

((

M

j

)

N − n+ j

(n− j)!
− z

(

M − 1

j − 1

)

1

(n− j)!

)

cM,N,n−j(x+ y) .

Therefore, we obtain a convolution identity for the sums of products of two
hypergeometric Cauchy polynomials. For convenience, take

(

n
−1

)

= 0 for
n ≥ 0.

Theorem 6. For M,N ≥ 1 and n ≥ M , we have

n
∑

k=0

(

n

k

)

cM,N,k(x)cM,N,n−k(y)
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The third term on the right-hand side of (16) is equal to

−
z(1 + t)M−1t

N
f(t, z) = −

z

N

M−1
∑

j=0

(

M − 1

j

)

tj+1
∞
∑

n=0

cM,N,n(z)
tn

n!

= −
z

N

M−1
∑

j=0

(

M − 1

j

) ∞
∑

n=0

(n+ j + 1)!

n!
cM,N,n(z)

tn+j+1

(n+ j + 1)!

= −
z

N

∞
∑

n=0

M−1
∑

j=0

(

M − 1

j

)

n!

(n− j − 1)!
cM,N,n−j−1(z)

tn

n!
.

On the other hand, taking z = x+ y,

1

(1 + t)z
1

F 2
=

∞
∑

n=0

n
∑

k=0

(

n

k

)

cM,N,k(x)cM,N,n−k(y)
tn

n!
.

By comparing the coefficients on both sides, we have

n
∑

k=0

(

n

k

)

cM,N,k(x)cM,N,n−k(y) =
M
∑

j=0

(

M

j

)

n!

(n− j)!
cM,N,n−j(x+ y)

−
1

N

M
∑

j=0

(

M

j

)

n!

(n− j − 1)!
cM,N,n−j(x+ y)

−
z

N

M−1
∑

j=0

(

M − 1

j

)

n!

(n− j − 1)!
cM,N,n−j−1(x+ y)

=
n!

N

M
∑

j=0

((

M

j

)

N − n+ j

(n− j)!
− z

(

M − 1

j − 1

)

1

(n− j)!

)

cM,N,n−j(x+ y) .

Therefore, we obtain a convolution identity for the sums of products of two
hypergeometric Cauchy polynomials. For convenience, take

(

n
−1

)

= 0 for
n ≥ 0.

Theorem 6. For M,N ≥ 1 and n ≥ M , we have

n
∑

k=0

(

n

k

)

cM,N,k(x)cM,N,n−k(y)
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=
n!

N

M
∑

j=0

((

M

j

)

N − n+ j

(n− j)!
− (x+ y)

(

M − 1

j − 1

)

1

(n− j)!

)

cM,N,n−j(x+ y) .

Remark. When M = 1 in Theorem 6, we have a convolution identity
for the sums of products of two original hypergeometric Cauchy polynomials
cN,n(x) = c1,N,n(x).

n
∑

k=0

(

n

k

)

cN,k(x)cN,n−k(y)

=
N − n

N
cN,n(x+ y) +

n

N

(

−(x+ y) +N − n+ 1
)

cN,n−1(x+ y) .

When M = 1 and z = 0 in Theorem 6, we have a convolution identity for
the sums of products of two original hypergeometric Cauchy numbers cN,n

([20, Theorem 2]).

n
∑

k=0

(

n

k

)

cN,kcN,n−k =
N − n

N
cN,n +

n

N
(N − n+ 1)cN,n−1 .

When M = N = 1 in Theorem 6, we have a convolution identity for the sums
of products of two classical Cauchy polynomials cn(x) (see e.g. [4]).

n
∑

k=0

(

n

k

)

ck(x)cn−k(y) = −(n− 1)cn(x+ y)− n(x+ y + n− 2)cn−1(x+ y) .

When M = N = 1 and z = 0 in Theorem 6, we have a convolution identity
for the sums of products of two classical Cauchy numbers cn. This is also a
special case of the result by Zhao for m = 2 (see [37]).

n
∑

k=0

(

n

k

)

ckcn−k = −(n− 1)cn − n(n− 2)cn−1 .
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