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a 3-dimensional constant width body from a Reuleaux polygon in dimen-
sion 2.

For a treatment of constant width bodies and their properties, see the
books [6,21] and the surveys [8,11].

2. Ball polyhedra

The main goal of this section is to study the geometry of the intersection
of finitely many congruent balls. Ball polyhedra are natural objects of study
for several important problems of discrete geometry such as the Grünbaum–
Heppes–Straszewicz theorem on the maximal number of diameters of finite
point sets in R3 [10,12,20], the Kneser–Poulsen conjecture [3], the proof of
the Borsuk conjecture for finite point sets [1], and the analogue of Cauchy’s
rigidity theorem for triangulated ball polyhedra [5]. For a good reference
about ball polyhedra, see [4,5,13].

Given x ∈ Rn and h > 0 we write B(x, h) for the closed ball of radius h
centered at x and S(x, h) for the sphere of radius h centered at x.

A ball polyhedron in Rn is the intersection of finitely many but at
least n solid spheres of radius h > 0. Let us consider a ball polyhedron
Φ =

⋂
x∈X B(x, h). Assume first that Φ is 3-dimensional, Φ has non empty

interior and for any proper subset X ′ ⊂ X , Φ �=
⋂

x∈X′ B(x, h). We wish to
describe the boundary of Φ.

The points of bdΦ are either singular or regular. The singular points can
be divided into two sets: the 0-singular and the 1-singular. The 0-singular
points are the the points y ∈ bdΦ such thatX ⊂ B(y,h) and there are points
x1, x2, x3 ∈ X with x1 − y, x2 − y, x3 − y linearly independent. The set of
1-singular point of bdΦ is given by the set of y ∈ R3 such that X ⊂ B(y, h)
and S(y, h) ∩X contains at least two points and is contained in some great
circle of S(y, h). Lastly, the set of regular points of the boundary of Φ is
given by the points y ∈ bdΦ such that X ⊂ B(y, h) and |S(y, h) ∩X| = 1.

Consequently, the set of singular points of the boundary of Φ, S(Φ), con-
sists of an embedding of a graph GΦ whose vertices V (Φ) are the 0-singular
points of bdΦ and whose edges correspond to sub-arcs of circles, each one of
them joining a pair of points in V (Φ). Given adjacent vertices a, b ∈ V (Φ),

we denote by ãb the sub-arc of circle joining a with b. The complement of
S(Φ) in the boundary of Φ consists of the regular points of Φ, whose com-
ponents are spherically convex open subsets of a sphere of radius h. In this
way, a face of Φ is defined as S(x, h) ∩ Φ, where x ∈ X .

It is not difficult to see that the closure of every component of the set of
regular points, that is, the closure of every component of Φ− S(Φ), is a face
of Φ. Furthermore, by [13, Proposition 4.2], each face σ ⊂ S(x, h) of Φ is
spherically convex in S(x,h). A 3-dimensional ball polyhedron Φ is standard
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Abstract. We develop a concrete way to construct bodies of constant width
in dimension three. They are constructed from special embeddings of self-dual
graphs.

1. Introduction and preliminaries

Constant width bodies and their properties have been known for cen-
turies. L. Euler, in fact, studied them under the name “orbiforms”. He was
interested in constant width curves whose boundaries could be represented
as the evolute of a hypocycloid. Nearly a hundred years later, in 1875, Franz
Reuleaux [17] published a book on kinematics, in which he mentioned con-
stant width curves and gave some examples. He later gave the construction
of what might be considered the simplest constant width curve which is not
a circle, and which today bears his name. Although we know of many pro-
cedures to construct curves with constant width, the same is not true for
their higher dimensional analogues.

By a theorem of Pál, we know that every subset of Rn of diameter 1 is
contained in a body of constant width [8]. Sallee [18], and Lachand and Out-
det [14], among others, gave non-constructive procedures to find them, but
besides the two Meissner solids [16], and the obvious constant width bod-
ies of revolution, there is no concrete example in the literature of a constant
width body of dimension greater than 2 or a concrete finite procedure to
construct one.

The purpose of this paper is to construct concrete examples of constant
width bodies in dimension three. They are constructed from some special
embeddings of self-dual graphs. We also give a finite procedure to construct
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centered at x and S(x, h) for the sphere of radius h centered at x.
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and S(y, h) ∩X contains at least two points and is contained in some great
circle of S(y, h). Lastly, the set of regular points of the boundary of Φ is
given by the points y ∈ bdΦ such that X ⊂ B(y, h) and |S(y, h) ∩X| = 1.

Consequently, the set of singular points of the boundary of Φ, S(Φ), con-
sists of an embedding of a graph GΦ whose vertices V (Φ) are the 0-singular
points of bdΦ and whose edges correspond to sub-arcs of circles, each one of
them joining a pair of points in V (Φ). Given adjacent vertices a, b ∈ V (Φ),

we denote by ãb the sub-arc of circle joining a with b. The complement of
S(Φ) in the boundary of Φ consists of the regular points of Φ, whose com-
ponents are spherically convex open subsets of a sphere of radius h. In this
way, a face of Φ is defined as S(x, h) ∩ Φ, where x ∈ X .

It is not difficult to see that the closure of every component of the set of
regular points, that is, the closure of every component of Φ− S(Φ), is a face
of Φ. Furthermore, by [13, Proposition 4.2], each face σ ⊂ S(x, h) of Φ is
spherically convex in S(x, h). A 3-dimensional ball polyhedron Φ is standard

Acta Mathematica Hungarica

MEISSNER POLYHEDRA 483



Acta Mathematica Hungarica 151, 2017

MEISSNER POLYHEDRA 3

if the intersection of two faces is either empty, a vertex of GΦ or a single
edge of GΦ. In fact, the following is proved in [13, Section 6].

Theorem 2.1. The graph GΦ of a standard 3-dimensional ball polyhe-
dron Φ is simple, planar and 3-connected.

As a consequence, we have the Euler–Poincaré formula v− e+ f = 2 for
any 3-dimensional ball polyhedron with v vertices, e edges and f faces.

Now let Φ ⊂ Rn be a ball polyhedron. Suppose Φ =
⋂

x∈X B(x, h) but

for any proper subset X ′ ⊂ X , Φ �=
⋂

x∈X′ B(x, h). A supporting sphere Sl

is a sphere of dimension l, where 0 ≤ l ≤ n− 1, which can be obtained as
the intersection of some of the spheres in {S(x, h)}x∈X . We say that an
n-dimensional ball polyhedron Φ is standard if for any supporting sphere Sl

the intersection Φ ∩ Sl is spherically convex in Sl. If this is so, we call σ
a face of Φ if σ = Φ ∩ Sl, for some supporting sphere Sl of Φ, where the
dimension of σ is l. Bezdek et al. [4] proved the following theorem.

Theorem 2.2. Let Φ ⊂ Rn be a standard ball polyhedron. Then the faces
of Φ form the closed cells of a finite CW-decomposition of the boundary of Φ.
Furthermore, we have following Euler–Poincaré formula

1 + (−1)n+1 =
n∑

i=0

(−1)ifi(Φ)

where fi(Φ) denotes the number or i-dimensional faces of Φ.

3. Reuleaux polyhedra

Following the ideas of Sallee [18], we define a Reuleaux Polyhedron as a
convex body Φ ⊂ Rn satisfying the following properties:

• there is a set X ⊂ Rn with Φ =
⋂

x∈X B(x, h),
• Φ is a standard ball polyhedron, and
• the set V (Φ) of 0-singular points of bdΦ is X .

In dimension 2, Reuleaux polyhedra are exactly the Reuleaux polygons
[21] and it is well known that Reuleaux polyhedra, except in dimension 2,
are not bodies of constant width. The simplest example of Reuleaux poly-
hedron is the Reuleaux tetrahedron which is the 3-dimensional analogue
of the Reuleaux triangle, that is, the intersection of 4 solid spheres of ra-
dius h centered at the vertices of a regular tetrahedron of side length h. The
corresponding self-dual graph for the Reuleaux tetrahedron is the complete
graph K4 with 4 vertices. 3-dimensional Reuleaux polyhedra will be the key
to construct, in Section 4, examples of 3-dimensional constant width bodies.

Theorem 3.1. Let Φ ⊂ R3 be a Reuleaux polyhedron. Then, GΦ is a
self-dual graph, where the automorphism τ is given by : τ(x) = S(x, h) ∩ Φ,
for every x ∈ X . Furthermore, τ is an involution, that is, a vertex x belongs
to the cell τ(y) if and only if the vertex y belongs to the cell τ(x).
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Proof. Let Φ =
⋂

x∈X B(x, h) and suppose that X is the set of 0-sin-
gular points of Φ. Take x, y ∈ X , the corresponding dual faces are τ(x) =
S(x, h) ∩ Φ and τ(y) = S(y, h) ∩ Φ. Assume first that the faces τ(x) and

τ(y) intersect on the edge ãb of GΦ, where a, b ∈ X and ãb is the shortest
arc joining x and y in the circle S(x,h)∩S(y, h). This implies that d(x, a) =
d(x, b) = d(y, a) = d(y, b) = h and therefore that x, y are both vertices of the
dual faces τ(a) ∩ τ(b). Since Φ is a standard ball polyhedron, then τ(a) =
S(a, h)∩Φ and τ(b) = S(b, h)∩Φ intersect on the edge x̃y. This proves that
if τ(x) ∩ τ(y) �= ∅ then {x, y} is an edge of GΦ. The proof of the converse is
completely analogous.

Furthermore, if the vertex x belongs to the dual face τ(y) = S(y, h)∩Φ,
then d(x, y) = h and therefore the vertex y belongs to the dual face τ(x) =
S(x, h) ∩ Φ. �

An important property of the embedding of the graph GΦ in R3 is that
for every pair of points x, y ∈ X ,

(1) d(x, y) ≤ h and d(x, y) = h iff x is in the dual face of y.

A 3-connected planar graph G that admits an automorphism τ which is
an involution (x �∈ τ(x) and x ∈ τ(y) iff y ∈ τ(x)) will be called an involutive

self-dual graph. A metric embedding of an involutive self-dual G in R3, is
an embedding of the vertices X of G into R3 as a geometric graph in such
a way that (1) holds. Examples of metric embeddings of self-dual graphs
are K4 with the vertices of the equilateral tetrahedron and the two concrete
examples in Fig. 1.

Fig. 1: Reuleaux polyhedra
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then d(x, y) = h and therefore the vertex y belongs to the dual face τ(x) =
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An important property of the embedding of the graph GΦ in R3 is that
for every pair of points x, y ∈ X ,

(1) d(x, y) ≤ h and d(x, y) = h iff x is in the dual face of y.

A 3-connected planar graph G that admits an automorphism τ which is
an involution (x �∈ τ(x) and x ∈ τ(y) iff y ∈ τ(x)) will be called an involutive

self-dual graph. A metric embedding of an involutive self-dual G in R3, is
an embedding of the vertices X of G into R3 as a geometric graph in such
a way that (1) holds. Examples of metric embeddings of self-dual graphs
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The problem of characterizing when an involutive self-dual graph admits
a metric embedding is an interesting one. The spherically self-dual polyhe-
dra constructed by Lovász in [15], in connection with the distance problem,
have this property.

Theorem 3.2. Let X ⊂ R3 be the vertices of a metric embedding of

the involutive self-dual graph G, then
⋂

x∈X B(x, h) is a Reuleaux polyhe-
dron. Furthermore, the face polyhedral structure of

⋂
x∈X B(x, h) is lattice

isomorphic to the polyhedral structure (points, edges and faces) of the planar

graph G.

Proof. Let Φ =
⋂

x∈X B(x, h). It will be enough to prove that the ver-
tices of the boundary of Φ coincide with X. In this is case both lattices are
isomorphic because, for every point in X , the dual face (as a point-set) of
the face structure of the boundary of Φ and the dual face of the abstract
polyhedron determined by the planar graph G coincide.

For that purpose, let us prove first that the set X ⊂ R3 admits 2n− 2 di-
ameters, where |V | = n. We start proving that for every x ∈ X , deg(x,G) =
deg(x,D(X)), where D(X) is the graph whose vertex set is the set X and
whose edges are pairs {x, y} ⊂ X such that the segment xy is a diameter
of X . Indeed, the degree of x is equal to the number of faces of G contain-
ing x and since G is an involutive self-dual graph this number is equal to the
number of vertices of the dual face of x, which is the degree of x in D(V ).
This proves that the number of edges of G and of D(V ) coincide and, since
G is a self-dual graph with 2n− 2 edges, the Euler formula gives that D(V )
has 2n− 2 edges.

By the Grünbaum–Heppes–Straszewicz Theorem (see [13]), since every
vertex of X has degree greater than two, the vertices of the boundary of Φ
coincide with X. �

In Section 5, we shall construct an infinite family of Reuleaux polyhedra
in R3.

4. Meissner polyhedra

The two classic Meissner solids were constructed by performing surgery
on one of the edges of each pair of dual edges of the Reuleaux tetrahedron.
This procedure was described in Boltianski and Yaglom’s book [21]. The
purpose of this section is to generalize this procedure for Reuleaux polyhedra
in R3.

Let GΦ ⊂ bdΦ be the metric embedding of the self-dual graph GΦ as the
singular points of the Reuleaux polyhedron Φ =

⋂
x∈X B(x, h), where X is

the set of vertices of V (GΦ). Let us fix our attention on an edge x̃y ∈ E(GΦ).

Then, there is dual edge ãb ∈ E(GΦ) with the following properties:
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• d(x, a) = d(x, b) = d(y, a) = d(y, b) = h.
• The edge x̃y is contained in S(a, h) ∩ S(b, h), that is, x̃y is the sub-

arc of the circle with center at a+b
2 , between x and y, contained in the plane

orthogonal to the segment ab.

• Similarly, the edge ãb is contained in S(x, h) ∩ S(y, h), that is, ãb is
the sub-arc of the circle with center at x+y

2 , between a and b, contained in
the plane orthogonal to xy.

Denote by τ(x) the dual face of the vertex x in Φ, that is

τ(x) = S(x, h) ∩ Φ.

By [5, Lemma 1.1 (2)], τ(x) is a spherically convex closed subset of the
sphere S(x, h). As a subset of the boundary of Φ, the face τ(x) of the ball
polyhedron Φ is bounded by a finite number for sub-arcs of circles, each one

an edge of GΦ. One of these edges is ãb.
Before we continue, we need a pair of definitions. If Φ is a convex body

and P ∈ bdΦ, then a normal chord of Φ at P is a segment PQ with Q

∈ bdΦ \ {P} that is orthogonal to a supporting plane of Φ at P . Note that
if P is a regular point then this plane, and therefore Q, are unique. If PQ
is also a a normal chord of Φ at Q then we call it a binormal chord.

We now follow closely the procedure described in [21], when they perform
surgery on one of the edges of the Reuleaux tetrahedron.

Let Σa ⊂ S(a, h) be the shortest geodesic joining x and y. By the con-
vexity of the faces of Φ, Σa ⊂ τ(a). Similarly, let Σb ⊂ τ(b) be the shortest
geodesic joining x and y in S(b,h). Denote by Σ(xy) the region of the bound-
ary of Φ between the arcs Σa and Σb. Note that the edge x̃y is contained
in Σ(xy) and with the exception of these points, all points of the boundary
of Φ contained in Σ(xy) are regular and belong either to the sphere S(a, h)
or the sphere S(b, h).

The above implies, in particular that if P is a point in the interior of

an edge ãb ∈ E(GΦ) dual to x̃y ∈ E(GΦ) and if PQ is a normal chord of Φ
at P , then either Q is a vertex of Φ and the length of PQ is h or, Q belongs
to Σ(xy).

We denote by W (x, y), the wedge along the segment xy, the surface of
revolution with axis the line in R3 containing the segment xy, between the
circular arc Σa and the circular arc Σb. So the wedge W (x, y) is the union
of all circular arcs of radius h between x and y with centers at points of the

circular arc ãb contained in the boundary of Φ. We leave as an exercise to
the reader to prove that the wedge W (x, y) is contained in Φ.

Let us modify the boundary of Φ by replacing Σ(xy) with the wedge
W (x, y). We denote by Σ(Φ) the surface obtained from the boundary of Φ
by performing surgery on one edge of each pair of dual edges of the self-dual
graph GΦ.
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the plane orthogonal to xy.

Denote by τ(x) the dual face of the vertex x in Φ, that is
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By [5, Lemma 1.1 (2)], τ(x) is a spherically convex closed subset of the
sphere S(x, h). As a subset of the boundary of Φ, the face τ(x) of the ball
polyhedron Φ is bounded by a finite number for sub-arcs of circles, each one

an edge of GΦ. One of these edges is ãb.
Before we continue, we need a pair of definitions. If Φ is a convex body

and P ∈ bdΦ, then a normal chord of Φ at P is a segment PQ with Q

∈ bdΦ \ {P} that is orthogonal to a supporting plane of Φ at P . Note that
if P is a regular point then this plane, and therefore Q, are unique. If PQ
is also a a normal chord of Φ at Q then we call it a binormal chord.

We now follow closely the procedure described in [21], when they perform
surgery on one of the edges of the Reuleaux tetrahedron.

Let Σa ⊂ S(a, h) be the shortest geodesic joining x and y. By the con-
vexity of the faces of Φ, Σa ⊂ τ(a). Similarly, let Σb ⊂ τ(b) be the shortest
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in Σ(xy) and with the exception of these points, all points of the boundary
of Φ contained in Σ(xy) are regular and belong either to the sphere S(a, h)
or the sphere S(b, h).

The above implies, in particular that if P is a point in the interior of

an edge ãb ∈ E(GΦ) dual to x̃y ∈ E(GΦ) and if PQ is a normal chord of Φ
at P , then either Q is a vertex of Φ and the length of PQ is h or, Q belongs
to Σ(xy).

We denote by W (x, y), the wedge along the segment xy, the surface of
revolution with axis the line in R3 containing the segment xy, between the
circular arc Σa and the circular arc Σb. So the wedge W (x, y) is the union
of all circular arcs of radius h between x and y with centers at points of the

circular arc ãb contained in the boundary of Φ. We leave as an exercise to
the reader to prove that the wedge W (x, y) is contained in Φ.

Let us modify the boundary of Φ by replacing Σ(xy) with the wedge
W (x, y). We denote by Σ(Φ) the surface obtained from the boundary of Φ
by performing surgery on one edge of each pair of dual edges of the self-dual
graph GΦ.
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Theorem 4.1. Let Φ ⊂ R3 be a Reuleaux polyhedron. The surface Σ(Φ)
obtained from the boundary of Φ by performing surgery on one edge of each

pair of dual edges of the self-dual graph GΦ is the boundary of a constant

width body.

Proof. The proof consists of two steps. In the first step we prove that
for every point P in the surface Σ(Φ), there is a point Q in the surface Σ(Φ)
such that d(P,Q) = h. In the second step we prove that the diameter of the
surface Σ(Φ) is equal to h. If this is so, then by Pál’s Theorem, there is
a body of constant width containing the surface Σ(Φ) which of course has
Σ(Φ) as its boundary.

For the first part of the proof, note that a point P in the surface Σ(Φ)
belongs either to a face τ(x), for some vertex x of GΦ or belongs to a wedge
W (x, y) for some edge x̃y of GΦ. In the first case case, d(P, x) = h and in

the second case, d(P,Q) = h for some point Q in the dual edge ãb of x̃y.
For the second part of the proof, suppose PQ is a diameter of Σ(Φ).

Then the planes orthogonal to PQ at either P or Q are support planes of
Σ(Φ). Furthermore, since the surface Σ(Φ) is contained in Φ, by the strict
convexity of Φ, all the points strictly between P and Q are interior points
of Φ.

At this point, we need a classification of the points of Σ(Φ). First, we
have the vertex points, second we have the points of Σ(Φ) which are in the

relative interior of some edge ãb ∈ E(GΦ). All other points of Σ(Φ) are reg-
ular points. From this last class, we have those which are in the interior of
some face τ(x) of Φ and therefore belong to S(x, h) for some vertex x of Φ,
those which are in the interior of a wedge W (x, y) and, finally, those regular
points of Σ(Φ) which are in the intersection of a wedge W (x, y) and a face
τ(a).

Suppose first that P is a regular point of Σ(Φ). If P belongs to a face
of Φ, then the chord PQ is a normal chord of Φ at P and therefore there is
a vertex X of Φ between P and Q. Since X ∈ bdΦ and since every point
strictly between P and Q is an interior point of Φ, then X = Q and therefore
the length of PQ is h. Similarly, if P is a point of the wedge W (x, y), then
the chord PQ is normal to the surface W (x, y) at P and therefore there is

a point X in the edge ãb ∈ E(GΦ) dual to x̃y ∈ E(GΦ) which is between P

and Q. As before, since X ∈ bdΦ, then X = Q and therefore the length of
PQ is h.

Suppose now neither P nor Q are regular points of Σ(Φ). If both P

and Q are vertices of Φ then the length of PQ is smaller than or equal to h,

so we may assume that P is in the interior of the edge ãb. If this is so, since
PQ is normal to the surface Σ(Φ) at P , then it is also normal to Φ at P .
Since Q is either a vertex of Φ or lies in some edge of Φ, we have that PQ

is a chord of Φ. In fact, it is a normal chord Φ, hence either Q is a vertex
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and then the length of PQ is h or Q belongs to Σ(xy), which is impossible
by construction. �

We define a Meissner polyhedron as any constant width body that can
be obtained from a Reuleaux polyhedron Φ in R3 by performing surgery on
one edge of each pair of dual edges of the self-dual graph GΦ.

Fig. 2: Meissner polyhedra

In [18], Sallee showed that every 3-dimensional smooth convex body of
constant width h can be closely approximated by Reuleaux polyhedron (with
arbitrarily small edges). Therefore every 3-dimensional constant width body
can be closely approximated by a Meissner polyhedron.

A body Ψ ⊂ R3 of constant width is called a Meissner solid if it has
the property that the smooth components of its boundary have their smaller
principal curvature constant. Here smooth means twice continuously differ-
entiable. Clearly, every Meissner polyhedron is a Meissner solid.

The Blaschke–Lebesgue problem consists of minimizing the volume in
the class of convex bodies of fixed constant width. Anciaux and Guilfoyle
[2] proved that a minimizer of the Blaschke–Lebesgue problem is always a
Meissner solid. On the other hand, Shiohama and Takagi [19] proved that a
non-spherical surface with one constant principal curvature must be a canal
surface, that is, the envelope of a one-parameter family of spheres or equiva-
lently, a tube over a curve (i.e. the set of points which lie at a fixed distance
from this curve). They are made of spherical caps of radius h and surfaces
of revolution over a circle of radius h, exactly like the Meissner polyhedra.

5. Constructing constant width bodies from Reuleaux polygons

Let P be a Reuleaux polygon of width 1 with vertices p1, p2, . . . , pn as
in Fig. 3. We will assume that P ⊂ R2 × {0} ⊂ R3. Of course, n is an odd
integer and P =

⋂n
i=1 B(pi, 1) ∩ {z = 0}.
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from this curve). They are made of spherical caps of radius h and surfaces
of revolution over a circle of radius h, exactly like the Meissner polyhedra.

5. Constructing constant width bodies from Reuleaux polygons

Let P be a Reuleaux polygon of width 1 with vertices p1, p2, . . . , pn as
in Fig. 3. We will assume that P ⊂ R2 × {0} ⊂ R3. Of course, n is an odd
integer and P =
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Fig. 3: A Reuleaux polygon P with five vertices

Let us consider the farthest-point Voronoi diagram of P (see e.g. [7]).
In other words: for each vertex pi of P , consider the set of all points x ∈ P

with the property that

d(x, pi) ≥ max{d(x, pj) | 1 ≤ j ≤ n}.

This gives a cell decomposition of P into n convex cells, each one of them
containing the corresponding circle arc S(pi, 1)∩ P . The boundary between
any two of these convex cells is a straight line edge, and the collection of
these edges gives rise to the embedding of a tree with straight line edges and
vertices denoted by V (P ). See Fig. 4(a).
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Fig. 4: Voronoi diagram and Delaunay triangulation

The farthest-point Delaunay triangulation of P is the planar dual of the
farthest-point Voronoi diagram of P (see e.g. [9]). It gives rise to a family
F of subsets of {p1, . . . , pn} whose convex hulls divide conv{p1, . . . , pn}. See
Fig. 4(b). It turns out that T ∈ F if and only if |T | ≧ 3 and there is a disk
DT containing P whose boundary intersects P exactly at T . Furthermore,
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if cT is the center of DT and rT is the radius of DT , then the collection
{cT | T ∈ F} is precisely V (P ) \ {p1, . . . , pn}.

Now consider the 3-dimensional ball polyhedron

P̄ =
n⋂

i=1

B(pi, 1).

As in Section 2, let V (P̄ ) be the set of 0-singular points of the boundary of

P̄ . It is not difficult to verify that V (P̄ ) =
{
(cT ,±

√
1− r2T ) | T ∈ F

}
and

that the orthogonal projection of the cell decomposition of the boundary
of P̄ coincides precisely with the cell decomposition of the Voronoi diagram
for the farthest point discussed above.

Define

P+ = P̄ ∩ {z ≥ 0}.

and for every 1 ≤ i ≤ n, let σi = S(pi, 1) ∩ P+ be the spherical face of the
boundary of P+.

Lemma 5.1. The convex body P+ has the following properties:
• the diameter of P+ is 1,
• for every point x ∈ bdP+∩{z > 0}, there is a point y in the boundary

of the Reuleaux polygon P such that d(x, y) = 1.

Proof. The second statement is obvious. For the proof of the first
statement, let xy be a diameter of P+. Then we may assume without loss of
generality that x belongs to the boundary of the polygon P and y ∈ bdP+

∩ {z > 0}. If y is a regular point of the boundary of P+, then d(x, y) = 1.
If y is a singular point of P+, since x is in the boundary of P , then x is a
vertex of P and hence d(x, y) = 1. �

So, by Pál’s theorem, there is a unique body Ψ of constant width 1 con-
taining P+. Furthermore, by the above, bdP+ ∩ {z > 0} is contained in the
boundary of Ψ, so Ψ∩ {z ≥ 0} = P+. Now we want to describe the bottom
of Ψ, namely Ψ ∩ {z ≤ 0}. It turns out that the bottom of Ψ is determined
by the binormal chords at singular points of the boundary of P+. That is, for
every point x ∈ bdΨ∩{z ≤ 0} there is a singular point y ∈ bdP+∩{z > 0},
such that d(x, y) = 1.

Recall that F is the farthest-point Delaunay triangulation of P and let

T ∈ F . The set of normal lines of P+ at the vertex vT =
(
cT ,

√
1− r2T

)
is

equal to the cone △T with apex at the point vT though convT , therefore
σT = △T ∩ S(vT , 1) ⊂ bdΨ is a spherical cap face of Ψ.

Assume that v, v′ ∈ V (P ) are adjacent in the tree defined by the farthest-

point Voronoi diagram of P . Let x be a point on the edge ṽv′, we wish to
determine the set of normal lines of P+ at x. There are two possibilities.
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taining P+. Furthermore, by the above, bdP+ ∩ {z > 0} is contained in the
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by the binormal chords at singular points of the boundary of P+. That is, for
every point x ∈ bdΨ∩{z ≤ 0} there is a singular point y ∈ bdP+∩{z > 0},
such that d(x, y) = 1.

Recall that F is the farthest-point Delaunay triangulation of P and let

T ∈ F . The set of normal lines of P+ at the vertex vT =
(
cT ,

√
1− r2T

)
is

equal to the cone △T with apex at the point vT though convT , therefore
σT = △T ∩ S(vT , 1) ⊂ bdΨ is a spherical cap face of Ψ.

Assume that v, v′ ∈ V (P ) are adjacent in the tree defined by the farthest-

point Voronoi diagram of P . Let x be a point on the edge ṽv′, we wish to
determine the set of normal lines of P+ at x. There are two possibilities.
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If v = cT and v = cT ′ for some T, T ′ ∈ F , then T and T ′ share a side of
the form pipj . Thus, the set of normal lines of P+ at x is equal to the cone
with apex x through the segment pipj . This implies that, in the bound-
ary of Ψ, the face σT is connected with the face σT ′ through a surface of
revolution with axis the line through the segment pipj .

Fig. 5: Ψ from the bottom

If v = cT for some T ∈ F and v′ = pi for some i, we may reason similarly
to conclude that, in the boundary of Ψ, the face σT is connected with the
face σi through a surface of revolution with axis the line through the segment
of the form pjpk opposite to pi. These surfaces of revolution are illustrated
in Fig. 5.

So the boundary of Ψ consists of the spherical caps σ1, . . . , σn and σT
with T ∈ F and surfaces of revolution on the bottom part of Ψ. A picture
of such a body is shown in Fig. 6.

Fig. 6: A constant width body obtained from a Reuleaux pentagon

It is easy to see, from the above discussion, that the set of vertices of Ψ
is V = {pi | 1 ≦ i ≦ n} ∪ {vs | T ∈ F}. So,

Φ =
⋂

v∈V

B(v, 1)

Acta Mathematica Hungarica

12 L. MONTEJANO and E. ROLDÁN-PENSADO

Fig. 7: Metric embedding of the self-dual graph GΦ

is a Reuleaux polyhedron and therefore induces a self-dual graph GΦ (see
Fig. 7). Actually, V ⊂ R3 is a metric embedding of GΦ and of course, Ψ is a
Meissner polyhedron because it can be obtained from the Reuleaux polyhe-
dron Φ by performing surgery on one edge of each pair of dual edges of Φ,
as shown in Section 4.

Fig. 8: Voronoi diagram and Delaunay triangulation of a Reuleaux heptagon and the body
of constant width obtained from it

As a second example we show the Voronoi diagram and Delaunay tri-
angulation of a Reuleaux polygon with 7 vertices in Fig. 8. We can also
interpret these two figures as the top and bottom view of the corresponding
Meissner solid.

Summarizing, we have proved the following.
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Fig. 7: Metric embedding of the self-dual graph GΦ
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Fig. 8: Voronoi diagram and Delaunay triangulation of a Reuleaux heptagon and the body
of constant width obtained from it

As a second example we show the Voronoi diagram and Delaunay tri-
angulation of a Reuleaux polygon with 7 vertices in Fig. 8. We can also
interpret these two figures as the top and bottom view of the corresponding
Meissner solid.

Summarizing, we have proved the following.
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Theorem 5.2. Given a Reuleaux polygon P ⊂ R2, there is a finite pro-

cedure (using the Voronoi Diagram and the Delaunay triangulation) to con-

struct a Meissner polyhedra P̃ ⊂ R3 such that P̃ ∩ R2 = P .
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