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convex functions. A few years later Bernstein and Doetsch [1] proved, sup-
posing that the domain is a convex subset of a finite dimensional Euclidean
space, that a mid-convex function which is bounded above on a non-void
open set has to be continuous (and thus convex). Since then, a huge lit-
erature of this topic has been published. In what follows, we list only a
couple of papers and monographs in order to indicate some aspects of these
investigations.

When the domain is an open interval, one may characterize the convexity
of a function in terms of inequalities fulfilled by various difference ratios as
well as by the existence of supporting lines below its graph at each point
of the domain. These observations lead to one-sided differentiability and
continuity of convex real functions. These results can be extended to the
investigations of convex functions on more general domains [12,13] as well
as for convexity with respect to a subfield [2] (which is well motivated by
Jensen’s result and by the existence of discontinuous mid-convex functions).

Numerous articles are devoted to the investigations of approximately
convex functions, that satisfy (1) with some reasonably small error. Many
of these articles establish the stability of convexity in the sense that if the
error of the convexity of f is estimated by a constant or by a multiple of
the norm of the difference of the arguments (or by other similar expres-
sions), then f is close (in an appropriate sense) to a convex function [3,
5,11]. Rolewicz extended support theorems and differentiability properties
for continuous, approximately convex functions with sufficiently small er-
rors of convexity [14,15]. A couple of authors extended Jensen’s theorem
and the Bernstein–Doetsch theorem to approximately mid-convex functions
[4,10,16–18].

Makó and Páles [8] considered the inequality
(2)
f(tx+ (1− t)y) ≤ tf(x)+ (1− t)f(y)+ tϕ((1− t)|x− y|) + (1− t)ϕ(t|x− y|)

in order to provide a common generalization of several previous results on
this topic. They considered the cases t = 1/2 and t ∈ [0, 1] with various
assumptions concerning the non-negative error function ϕ. This approach
made it possible, among others, to provide characterizations of (2) via in-
equalities involving modified difference ratios as well as in terms of a modified
support property.

The concept of strong convexity refers to functions satisfying an inequal-
ity that is stronger than (1). Some basic properties of strongly convex func-
tions are encountered by Merentes and Nikodem [9]. Mixing this concept
with some of the above mentioned investigations [2,8], Makó, Nikodem and
Páles [7] considered the inequality
(3)
f(tx+(1− t)y)≤ tf(x)+ (1− t)f(y)− tα((1− t)(x− y))− (1− t)α(t(y−x))
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(α,F)-convex, if it satisfies the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + tα((1− t)(x− y)) + (1− t)α(t(y − x))

for all x, y ∈ D and for all t ∈ F∩ [0,1]. In this paper we characterize (α,F)-convex
functions by comparison of modified difference ratios and support properties. If
α satisfies some additional conditions, we obtain the differentiability of (α,F)-
convex functions in the appropriate sense.

1. Introduction

A real valued function f , defined on a convex subset of a real linear
space, is called convex if it satisfies the inequality

(1) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for every t ∈ [0,1] and for all x, y taken from the domain of f . We call f mid-
convex or Jensen convex if (1) holds for t = 1/2. We may consider Jensen’s
paper [6], in which the author proved that any mid-convex function f sat-
isfies (1) for all rational t ∈ [0, 1], as the beginning of the investigation of
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Páles [7] considered the inequality
(3)
f(tx+(1− t)y)≤ tf(x)+ (1− t)f(y)− tα((1− t)(x− y))− (1− t)α(t(y−x))

Acta Mathematica Hungarica

APPROXIMATE CONVEXITY WITH RESPECT TO A SUBFIELD 465



Acta Mathematica Hungarica 152, 2017

APPROXIMATE CONVEXITY WITH RESPECT TO A SUBFIELD 3

with a non-negative, symmetric function α, in the case when t ∈ [0, 1] is
taken from a subfield of the reals. They proved various characterizations of
strong convexity in this restricted sense.

The purpose of the present communication is to combine the approach of
approximate convexity by Makó and Páles [8] with the concept of restricted
strong convexity by Makó, Nikodem and Páles [7], in order to provide char-
acterizations and regularity properties for functions that are approximately
convex with respect to a subfield of the reals.

Throughout this paper, let F be a subfield of the field R of real numbers
and X be a linear space over F. Let F+ denote the set of positive elements
of F. Moreover let R+ denote the set of nonnegative real numbers. First we
have to define F-convex and F-algebraically open sets as well as F-convex
functions that are considered in [2].

Definition 1. A subset D of the space X is called F-convex if tx+
(1− t)y ∈ D for every x, y ∈ D and t ∈ F ∩ [0, 1]. A subset D of the space
X is called F-algebraically open if, for all x ∈ D and u ∈ X , there exists a
δ > 0 such that x+ ru ∈ D for every r ∈ F ∩ ]−δ, δ[.

Definition 2. Let D ⊆ X be a nonempty F-convex set. A function
f : D → R is called F-convex if

(4) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for every x, y ∈ D and t ∈ F ∩ [0, 1].

In the following section we introduce the aforementioned concept of ap-
proximate F-convexity and establish its characterizations by comparison of
modified difference ratios and an appropriate support property. In a sub-
sequent section we apply this support property to prove certain regularity
properties for approximately F-convex functions with sufficiently small er-
rors, in the spirit of Rolewicz [14,15].

2. Characterizations of approximate F-convexity

Definition 3. Let D ⊆ X be a nonempty F-convex set,

D∗ := D −D := {x− y : x, y ∈ D},

and α : D∗ → R+ be an even function. The function f : D → R is called
(α,F)-convex, if it satisfies the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)(5)

+ tα((1− t)(x− y)) + (1− t)α(t(y − x))

for all x, y ∈ D and for all t ∈ F ∩ [0, 1].
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Theorem 1. Let D ⊆ X be a nonempty, F-algebraically open, F-convex
set, α : D∗ → R+ be an even function, and let f : D → R be a function. Then
the following statements are equivalent :

(i) f is (α,F)-convex on D;
(ii) the inequality

(6)
f(u)− f(u− sh)− α(−sh)

s
≤

f(u+ rh)− f(u) + α(rh)

r

is satisfied for all r, s ∈ F+, u ∈ D, h ∈ X , where u− sh, u+ rh ∈ D;
(iii) there exists a function A : D ×X → R such that

(7) f(u+ rh)− f(u) ≥ rA(u, h)− α(rh)

for all u ∈ D, r ∈ F, h ∈ X , where u+ rh ∈ D.

Proof. (i) ⇒ (ii). Suppose that u ∈ D, h ∈ X and r, s ∈ F+ such that
u− sh, u+ rh ∈ D. Let us substitute u− sh and u+ rh in the place of x
and y, resp. Moreover, let t = r

r+s
. Then t ∈ F, 0 < t < 1, 1− t = s

r+s
,

tx+ (1− t)y = u, and from inequality (5) we get that

f(u) ≤
r

r + s
f(u− sh) +

s

r + s
f(u+ rh)

+
r

r + s
α
( s

r + s
((u− sh)− (u+ rh))

)

+
s

r + s
α
( r

r + s
((u+ rh)− (u− sh))

)

,

i.e.,

f(u) ≤
r

r + s
f(u− sh) +

s

r + s
f(u+ rh) +

r

r + s
α(−sh) +

s

r + s
α(rh).

From this inequality it follows that

(8) (r + s)f(u) ≤ rf(u− sh) + sf(u+ rh) + rα(−sh) + sα(rh)

and thus

r
[

f(u)− f(u− sh)− α(−sh)
]

≤ s
[

f(u+ rh)− f(u) + α(rh)
]

.

This yields that inequality (6) holds.
(ii) ⇒ (iii). Assume that (ii) is true, and for u ∈ D, h ∈ X let us define

the set

R(u, h) =
{f(u+ rh)− f(u) + α(rh)

r
: r ∈ F+ such that u+ rh ∈ D

}

.
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Due to our assumptions on D, the set R(u, h) is non-void and we may ap-
ply (6) to verify that it is bounded from below. Let A(u, h) := inf R(u, h).
Moreover if we reformulate the left hand side of (6), we obtain that

f(u− sh)− f(u) + α(−sh)

−s
≤

f(u+ rh)− f(u) + α(rh)

r

and by putting −s in the place of s (in this case s < 0 < r and s, r ∈ F) we
get

f(u+ sh)− f(u) + α(sh)

s
≤

f(u+ rh)− f(u) + α(rh)

r
.

Hence

(9)
f(u+ sh)− f(u) + α(sh)

s
≤ A(u, h) ≤

f(u+ rh)− f(u) + α(rh)

r

and from the left side of (9) we get for all s < 0, s ∈ F that

f(u+ sh)− f(u) + α(sh) ≥ sA(u, h),

thus

f(u+ sh)− f(u) ≥ sA(u, h)− α(sh),

and from the right side of (9) we get for all 0 < r, r ∈ F that

f(u+ rh)− f(u) ≥ rA(u, h)− α(rh).

We may conclude the verification of (7) by observing that it obviously holds
for r = 0 as well.

(iii) ⇒ (i). Assume that (iii) is satisfied and let u ∈ D, h ∈ X . Then in
the case r < 0, r ∈ F replace r with −s (then s > 0):

(10) f(u− sh)− f(u) ≥ −sA(u, h)− α(−sh), whenever u− sh ∈ D.

Let 0 ≤ r ∈ F such that u+ rh ∈ D.
If we multiply (10) by r

r+s
and (7) by s

s+r
and add these two inequalities

we obtain

−rs

r + s
A(u, h) −

r

r + s
α(−sh) +

rs

r + s
A(u, h)−

s

r + s
α(rh)

≤
r

r + s
f(u− sh)−

r

r + s
f(u) +

s

r + s
f(u+ rh)−

s

r + s
f(u),

which can be obviously reduced to

(11) f(u) ≤
r

r + s
f(u− sh)+

s

r + s
f(u+ rh)+

r

r + s
α(−sh)+

s

r + s
α(rh).
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Let x, y ∈ D and t ∈ F ∩ [0, 1]. Performing the substitutions

u := tx+ (1− t)y, r := t, s := 1− t, and h := y − x,

we get that inequality (11) can be written as

f(tx+ (1− t)y)

≤ tf(x) + (1− t)f(y) + tα((1− t)(x− y)) + (1− t)α(t(y − x)). �

3. Differentiability of approximately F-convex functions

Theorem 2. Let D ⊆ X be a nonempty, F-algebraically open, F-convex
set and α : D∗ → R+ be an even function such that, for every h ∈ X , the
mapping r �→ α(rh) (defined for all r ∈ F+ that fulfils rh ∈ D∗) is continuous
and satisfies

(12) lim
F+ ∋r→0

α(rh)

r
= 0 .

If f : D → R is (α,F)-convex and A : D ×X → R is the mapping described
in statement (iii) and the proof of Theorem 1, then

A(u, h) = lim
s→0, s∈F+

f(u+ sh)− f(u)

s

for all u ∈ D and h ∈ X . Moreover, the mapping h �→ A(u, h) (h ∈ X) is

positively F-homogeneous and subadditive for every u ∈ D.

Proof. From (8), which is equivalent to the inequality of (α,F)
convexity, we get

f(u)− f(u− sh)

s
≤

f(u+ rh)− f(u− sh)

r + s
+

r

s(r + s)
α(−sh) +

1

r + s
α(rh)

for all u ∈ D, h ∈ X and r, s ∈ F+ such that u− sh, u+ rh ∈ D. If we sub
stitute a in the place of u− sh, we have

f(a+ sh)− f(a)

s
≤

f(a+ (r + s)h)− f(a)

r + s
+

r

s(r + s)
α(−sh) +

1

r + s
α(rh)

for all a ∈ D, h ∈ X and r, s ∈ F+ such that a+ rh+ sh ∈ D. Finally, re
placing a with u and r + s with q we get that

f(u+ sh)− f(u)

s
≤

f(u+ qh)− f(u)

q
+

q − s

sq
α(−sh) +

1

q
α((q − s)h)
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holds for all u ∈ D, h ∈ X and q, s ∈ F such that 0 < s < q and u+ qh ∈ D.
From (12) we obtain that, for every ε > 0 , there exists an rε ∈ F+ such

that α(rh)
r

< ε
3 for all r ∈ F ∩ ]0, rε[.

Due to the definition of A(u, h) there exists a value q ∈ F+ such that
u+ qh ∈ D and

f(u+ qh)− f(u) + α(qh)

q
< A(u, h) +

ε

3
.

Moreover there exists a δ > 0 such that in the case t ∈ F+, |t− q| < δ,
we have that

|α(th)− α(qh)| <
εq

3
.

If s ∈ F+ satisfies s < min {rε, q, δ}, then

A(u, h)−
ε

3
< A(u, h)−

α(sh)

s
≤

f(u+ sh)− f(u)

s

≤
f(u+ qh)− f(u)

q
+

(q − s)α(−sh)

qs
+

α((q − s)h)

q

=
f(u+ qh)− f(u) + α(qh)

q
+

α((q − s)h)− α(qh)

q
+
(

1−
s

q

)α(sh)

s

< A(u, h) +
ε

3
+

ε

3
+

ε

3
= A(u, h) + ε.

Hence we get

(13) A(u, h) = lim
s→0, s∈F+

f(u+ sh)− f(u)

s
.

Using (13) we can show that the map h �→ A(u, h) is positively F-homo-
geneous: Let λ ∈ F+. Then, for all u ∈ D, h ∈ X we have

A(u, λh) = lim
s→0, s∈F+

f(u+ sλh)− f(u)

s
= lim

s→0, s∈F+

λ
f(u+ λsh)− f(u)

λs

= λ lim
r→0, r∈F+

f(u+ rh)− f(u)

r
= λA(u, h).

We can prove also that the map h �→ A(u, h) is subadditive: For u ∈ D and
h, k ∈ X , we obtain

A(u, h + k) = lim
s→0, s∈F+

f(u+ s(h+ k))− f(u)

s
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= lim
s→0, s∈F+

f(u+ sh+ sk)− f(u)

s

= lim
s→0, s∈F+

f
(

1
2(u+ 2sh) + 1

2(u+ 2sk)
)

− f(u)

s

≤ lim
s→0, s∈F+

f(u+ 2sh) + f(u+ 2sk) + α (s(h− k)) + α(s(k − h))− 2f(u)

2s

= lim
s→0, s∈F+

f(u+ 2sh)− f(u) + α (s(h− k))

2s

+ lim
s→0, s∈F+

f(u+ 2sk)− f(u) + α (s(k − h))

2s
= A(u, h) +A(u, k). �

Example 1. Let X denote a real normed space, p > 1, c > 0, and
α(x) = c�x�p (x ∈ X). If D ⊆ X is open and convex, then the restriction of
α to D∗ satisfies the assumptions of Theorem 2 with F = R. In fact,

lim
0<r→0

α(rh)

r
= lim

0<r→0

c�rh�p

r
= lim

0<r→0
c rp−1�h�p = 0.

In this case the error term can be written in the form

E(t) := t α
[

(1− t)(x− y)
]

+ (1− t)α
[

t(y − x)
]

= c t
∥

∥(1− t)(x− y)
∥

∥

p
+ c (1− t)

∥

∥t(y − x)
∥

∥

p

= c t(1− t)
[

(1− t)p−1 + tp−1
]

�x− y�p,

hence we have

c
(

min{t, 1− t}
)p

�x− y�p ≤ E(t) ≤ 2 c t(1− t)�x− y�p.

Remark 1. Let X denote a real normed space, D ⊆ X be a nonempty
F-convex set, d = diam(D∗), ϕ : [0, d[ → R+ be an increasing function, and
f : D → R such that

f(tx+ (1− t)y) ≤ t f(x) + (1− t)f(y) + ϕ(t(1− t)�x− y�)

holds for all x, y ∈ D and t ∈ [0, 1] ∩ F. Then f is (α,F)-convex with

α(u) = ϕ(�u�) (u ∈ D∗).

In fact, we have

ϕ
(

t(1− t)�x− y�
)

=
[

t+ (1− t)
]

ϕ
(

t(1− t)�x− y�
)
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= lim
s→0, s∈F+

f(u+ sh+ sk)− f(u)

s

= lim
s→0, s∈F+

f
(

1
2(u+ 2sh) + 1

2(u+ 2sk)
)

− f(u)

s

≤ lim
s→0, s∈F+

f(u+ 2sh) + f(u+ 2sk) + α (s(h− k)) + α(s(k − h))− 2f(u)

2s

= lim
s→0, s∈F+

f(u+ 2sh)− f(u) + α (s(h− k))

2s

+ lim
s→0, s∈F+

f(u+ 2sk)− f(u) + α (s(k − h))

2s
= A(u, h) +A(u, k). �

Example 1. Let X denote a real normed space, p > 1, c > 0, and
α(x) = c�x�p (x ∈ X). If D ⊆ X is open and convex, then the restriction of
α to D∗ satisfies the assumptions of Theorem 2 with F = R. In fact,

lim
0<r→0

α(rh)

r
= lim

0<r→0

c�rh�p

r
= lim

0<r→0
c rp−1�h�p = 0.

In this case the error term can be written in the form

E(t) := t α
[

(1− t)(x− y)
]

+ (1− t)α
[

t(y − x)
]

= c t
∥

∥(1− t)(x− y)
∥

∥

p
+ c (1− t)

∥

∥t(y − x)
∥

∥

p

= c t(1− t)
[

(1− t)p−1 + tp−1
]

�x− y�p,

hence we have

c
(

min{t, 1− t}
)p

�x− y�p ≤ E(t) ≤ 2 c t(1− t)�x− y�p.

Remark 1. Let X denote a real normed space, D ⊆ X be a nonempty
F-convex set, d = diam(D∗), ϕ : [0, d[ → R+ be an increasing function, and
f : D → R such that

f(tx+ (1− t)y) ≤ t f(x) + (1− t)f(y) + ϕ(t(1− t)�x− y�)

holds for all x, y ∈ D and t ∈ [0, 1] ∩ F. Then f is (α,F)-convex with

α(u) = ϕ(�u�) (u ∈ D∗).

In fact, we have

ϕ
(

t(1− t)�x− y�
)

=
[

t+ (1− t)
]

ϕ
(

t(1− t)�x− y�
)
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= tϕ
(

t(1− t)�x− y�
)

+ (1− t)ϕ
(

t(1− t)�y − x�
)

≤ tϕ
(

(1− t)�x− y�
)

+ (1− t)ϕ
(

t�y − x�
)

.
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