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constant mean curvature spacelike hypersurfaces in Lorentzian manifolds
are also critical points of the area functional for variations that keep the
volume constant. Later on, Barros, Brasil and Caminha [7] studied the
problem of strong stability (that is, stability with respect to not necessar-
ily volume-preserving variations) for spacelike hypersurfaces with constant
mean curvature in a generalized Robertson–Walker (GRW) spacetime of con-
stant sectional curvature, giving a characterization for the maximal spacelike
hypersurfaces and spacelike slices of such an ambient space.

On the other hand, the study of variational questions associated to the
area functional in (Riemannian or Lorentzian) manifolds with density, also
called weighted manifolds, has been a focus of attention in the last years.

We recall that a weighted manifold M
n+1
f is a (Riemannian or Lorentzian)

manifold
(
M

n+1
, � , �

)
endowed with a weighted volume form dµ = e−f dM ,

where the weight f is a real-valued smooth function on M
n+1
f and dM is

the volume element induced by the metric � , �. For a comprehensive intro-
duction to weighted manifolds we refer the reader, for instance, to Ch. 3 of
Bayle’s thesis [9] or to Ch. 18 of Morgan’s book [18].

In this direction, Rosales, Cañete, Bayle and Morgan [20] investigated the
isoperimetric problem for Euclidean space endowed with a continuous den-
sity, showing that, for a radial log-convex density, balls about the origin are
isoperimetric regions. Afterwards, Cañete and Rosales [10] studied smooth
Euclidean solid cones endowed with a smooth homogeneous weight function.
In this context, they proved that the unique compact, orientable, second or-
der minima of the weighted area under variations preserving the weighted
volume and with free boundary in the boundary of the cone are intersections
with the cone of round spheres centered at the vertex. In [15], Impera and
Rimoldi established stability properties concerning f -minimal hypersurfaces
(that is, with identically zero f -mean curvature) isometrically immersed in

a weighted manifold with non-negative Bakry–Émery Ricci curvature un-
der volume growth conditions. Meanwhile, Castro and Rosales [12] obtained
variational characterizations of critical points and second order minima of
the weighted area with or without a volume constraint in weighted Rieman-
nian manifolds with boundary.

Also in the branch of manifolds with density, Batista, Cavalcante and
Pyo [8] showed some general inequalities involving the weighted mean curva-
ture of compact submanifolds immersed in weighted Riemannian manifolds.
As application, they obtained an isoperimetric inequality for such subman-
ifolds. Moreover, they also proved an extrinsic upper bound to the first
nonzero eigenvalue of the f -Laplacian on closed submanifolds of weighted
Riemannian manifolds. Concerning the weighted product space G

n × R,
where G

n stands for the so-called Gaussian space which is nothing but the
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Paráıba, Brazil

e-mail: marciomat28@gmail.com

(Received March 16, 2017; accepted April 24, 2017)

Abstract. We establish the notions of f -stability and strong f -stability con-
cerning closed spacelike hypersurfaces immersed with constant f -mean curvature
in a conformally stationary spacetime endowed with a conformal timelike vector
field V and a weight function f . When V is closed, with the aid of the f -Laplacian
of a suitable support function, we characterize f -stable closed spacelike hypersur-
faces through the analysis of the first eigenvalue of the Jacobi operator associated
to the corresponding variational problem. Furthermore, we obtain sufficient con-
ditions which assure that a strongly f -stable closed spacelike hypersurface must
be either f -maximal or isometric to a leaf orthogonal to V .

1. Introduction

The notion of stability concerning hypersurfaces of constant mean cur-
vature of Riemannian ambient spaces was first studied by Barbosa and do
Carmo in [4], and by Barbosa, do Carmo and Eschenburg in [5], where they
proved that spheres are the only stable critical points of the area functional
for volume-preserving variations. Afterwards, working in the Lorentzian
context, Barbosa and Oliker [6] obtained an analogous result proving that
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the weighted area with or without a volume constraint in weighted Rieman-
nian manifolds with boundary.
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ture of compact submanifolds immersed in weighted Riemannian manifolds.
As application, they obtained an isoperimetric inequality for such subman-
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Euclidian space Rn endowed with the Gaussian probability density

e−f(x) = (2π)−
n+1

2 e−
|x|2

2 , x ∈ R
n,

Hieu and Nam [14] extended the classical Bernstein’s theorem showing that
the only weighted minimal graphs Σ(u) of smooth functions u(x) = t over Gn

are the affine hyperplanes t = const. Afterwards, McGonagle and Ross [16]
showed that the hyperplane is the only stable, smooth solution to the isoperi-
metric problem in the G

n+1. Meanwhile, in the works [1,13] it was applied
suitable generalized maximum principles in order to obtain new Calabi–
Bernstein type results concerning complete hypersurfaces immersed in cer-
tain weighted generalized Robertson–Walker spacetimes.

Motivated by the works described above, in this article we deal with
closed spacelike hypersurfaces immersed with constant f -mean curvature in
a weighted conformally stationary spacetime endowed with a conformal vec-
tor field V and a weight function f (for more details see Sections 2 and 4).
For these hypersurfaces, first we extend the ideas of [6,7] introducing the
notions of f -stability and strong f -stability (see Definitions 1 and 2, respec-
tively). When V is closed, with the aid of the f -Laplacian of an appropriate
support function (cf. Proposition 3) we establish a suitable relation between
f -stability and the spectrum of the f -Laplacian of a closed spacelike hyper-
surface having constant f -mean curvature (cf. Theorem 1). Furthermore, we
also improve the main result of [7] obtaining sufficient conditions to guaran-
tee that a strong f -stable hypersurface be either f -maximal (that is, with
identically zero f -mean curvature) or isometric to a leaf orthogonal to V
(cf. Theorem 2 and Corollary 2).

2. Preliminaries

This section is devoted to recall some basic facts concerning spacelike
hypersurfaces immersed in a weighted Lorentzian space.

Let
(
M

n+1
, � , �,∇, dµ

)
be a weighted time-oriented Lorentzian manifold,

that is, a time-oriented Lorentzian manifold M
n+1

with metric tensor � , �,
Levi-Civita conection ∇ and endowed with a weighted volume form dµ =

e−f dM , where f is a real-valued smooth function on M
n+1

, called weight
function, and dM is the volume element induced by the metric � , �. In order

to shorten our notation, we denote
(
M

n+1
, � , �,∇, dµ

)
simply by M

n+1
f .

We mean by C∞(M) the ring of real functions of class C∞ on M
n+1

and

by X(M) the C∞(M)-module of vector fields of class C∞ on M
n+1

. For

M
n+1
f , the Bakry–Émery–Ricci tensor Ricf is defined by

(2.1) Ricf = Ric + Hessf,
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where Ric and Hess are the Ricci tensor and the Hessian operator in M
n+1
f ,

respectively.

In this context, we consider spacelike hypersurfaces x : Σn →֒ M
n+1
f ,

namely, isometric immersions from a connected, n-dimensional orientable

Riemannian manifold Σn into M
n+1
f . We let ∇ denote the Levi-Civita con-

nection of Σn.
Since we are supposing thatM

n+1
f is time-orientable and x : Σn →֒M

n+1
f

is a spacelike hypersurface, then Σn is orientable (cf. [19]) and one can choose
a globally defined unit normal vector field N on Σn having the same time-

orientation of M
n+1
f , which is called the future-pointing Gauss map of Σn.

In this setting, let A denote the shape operator of Σn with respect to N , so
that at each p ∈ Σn, A restricts to a self-adjoint linear map

Ap : TpΣ −→ TpΣ, v �→ Apv = −∇vN.

The f -mean curvature of Σn is the function Hf given by

(2.2) nHf = nH − �∇f,N�,

where H = − 1
n
tr(A) denotes the standard mean curvature of Σn with re-

spect to its future-pointing Gauss map N . The f -divergence on Σn is defined
by

(2.3) divf : X(Σ) −→ C∞(Σ), X �→ divf X = divX − �∇f,X�,

where div(·) denotes the standard divergence of Σn. A direct calculation
assures us that

divf (ϕX) = ϕ divf X + �∇ϕ,X�
for all X ∈ X(Σ) and any ϕ ∈ C∞(Σ). We define the f -Laplacian of Σn by

(2.4) ∆f : C
∞(Σ) −→ C∞(Σ), u �→ ∆fu = divf ∇u = ∆u− �∇f,∇u�,

where ∆ is the standard Laplacian of Σn.

3. Description of the variational problem

Now, let us consider immersions x : Σn →֒ M
n+1
f of compact spacelike

hypersurfaces Σn with boundary ∂Σ (possibly empty). A variation of x : Σn

→֒ M
n+1
f is a smooth mapping

X : Σn × (−ε, ε) → M
n+1
f

satisfying the following two conditions:
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is a spacelike hypersurface, then Σn is orientable (cf. [19]) and one can choose
a globally defined unit normal vector field N on Σn having the same time-

orientation of M
n+1
f , which is called the future-pointing Gauss map of Σn.
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Now, let us consider immersions x : Σn →֒ M
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(1) For t ∈ (−ε, ε), the map Xt : Σ
n →֒ M

n+1
f given by Xt(p) = X(t, p)

is a spacelike immersion such that X0 = x.
(2) Xt

∣∣
∂Σ

= x
∣∣
∂Σ

, for all t ∈ (−ε, ε).
In all that follows, we let dMt denote the volume element of the metric in-

duced on Σn by Xt and Nt the unit normal vector field along Xt. Moreover,
we also consider in Σn the weighted volume form given by dµt = e−fdMt.
When t = 0 all these objects coincide with the ones defined in Σn, respec-
tively.

The variational field associated to the variation X is the vector field
∂X
∂t

∣∣
t=0

. Letting

(3.1) ut = −
〈∂X
∂t

,Nt

〉
,

we get

∂X

∂t

∣∣∣
t=0

= u0N +
(∂X
∂t

∣∣∣
t=0

)⊤
,

where (·)⊤ stands for tangential components.
The weighted volume of the variation X is the functional

Vf : (−ε, ε) → R, t �→ Vf (t) =

∫

M×[0,t]
X∗(dµ)

and we say that X is volume-preserving if Vf (t) = Vf (0), for all t ∈ (−ε, ε).
The following result is well known and, in the context of weighted man-

ifolds, it can be found in [12] or [20].

Lemma 1. Let M
n+1
f be a weighted time-oriented Lorentzian manifold

and let x : Σn →֒ M
n+1
f be a closed spacelike hypersurface. If X : Σn× (−ε, ε)

→ M
n+1
f is a variation of x, then

dVf

dt
=

∫

M

ut dµt,

where ut is given in (3.1). In particular, X is volume-preserving if and only

if
∫
M

ut dµt = 0 for all t ∈ (−ε, ε).

Remark 1. We observe that is not difficult to verify that [5, Lemma 2.2]
still remains valid for the context of weighted time-oriented Lorentzian man-
ifolds, that is, if u ∈ C∞(Σ) is such that u

∣∣
∂Σ

= 0 and
∫
Σ udµ = 0, then there

exists a volume-preserving variation of Σn whose variational field is uN .
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The weighted area functional associated to the variation X is given by

Af : (−ε, ε) → R, t �→ Af (t) =

∫

Σ
dµt.

Following the same steps of the proof of Lemma 3.2 of [12], it is not
difficult to see that we get the following

Lemma 2. Let M
n+1
f be a weighted time-oriented Lorentzian manifold

and x : Σn →֒ M
n+1
f a closed spacelike hypersurface. If X : Σn × (−ε, ε) →

M
n+1
f is a variation of x, then

(3.2) A′
f (t) = n

∫

Σ
(Hf )t ut dµt,

where ut is given in (3.1) and (Hf )t = Hf (t, ·) denotes the f -mean curvature
of Σn with respect to the metric induced by Xt.

In order to characterize hypersurfaces with constant f -mean curvature,
we consider the variational problem of maximizing the functional Af for

all variations X : Σn × (−ε, ε) → M
n+1
f of x : Σn →֒ M

n+1
f that preserve the

weighted volume Vf . The Jacobi functional associated to this problem is
given by

(3.3) Jf : (−ε, ε) → R, t �→ Jf (t) = Af (t)− ̺Vf (t),

where ̺ is a constant to be determined. As an immediate consequence of
Lemmas 2 and 1 we get

(3.4) J ′
f (t) =

∫

M

{n(Hf)t − ̺}ut dµt.

In order to make an appropriated choice of ̺, let

H =
1

Af (0)

∫

M

(Hf )0 dµ

be an integral mean of the f -mean curvature of Σn. We call the attention
to the fact that, in case (Hf )0 is constant, we have

(3.5) H = (Hf )0 = Hf ,

and this notation will be used in what follows without further comments.
Therefore, if we choose ̺ = nH, from (3.4) we arrive at

(3.6) J ′
f (t) = n

∫

M

{
(Hf )t −H

}
ut dµt.
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Reasoning as in the proof of [4, Proposition 2.7], from (3.6) we get

Proposition 1. Let M
n+1
f be a weighted time-oriented Lorentzian man-

ifold and let x : Σn →֒ M
n+1
f be a closed spacelike hypersurface. The following

statements are equivalent :

(a) x : Σn →֒ M
n+1
f has constant f -mean curvature Hf ;

(b) for all variations X : Σn × (−ε, ε) → M
n+1
f of x that preserve the

volume, we have that J ′
f (0) = 0;

(c) for all variations X : Σn × (−ε, ε) → M
n+1
f of x, we have that

J ′
f (0) = 0.

In particular, Proposition 1 guarantees that a spacelike hypersurface

x : Σn →֒ M
n+1
f is a critical point of the variational problem described above

if and only if its f -mean curvature Hf is constant. Motivated by this fact,
we establish the following

Definition 1. Let M
n+1
f be a weighted time-oriented Lorentzian man-

ifold and let x : Σn →֒ M
n+1
f be a closed spacelike hypersurface having con-

stant f -mean curvatureHf . We say that x : Σn →֒ M
n+1
f is f -stable if A′′

f (0)

≤ 0 for all volume-preserving variation X : Σn × (−ε, ε) → M
n+1
f of x.

Remark 2. Let x : Σn →֒ M
n+1
f be a closed spacelike hypersurface as

described in Definition 1. We consider the set

(3.7) G =

{
u ∈ C∞(Σ) :

∫

Σ
udµ = 0

}
.

Just as in [4], we can establish the following criterion of f -stability: a space-

like hypersurface x : Σn →֒ M
n+1
f is f -stable if and only if J ′′

f (0)(u) ≤ 0, for
all u ∈ G.

On the other hand, if we change our object of study, considering closed

spacelike hyperpurfaces x : Σn →֒ M
n+1
f which maximize the functional Ja-

cobi Jf for any variation X : Σn × (−ε, ε) → M
n+1
f of x, we obtain again

from Proposition 1 that x : Σn →֒ M
n+1
f is a critical point of Jf if and only

if its f -mean curvatureHf is constant. This, in turn, motivates the following

Definition 2. Let M
n+1
f be a weighted time-oriented Lorentzian mani-

fold and let x : Σn →֒ M
n+1
f be a closed spacelike hypersurface whose f -mean

curvature Hf is constant. We say that x : Σn →֒ M
n+1
f is strongly f -stable

if J ′′
f (0)(u) ≤ 0, for any u ∈ C∞(Σ).
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The sought formula for the second variation of Jacobi functional Jf is
given in the following

Proposition 2. Let M
n+1
f be a weighted time-oriented Lorentzian man-

ifold and let x : Σn →֒ M
n+1
f be a closed spacelike hypersurface whose f -mean

curvature Hf is constant. If X : Σn × (−ε, ε) → M
n+1
f is a variation of x,

then J ′′
f (0) is given by

(3.8) J ′′
f (0)(u) =

∫

Σ

{
∆f (u)−

{
Ricf (N,N) + |A|2

}
u
}
udµ,

for all u ∈ C∞(Σ).

Proof. Since Hf is constant, from (3.6) and (3.5) we have that

(3.9) J ′′
f (0) =

∫

Σ
n
(∂Hf

∂t

∣∣∣
t=0

)
u0 dµ+

∫

Σ
n
(
Hf −H︸ ︷︷ ︸

0

) ∂

∂t
(ut dµt)

∣∣∣
t=0

.

On the other hand, reasoning as in the proof of equation (3.5) of [12], we
obtain

n
∂Hf

∂t

∣∣∣
t=0

= ∆f (u0)−
{
Ricf (N,N) + |A2|

}
u0.

Hence,

J ′′
f (0) =

∫

Σ

{
∆f (u0)−

{
Ricf (N,N) + |A|2

}
u0

}
u0 dµ.

To finish the proof, we observe that the above expression depends only on

the hypersurface x : Σn →֒ M
n+1
f and on the function u0 ∈ C∞(Σ). �

4. The f -Laplacian of a support function

Proceeding with the context of the previous section, let M
n+1
f be a

weighted Lorentzian manifold. A vector field V on M
n+1
f is said to be con-

formal if

LV � , � = 2ψ� , �
for some function ψ ∈ C∞(M), where L stands for the Lie derivative of the

Lorentzian metric of M
n+1
f . The function ψ is called the conformal factor

of V . So, extending the terminology established in [2], a weighted Lorentzian

manifold M
n+1
f endowed with a globally defined timelike conformal vector

field will be called a weighted conformally stationary spacetime.
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The sought formula for the second variation of Jacobi functional Jf is
given in the following

Proposition 2. Let M
n+1
f be a weighted time-oriented Lorentzian man-

ifold and let x : Σn →֒ M
n+1
f be a closed spacelike hypersurface whose f -mean

curvature Hf is constant. If X : Σn × (−ε, ε) → M
n+1
f is a variation of x,

then J ′′
f (0) is given by

(3.8) J ′′
f (0)(u) =

∫

Σ

{
∆f (u)−

{
Ricf (N,N) + |A|2

}
u
}
udµ,

for all u ∈ C∞(Σ).

Proof. Since Hf is constant, from (3.6) and (3.5) we have that

(3.9) J ′′
f (0) =

∫

Σ
n
(∂Hf

∂t

∣∣∣
t=0

)
u0 dµ+

∫

Σ
n
(
Hf −H︸ ︷︷ ︸

0

) ∂

∂t
(ut dµt)

∣∣∣
t=0

.

On the other hand, reasoning as in the proof of equation (3.5) of [12], we
obtain

n
∂Hf

∂t

∣∣∣
t=0

= ∆f (u0)−
{
Ricf (N,N) + |A2|

}
u0.

Hence,

J ′′
f (0) =

∫

Σ

{
∆f (u0)−

{
Ricf (N,N) + |A|2

}
u0

}
u0 dµ.

To finish the proof, we observe that the above expression depends only on

the hypersurface x : Σn →֒ M
n+1
f and on the function u0 ∈ C∞(Σ). �

4. The f -Laplacian of a support function

Proceeding with the context of the previous section, let M
n+1
f be a

weighted Lorentzian manifold. A vector field V on M
n+1
f is said to be con-

formal if

LV � , � = 2ψ� , �
for some function ψ ∈ C∞(M), where L stands for the Lie derivative of the

Lorentzian metric of M
n+1
f . The function ψ is called the conformal factor

of V . So, extending the terminology established in [2], a weighted Lorentzian

manifold M
n+1
f endowed with a globally defined timelike conformal vector

field will be called a weighted conformally stationary spacetime.
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Since LV (X) = [V,X] for all X ∈ X (M), it follows from the tensorial
character of LV that V ∈ X (M) is conformal if and only if

(4.1) �∇XV, Y �+ �X,∇Y V � = 2ψV �X,Y �,

for all X,Y ∈ X (M). In particular, V is a Killing vector field if and only if
ψV ≡ 0.

Let us suppose, in addition, that the conformal timelike vector field V
is closed, that is,

(4.2) ∇XV = ψV X

for all X ∈ X(M). Also assuming that V has no singularities on an open

set U ⊂ M
n+1
f , the distribution V ⊥ on U of vector fields orthogonal to V is

integrable, for if X,Y ∈ V ⊥, then

�[X,Y ], V � = �∇XY −∇Y X,V � = −�Y,∇XV �+ �X,∇Y V � = 0.

We let Ξn be a leaf of V ⊥ furnished with the induced metric. From (4.2) we
get

(4.3) ∇�V, V � = 2ψV V,

so that �V, V � is constant on connected leaves of V ⊥. Computing covariant
derivatives in (4.3), we have

Hess�V, V �(X,Y ) = 2X(ψV )�V, Y �+ 2ψ2
V �X,Y �.

Since both Hess and the metric � , � are symmetric tensors, we get

X(ψV )�V, Y � = Y (ψV )�V,X�

for all X,Y ∈ X(M). Taking Y = V we then arrive at

(4.4) ∇ψV =
V (ψV )

�V, V � V = −ν(ψV )ν,

where νV = V√
−�V,V �

. Hence, ψV is also constant on connected leaves of V ⊥.

If Ξn is such a leaf and AΞ denotes its shape operator with respect to νV ,
we get

AΞ(X) = −∇XνV = ψV X

for any X ∈ X(Ξ) and, hence, Ξn is a totally umbilical spacelike hypersurface
with constant mean curvature H given by

(4.5) H =
ψV√

−�V, V �
.
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Under the additional hypothesis that the weight function f of M
n+1
f

does not depend on the parameter of the flow associated to the unit time-

like vector field νV (which means that �∇f, νV � = 0 on M
n+1
f ), from (2.2)

and (4.5) we obtain that the f -mean curvature of a leaf Ξ of V ⊤ with respect
to ν is given by

(4.6) Hf =
ψV√

−�V, V �
.

According to the terminology established in [3], a particular class of con-
formally stationary spacetimes is constituted by the so-called generalized
Robertson–Walker (GRW) spacetimes, namely, Lorentzian warped product
spaces of the type −I×φF

n, where I ⊂ R is an open interval with the metric
−dt2, F n is an n-dimensional Riemannian manifold and φ : I → R is positive
and smooth. A GRW spacetime −I×φ F

n endowed with a weight function f
is called a weighted GRW spacetime and it will be denoted by (−I ×φ F

n)f .
For such a space, if πI is the canonical projection onto I , then the vector
field

(4.7) V = (φ ◦ πI)∂s

is a conformal, timelike and closed, with conformal factor ψV = φ′ ◦πI , where
the prime denotes differentiation with respect to the parameter s. Moreover,
it follows from Proposition 1 of [17] that each spacelike leaf F n

s = {s}×F n is
totally umbilical and, supposing that f does not depend on the parameter s,

the f -mean curvature of F n
s with respect to ∂s is equal to φ′(s)

φ(s) .

Conversely, let M
n+1
f be a weighted conformally stationary Lorentzian

manifold endowed with a closed conformal vector field V . If p ∈ M
n+1
f

and Ξn
p is the leaf of V ⊥ passing through p, then we can find a neighbor-

hood Up of p in Ξn
p and an open interval I ⊂ R containing 0 such that the

flow F of V is defined on Up for every s ∈ I . Besides, if M
n+1
f is timelike

geodesically complete, which means that any timelike geodesic of M
n+1
f is

defined for all values of the parameter s ∈ R, from [17, Section 3] we have
that

(4.8) R× Ξn
p −→ M

n+1
f , (s, q) �→ F(s, q)

is a global parametrization on M
n+1
f , such that M

n+1
f is isometric to the

weighted GRW spacetime

(4.9) (−R×φ Ξn
p )f ,
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Under the additional hypothesis that the weight function f of M
n+1
f

does not depend on the parameter of the flow associated to the unit time-

like vector field νV (which means that �∇f, νV � = 0 on M
n+1
f ), from (2.2)

and (4.5) we obtain that the f -mean curvature of a leaf Ξ of V ⊤ with respect
to ν is given by

(4.6) Hf =
ψV√

−�V, V �
.

According to the terminology established in [3], a particular class of con-
formally stationary spacetimes is constituted by the so-called generalized
Robertson–Walker (GRW) spacetimes, namely, Lorentzian warped product
spaces of the type −I×φF

n, where I ⊂ R is an open interval with the metric
−dt2, F n is an n-dimensional Riemannian manifold and φ : I → R is positive
and smooth. A GRW spacetime −I×φ F

n endowed with a weight function f
is called a weighted GRW spacetime and it will be denoted by (−I ×φ F

n)f .
For such a space, if πI is the canonical projection onto I , then the vector
field

(4.7) V = (φ ◦ πI)∂s

is a conformal, timelike and closed, with conformal factor ψV = φ′ ◦πI , where
the prime denotes differentiation with respect to the parameter s. Moreover,
it follows from Proposition 1 of [17] that each spacelike leaf F n

s = {s}×F n is
totally umbilical and, supposing that f does not depend on the parameter s,

the f -mean curvature of F n
s with respect to ∂s is equal to φ′(s)

φ(s) .

Conversely, let M
n+1
f be a weighted conformally stationary Lorentzian

manifold endowed with a closed conformal vector field V . If p ∈ M
n+1
f

and Ξn
p is the leaf of V ⊥ passing through p, then we can find a neighbor-

hood Up of p in Ξn
p and an open interval I ⊂ R containing 0 such that the

flow F of V is defined on Up for every s ∈ I . Besides, if M
n+1
f is timelike

geodesically complete, which means that any timelike geodesic of M
n+1
f is

defined for all values of the parameter s ∈ R, from [17, Section 3] we have
that

(4.8) R× Ξn
p −→ M

n+1
f , (s, q) �→ F(s, q)

is a global parametrization on M
n+1
f , such that M

n+1
f is isometric to the

weighted GRW spacetime

(4.9) (−R×φ Ξn
p )f ,
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where

φ(s) =
√

−
〈
V (F(s, q)), V (F(s, q))

〉
, s ∈ R,

and q ∈ Ξn
p is an arbitrary point.

On the other hand, we observe that it follows from Theorem 1.2 of [11]

that if M
n+1
f is a weighted timelike geodesic complete conformally station-

ary spacetime, with closed conformal timelike vector field V , endowed with
a weight function f ∈ C∞(M) which is bounded and such that its Bakry–

Émery–Ricci tensor Ricf satisfies Ricf (X,X) ≥ 0 for all timelike vector

fieds X , then f must be constant along the timelike line contained em M
n+1
f ,

given via isometry by (4.8). So, motivated by this result, along this work

we will consider weighted conformally stationary spacetimes M
n+1
f endowed

with a closed conformal timelike vector field V whose weight function f does
not depend on the parameter of the flow associated with the unit timelike
vector field νV = V√

−�V,V �
, that is, �∇f, νV � = 0. This condition has already

been used in (4.6) for calculating the f -mean curvature of the leaves V ⊤. In
particular, when the ambient space is a weighted GRW spacetime, we will
make explicit this condition simply writing

(4.10) −I ×φ F n
f .

In the scenario described above, if x : Σn →֒ M
n+1
f is a spacelike hyper-

surface, then the smooth function

(4.11) ηV : Σn → R, p �→ ηV (p) = �V (p),N(p)�

is negative and, after some standard calculations, we get

(4.12) ∇ηV = −A(V ⊤),

where A is the shape operator of Σn.
The following proposition gives a suitable formula for the f -Laplacian

of the support function η, which will be crucial to obtain our criteria of
f -stability along the next section.

Proposition 3. Let M
n+1
f be a weighted conformally stationary space-

time with a closed conformal timelike vector field V and whose weight func-

tion f does not depend on the parameter of the flow associated to νV .

Let x : Σn →֒ M
n+1
f be a spacelike hypersurface with future-pointing Gauss

map N and support function ηV = �V,N�. Then

(4.13) ∆fηV =
{
Ricf (N,N) + |A|2

}
ηV + nV ⊤(Hf ) + n

{
ψHf −N(ψV )

}
,
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where ψV is the conformal factor of V , Ricf denotes the Bakry–Émery–Ricci

tensor of M
n+1
f , A is the shape operator of Σn with respect to N , Hf is

the f -mean curvature of Σn and ∇Hf stands for the gradient of Hf in the
induced metric of Σn.

Proof. According to our previous digression, from (4.9) and (4.10) we

have that (up to isometry)M
n+1
f can be locally regarded as a weighted GRW

spacetime of the type −R×φ

(
Ξn
p

)
f
. In this setting, from (4.7) we have that

V = φ∂t, ψV = φ′, νV = ∂t,
√

−�V, V � = φ and, consequently, �∇f, ∂t� = 0.
Note that, from (2.2) we get

(4.14) n�∂t,∇H� = n�∂⊤
t ,∇H� = n�∂⊤

t ,∇Hf �+ ∂⊤
t �∇f,N�.

On the other hand,

∂⊤
t

〈
∇f,N

〉
=

〈
∇∂⊤

t
∇f,N

〉
+
〈
∇f,∇∂⊤

t
N
〉

(4.15)

=
〈
∇∂t+ΘN∇f,N

〉
−
〈
∇f,A(∂⊤

t )
〉

=
〈
∇∂t

∇f,N
〉
+ΘHessf (N,N)−

〈
∇f,A(∂⊤

t )
〉
,

where ∂⊤
t = ∂t +ΘN and Θ = �N, ∂t�.

Now, taking into account that �∇f, ∂t� = 0 and denoting by ∇̃ the Levi-

Civita connection on Ξn
p , we have ∇f = 1

φ2 ∇̃f . Then,

〈
∇∂t

∇f,N
〉
=

〈
∇∂t

(φ−2∇̃f),N
〉
=

〈
− 2φ−3φ′∇̃f + φ−2∇∂t

∇̃f,N
〉
.

Hence, with aid of Proposition 7.35 of [19], from (4) we obtain

〈
∇∂t

∇f,N
〉
=

〈
− 2φ−3φ′∇̃f + φ−2φ−1φ′∇̃f,N

〉
(4.16)

= −φ′φ−3
〈
∇̃f,N

〉
= −φ′φ−1

〈
∇f,N

〉
.

Substituting (4.16) in equation (4.15) we get that

(4.17) ∂⊤
t �∇f,N� = −�∇f,N�φ−1φ′ +ΘHessf (N,N)− �∇f,A(∂⊤

t )�.

From equation (4.14) and (4.17) we conclude that

nφ�∂t,∇H� = nφ�∂⊤
t ,∇Hf � − φ′�∇f,N�(4.18)

+ φΘHessf (N,N) − φ�∇f,A(∂⊤
t )�.

On the other hand, from Proposition 3.1 of [7] we have that
(4.19)
∆�N,φ∂t� = n�φ∂t,∇H� + φ Θ

{
Ric(N,N) + |A|2

}
+ n

{
φ′H −N(φ′)

}
.
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where ψV is the conformal factor of V , Ricf denotes the Bakry–Émery–Ricci

tensor of M
n+1
f , A is the shape operator of Σn with respect to N , Hf is

the f -mean curvature of Σn and ∇Hf stands for the gradient of Hf in the
induced metric of Σn.

Proof. According to our previous digression, from (4.9) and (4.10) we

have that (up to isometry)M
n+1
f can be locally regarded as a weighted GRW

spacetime of the type −R×φ

(
Ξn
p

)
f
. In this setting, from (4.7) we have that

V = φ∂t, ψV = φ′, νV = ∂t,
√

−�V, V � = φ and, consequently, �∇f, ∂t� = 0.
Note that, from (2.2) we get

(4.14) n�∂t,∇H� = n�∂⊤
t ,∇H� = n�∂⊤

t ,∇Hf �+ ∂⊤
t �∇f,N�.

On the other hand,

∂⊤
t

〈
∇f,N

〉
=

〈
∇∂⊤

t
∇f,N

〉
+
〈
∇f,∇∂⊤

t
N
〉

(4.15)

=
〈
∇∂t+ΘN∇f,N

〉
−
〈
∇f,A(∂⊤

t )
〉

=
〈
∇∂t

∇f,N
〉
+ΘHessf (N,N)−

〈
∇f,A(∂⊤

t )
〉
,

where ∂⊤
t = ∂t +ΘN and Θ = �N, ∂t�.

Now, taking into account that �∇f, ∂t� = 0 and denoting by ∇̃ the Levi-

Civita connection on Ξn
p , we have ∇f = 1

φ2 ∇̃f . Then,

〈
∇∂t

∇f,N
〉
=

〈
∇∂t

(φ−2∇̃f),N
〉
=

〈
− 2φ−3φ′∇̃f + φ−2∇∂t

∇̃f,N
〉
.

Hence, with aid of Proposition 7.35 of [19], from (4) we obtain

〈
∇∂t

∇f,N
〉
=

〈
− 2φ−3φ′∇̃f + φ−2φ−1φ′∇̃f,N

〉
(4.16)

= −φ′φ−3
〈
∇̃f,N

〉
= −φ′φ−1

〈
∇f,N

〉
.

Substituting (4.16) in equation (4.15) we get that

(4.17) ∂⊤
t �∇f,N� = −�∇f,N�φ−1φ′ +ΘHessf (N,N)− �∇f,A(∂⊤

t )�.

From equation (4.14) and (4.17) we conclude that

nφ�∂t,∇H� = nφ�∂⊤
t ,∇Hf � − φ′�∇f,N�(4.18)

+ φΘHessf (N,N) − φ�∇f,A(∂⊤
t )�.

On the other hand, from Proposition 3.1 of [7] we have that
(4.19)
∆�N,φ∂t� = n�φ∂t,∇H� + φ Θ

{
Ric(N,N) + |A|2

}
+ n

{
φ′H −N(φ′)

}
.
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So, taking into account (2.1), substituting (4.18) into (4.19) we obtain
that

∆�N,φ∂t� = n�φ∂t,∇Hf �+ φΘ
{
Ricf (N,N) + |A|2

}
(4.20)

+ n
{
φ′Hf −N(φ′)

}
− φ�∇f,A(∂⊤

t )�.

Moreover, from (4.12) we can verify that

(4.21) ∇�N,φ∂t� = −φA(∂⊤
t ).

Therefore, inserting equations (4.20) and (4.21) into (2.4) we reach at
(4.13). �

In particular, from Proposition 3 we obtain the following

Corollary 1. Let M
n+1
f be a weighted conformally stationary space-

time with a Killing timelike vector field W and whose weight function f does

not depend on the parameter of the flow associated to unit vector field νW .

Let x : Σn →֒ M
n+1
f be a spacelike hypersurface with future-pointing Gauss

map N and support function ηW = �W,N�. Then

∆fηW =
{
Ricf (N,N) + |A|2

}
ηW + nW⊤(Hf ).

In addition, if Σn is closed and Hf and λ = Ricf (N,N) + |A|2 are constant,
then λ is an eigenvalue of the operator ∆f in Σn with eigenfunction ηW .

5. Main results

We can now present our first f -stability criterion concerning closed space-
like hypersurfaces immersed in a weighted conformally stationary spacetime.

Theorem 1. Let M
n+1
f be a weighted conformally stationary spacetime

with a closed conformal timelike vector field V and whose weight function f
does not depend on the parameter of the flow associated to νV . Suppose that

M
n+1
f is also equipped with a Killing timelike vector field W and that f does

not depend on the parameter of the flow associated to a unit vector field νW .

Let x : Σn →֒ M
n+1
f be a closed spacelike hypersurface with constant f -mean

curvature Hf and such that λ = Ricf (N,N) + |A|2 is constant. Then x : Σn

→֒ M
n+1
f is f -stable if and only if λ is the first eigenvalue of f -Laplacian ∆f

on Σn.

Proof. Since that λ is constant and W is a Killing timelike vector field

on M
n+1
f , Corollary 1 guarantees that λ is in the spectrum of ∆f .
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Let λ1 be the first eigenvalue of ∆f on Σn. If λ = λ1, then the variational
characterization of λ1 (see, for instance, Section 1 of [8]) gives

λ = min
u∈G\{0}

−
∫
Σ u∆fudµ∫
Σ u2 dµ

,

where G is defined in (3.7). It follows that, for any u ∈ G,

J ′′
f (0)(u) =

∫

Σ

{
u∆fu+ λu2

}
dµ ≤ (−λ+ λ)

∫

Σ
u2 dµ = 0,

and, according to Remark 2, x : Σn →֒ M
n+1
f is f -stable.

Now suppose that x : Σn →֒ M
n+1
f is f -stable, so that J ′′

f (0)(u) ≤ 0 for
all u ∈ G. Let u be an eigenfunction associated to the first eigenvalue λ1

of ∆f . From Remark 1 we obtain that there exists a volume-preserving
variation of Σn whose variational field is uN . Consequently, by (3.8) we get

0 ≥ J ′′
f (0)(u) = (−λ1 + λ)

∫

Σ
u2 dµ.

Therefore, since λ1 ≤ λ, we must have λ1 = λ. �

Proceeding, we establish the following rigidity result

Theorem 2. Let M
n+1
f be a timelike geodesically complete weighted con-

formally stationary spacetime endowed with a closed conformal timelike vec-
tor field V and whose weight function f does not depend on the parameter

s ∈ R of the flow associated to νV . Let x : Σ
n →֒ M

n+1
f be a strongly f -stable

closed spacelike hypersurface. Suppose that the conformal factor ψV of V
satisfies the condition

(5.1)
∂ψV

∂s
≥ max{ψV Hf , 0}.

If the set where ψV = 0 has empty interior in Σn, then Σn is either f -max-
imal or isometric to a leaf of the foliation V ⊥.

Proof. Let us consider in M
n+1
f the global parametrization (4.8). Since

Σn is strongly f -stable, it follows from (3.8) that

(5.2)

∫

Σ

{
∆fu−

{
Ricf (N,N) + |A|2

}
u
}
udµ ≤ 0, for all u ∈ C∞(Σ).

In particular, since Hf is constant on Σn, taking the smooth function ηV
defined in (4.11) we get from (4.13) that

∆fηV −
{
Ricf (N,N) + |A|2

}
ηV = n{ψHf −N(ψV )}.
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Let λ1 be the first eigenvalue of ∆f on Σn. If λ = λ1, then the variational
characterization of λ1 (see, for instance, Section 1 of [8]) gives

λ = min
u∈G\{0}

−
∫
Σ u∆fudµ∫
Σ u2 dµ

,

where G is defined in (3.7). It follows that, for any u ∈ G,

J ′′
f (0)(u) =

∫

Σ

{
u∆fu+ λu2

}
dµ ≤ (−λ+ λ)

∫

Σ
u2 dµ = 0,

and, according to Remark 2, x : Σn →֒ M
n+1
f is f -stable.

Now suppose that x : Σn →֒ M
n+1
f is f -stable, so that J ′′

f (0)(u) ≤ 0 for
all u ∈ G. Let u be an eigenfunction associated to the first eigenvalue λ1

of ∆f . From Remark 1 we obtain that there exists a volume-preserving
variation of Σn whose variational field is uN . Consequently, by (3.8) we get

0 ≥ J ′′
f (0)(u) = (−λ1 + λ)

∫

Σ
u2 dµ.

Therefore, since λ1 ≤ λ, we must have λ1 = λ. �

Proceeding, we establish the following rigidity result

Theorem 2. Let M
n+1
f be a timelike geodesically complete weighted con-

formally stationary spacetime endowed with a closed conformal timelike vec-
tor field V and whose weight function f does not depend on the parameter

s ∈ R of the flow associated to νV . Let x : Σ
n →֒ M

n+1
f be a strongly f -stable

closed spacelike hypersurface. Suppose that the conformal factor ψV of V
satisfies the condition

(5.1)
∂ψV

∂s
≥ max{ψV Hf , 0}.

If the set where ψV = 0 has empty interior in Σn, then Σn is either f -max-
imal or isometric to a leaf of the foliation V ⊥.

Proof. Let us consider in M
n+1
f the global parametrization (4.8). Since

Σn is strongly f -stable, it follows from (3.8) that

(5.2)

∫

Σ

{
∆fu−

{
Ricf (N,N) + |A|2

}
u
}
udµ ≤ 0, for all u ∈ C∞(Σ).

In particular, since Hf is constant on Σn, taking the smooth function ηV
defined in (4.11) we get from (4.13) that

∆fηV −
{
Ricf (N,N) + |A|2

}
ηV = n{ψHf −N(ψV )}.
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Thus, from (5.2) we have that

(5.3)

∫

M

{ψHf −N(ψV )} ηV dµ ≤ 0.

On the other hand, it follows from (4.4) that

N(ψV ) = �N,∇ψV � = −νV (ψV )�N, νV � =
∂ψV

∂s
cosh θ,

where θ is the hyperbolic angle between N and ν. Substituting the above
into (5.3), we finally arrive at

∫

M

(∂ψV

∂s
cosh θ − ψV Hf

)√
−�V, V � cosh θ dµ ≤ 0.

Now, from (5.1) we obtain

0 ≥
∫

M

{∂ψV

∂s
cosh θ − ψV Hf

}√
−�V, V � cosh θ dµ

≥
∫

M

(cosh θ − 1)
∂ψV

∂s

√
−�V, V � cosh θ dµ ≥ 0.

Hence,

∂ψV

∂s
(cosh θ − 1) = 0 and

∂ψV

∂s
= ψV Hf

on Σn. But, since Hf is constant on Σn, Σn is either f -maximal or Hf �= 0
on Σn. If this last case occurs, the condition on the zero set of ψV on Σn

together with the above give ∂ψV

∂s
�= 0 on a dense subset of Σn and hence

cosh θ = 1 on this set. By continuity, cosh θ = 1 on Σn. Therefore in this
case Σn must be a leaf of the foliation V ⊥. �

We close our paper observing that, when the ambient space is a weighted
GRW spacetime, we can apply Theorem 2 to obtain the following extension
of [7, Theorem 1.1]

Corollary 2. Let x : Σn →֒ −R×φ F n
f be a closed, strongly f -stable

spacelike hypersurface. Suppose that φ′′ ≥ max{φ′Hf , 0}. If the set where
φ′ = 0 has empty interior in Σn, then Σn is either f -maximal or isometric
to a slice {s0} × F n, for some s0 ∈ R.
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