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Abstract. We say that an ideal I on ω is homogeneous, if its restriction
to any I-positive subset of ω is isomorphic to I. The paper investigates basic
properties of this notion — we give examples of homogeneous ideals and present
some applications to topology and ideal convergence. Moreover, we answer ques-
tions related to our research posed in [1].

1. Introduction

Let ω stand for the set {0, 1, 2, . . .}. A collection I ⊆ P(X) is an ideal
on X if it is closed under finite unions and subsets. We additionally assume
that P(X) is not an ideal and each ideal contains the family of all finite
subsets of X . In this paper X will always be a countable set. Fin is the
ideal of all finite subsets of ω. The restriction of the ideal I to X ⊆

⋃

I
is given by I|X = {A ∩X : A ∈ I}. An ideal is dense if every infinite set
contains an infinite subset belonging to the ideal. The filter dual to the ideal
I is the collection I⋆ = {A ⊆ X : Ac ∈ I} and I+ = {A ⊆ X : A �∈ I} is the
collection of all I-positive sets. An ideal I on ω is maximal if for any A ⊆ ω
either A ∈ I or ω \A ∈ I (equivalently: I is maximal with respect to ⊆).

Ideals I and J are isomorphic (I ∼= J ) if there is a bijection f :
⋃

J
→

⋃

I such that

A ∈ I ⇐⇒ f−1[A] ∈ J .

In this paper, for a given ideal I , we investigate the family of sets H(I)
such that the restrictions of I to members of this family are isomorphic to I .
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0236-5294/$20.00 c� 0 Akadémiai Kiadó, Budapest0236-5294/$20.00 © 2016 Akadémiai Kiadó, Budapest, Hungary

Acta Math. Hungar., 151 (1) (2017), 139–161
DOI: 10.1007/s10474-016-0669-z

First published online November 18, 2016

http://crossmark.crossref.org/dialog/?doi=10.1007/s10474-016-0669-z&domain=pdf


Acta Mathematica Hungarica 151, 2017

2 A. KWELA and J. TRYBA

Definition 1.1. Let I be an ideal on ω. Then

H(I) =
{

A ⊆ ω : I|A ∼= I
}

is called the homogeneity family of the ideal I .

We call an ideal admissible if it is not isomorphic to

Fin⊕P(ω) = {A ⊆ {0, 1} × ω : {n ∈ ω : (1, n) ∈ A} ∈ Fin}.

Proposition 1.2. (a) H(I) ⊆ I+ for any ideal I .
(b) H(I) ⊇ I⋆ for any admissible ideal I .

Proof. To prove part (a) consider any A ∈ I . Then I|A = P(A).
Therefore, I|A �∼= I .

To prove part (b) consider any A ∈ I⋆. If I ∼= Fin, then obviously I|A
∼= I . So suppose now that I �∼= Fin. Then there is an infinite B ⊆ A with
B ∈ I (since I is not isomorphic to Fin⊕P(ω)). Let f : ω → A be such that
f(x) = x for any x ∈ A \B and f ↾ (B ∪Ac) is any bijection between B ∪Ac

and B. Then f witnesses that I|A ∼= I . �

The above proposition indicates that we can introduce two classes of
ideals. Members of those classes have critical homogeneity families.

Definition 1.3. We call an ideal I on ω:
• homogeneous, if H(I) = I+;
• anti-homogeneous, if H(I) = I⋆.

Remark. In [6, Section 5] the notion of homogeneous filters is intro-
duced. Note that an ideal is homogeneous if and only if its dual filter is
homogeneous.

Example 1.4. The only ideals that are both homogeneous and anti-
homogeneous are maximal ideals.

The space 2ω of all functions f : ω → 2 is equipped with the product
topology (each space 2 = {0, 1} carries the discrete topology). We treat
P(ω) as the space 2ω by identifying subsets of ω with their characteristic
functions. All topological and descriptive notions in the context of ideals
on ω will refer to this topology.

In Section 2 we give more examples of homogeneous ideals. Examples of
anti-homogeneous ideals can be found in Section 3, however, all of them are
based on maximal ideals and hence are not Borel or even analytic. We give
an example of an Fσδ anti-homogeneous ideal in Section 4.

In this paper we answer some Questions posed in [1], where I-invariant
and bi-I-invariant injections were investigated.

Acta Mathematica Hungarica

A. KWELA and J. TRYBA140



Acta Mathematica Hungarica 151, 2017

HOMOGENEOUS IDEALS ON COUNTABLE SETS 3

Definition 1.5. Let I be an ideal on ω and f : ω → ω be an injection.
We say that f is:

• I-invariant if f [A] ∈ I for all A ∈ I ;
• bi-I-invariant if f [A] ∈ I ⇐⇒ A ∈ I for all A ⊆ ω.

The next example shows that invariance and bi-invariance of an injection
does not have to coincide.

Example 1.6. The ideal of sets of asymptotic density zero is given by

Id =
{

A ⊆ ω : lim
n→∞

|A ∩ n|

n
= 0

}

.

Note that every increasing injection is Id-invariant. In particular, f : ω → ω
given by f(n) = n2 is Id-invariant. However, it is not bi-Id-invariant, since
f [ω] ∈ Id.

We say that J contains an isomorphic copy of I and write I ⊑ J if
there is a bijection f :

⋃

J →
⋃

I such that

A ∈ I =⇒ f−1[A] ∈ J .

Note that I ∼= J implies I ⊑ J , however, both I ⊑ J and J ⊑ I do not
imply that I ∼= J (cf. [11, Section 1]).

The connection between invariant injections and homogeneity families is
the following.

Remark. • If f : ω → ω is bi-I-invariant then f [ω] ∈ H(I). On the
other hand, if A ∈ H(I) then there is a bi-I-invariant f : ω → ω with
f [ω] = A.

• If f : ω → ω is I-invariant then I ⊑ I|f [ω]. On the other hand, if
I ⊑ I|A then there is an I-invariant f : ω → ω with f [ω] = A.

The paper is organized as follows. In Section 2 we investigate homo-
geneity families and homogeneous ideals. Section 3 is devoted to answering
[1, Question 1]. In Section 4 we investigate ideals induced by submeasures
(summable ideals and Erdős–Ulam ideals). In particular, we answer [1, Ques-
tion 2]. The last part of our paper concerns applications of our results to
ideal convergence. We answer [1, Questions 3 and 4] related to this topic.

2. Homogeneous ideals

In this section we investigate basic properties of homogeneity families,
give some examples of homogeneous ideals and show an application to topol-
ogy.

The next theorem enables us to simplify computations of homogeneity
families of ideals.
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Theorem 2.1. The homogeneity family of any ideal is closed under su-
persets.

Proof. Take any A ∈ H(I) and A ⊆ B. There is a bijection f : ω → A
such that X ∈ I ⇔ f [X] ∈ I . Denote

A′ = {a ∈ A : ∃n∈ω(∀k<n f−k(a) ∈ A) ∧ f−n(a) ∈ B \A}

and M = A′ ∪ (B \A). Define ϕ : ω → B by

ϕ(x) =

{

f(x), if x ∈ ω \M,

x, if x ∈ M.

We will show that ϕ is a bijection witnessing that I|B ∼= I .
Firstly we show that ϕ is 1− 1. Take x, y ∈ ω, x �= y. If x, y ∈ M then

ϕ(x) = x �= y = ϕ(y). If x, y �∈ M , then ϕ(x) = f(x) �= f(y) = ϕ(y) since f is
1− 1. So it remains to consider the case that x ∈ M and y �∈ M . Then
ϕ(x) = x and ϕ(y) = f(y). Suppose that f(y) = x. Since x ∈ M , we have
x ∈ A′ (the case x ∈ B \A is impossible by f(y) ∈ f [ω] = A). Observe that
f−1(x) = y �∈ B \A (since y �∈ M ). Therefore, y ∈ A. But then y ∈ A′ ⊆ M ,
a contradiction.

Now we prove that ϕ is onto. Let y ∈ B. If y ∈ M , then ϕ(y) = y and
we are done. So suppose that y �∈ M and observe that f−1(y) �∈ M . In-
deed, otherwise either f−1(y) ∈ B \A or f−1(y) ∈ A′. In both cases we get
that y ∈ A′ which contradicts y �∈ M . Therefore, f−1(y) �∈ M and we have
y = f(f−1(y)) = ϕ(f−1(y)).

Finally, we show that ϕ witnesses I|B ∼= I . Take any X ∈ I . We have

ϕ[X] = ϕ[X ∩M ] ∪ ϕ[X \M ] = (X ∩M) ∪ f [X \M ] ∈ I,

ϕ−1[X] = ϕ−1[X ∩M ] ∪ ϕ−1[X \M ] = (X ∩M) ∪ f−1[X \M ] ∈ I

(since f witnesses I|A ∼= I). This finishes the proof. �

Corollary 2.2. The following are equivalent for any ideal I on ω:
(a) I is homogeneous;
(b) for each B �∈ I there is A ⊆ B such that A ∈ H(I).

Proof. (a) ⇒ (b) Obvious.
(b) ⇒ (a) Take any B �∈ I . By condition (b) there is A ⊆ B such that

A ∈ H(I). Then, by Theorem 2.1 we have B ∈ H(I). �

Now we will give some examples of homogeneous ideals.

Example 2.3. The ideal Fin is the simplest example of a homogeneous
ideal.
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Example 2.4. Define D = {(i, j) ∈ ω2 : i ≥ j} and

EDfin = {A ⊆ D : ∃m∈ω∀k∈ω|A ∩ {k} × ω| ≤ m}

(cf. [12]). Then EDfin is a homogeneous ideal. Indeed, set any A �∈ EDfin

and for each n ∈ ω pick kn ∈ ω and an1 , . . . , a
n
n ∈ A ∩ {kn} × ω. We can ad-

ditionally assume that the sequence (kn)n∈ω is increasing. Denote A′ =
{anm : n ∈ ω, m ≤ n}. Then the bijection f : D → A′ given by f(n,m) = anm
witnesses that EDfin

∼= EDfin|A
′ and by Corollary 2.2 we get that EDfin is

homogeneous.

Example 2.5. Given n ∈ ω, by [ω]n we denote the collection of all
n-element subsets of ω. For all n ∈ ω \ {0} define

Rn = {A ⊆ [ω]n : ∀B⊆ω if B is infinite then A does not contain [B]n}

(note that R1 = Fin). By Ramsey’s Theorem each Rn is an ideal. Using
Corollary 2.2 it is easy to see that all Rn are homogeneous.

Example 2.6. Define the van der Waerden ideal

W ={A ⊆ ω :

∃n∈ω A does not contain an arithmetic progression of length n}

and the Hindman ideal

H = {A ⊆ ω : ∀B⊆ω if B is infinite then FS(B) �⊆ A},

where FS(B) = {
∑

n∈F n : F ⊆ B ∧ F ∈ Fin} (note that W is closed under
finite unions by van der Waerden’s Theorem and H is closed under finite
unions by Hindman’s Theorem). Both W and H are homogeneous. Indeed,
by the proofs of [10, Proposition 4] and [5, Theorems 3.3 and 4.5] both ideals
satisfy condition (b) of Corollary 2.2.

Example 2.7. For every n ∈ ω \ {0} define the Gallai ideal

Gn = {A ⊆ ωn : ∃k∈ω∀v∈ωn∀α∈ω\{0} v + α · {1, 2, . . . , k}n �⊆ A}

(note that each Gn is closed under finite unions by Gallai’s Theorem, cf. [7,
Ch. 2.3]). In particular, G1 = W . It can be shown that each Gn is homoge-
neous. We provide only a sketch of the proof for n = 2.

Let A �∈ G2 and fix any bijection h : ω2 → ω. Let pr1 denote the projec-
tion on the first coordinate. Construct inductively vij ∈ ω2 and αi

j ∈ ω \ {0}
for all i, j ∈ ω such that:

(i) Ai
j = vij + αi

j · {1, 2, . . . , 2
i}2 ⊆ A;

Acta Mathematica Hungarica

HOMOGENEOUS IDEALS ON COUNTABLE SETS 143



Acta Mathematica Hungarica 151, 2017

6 A. KWELA and J. TRYBA

(ii) 2 ·max(pr1(A
i
j)) < min(pr1(A

i′
j′)) whenever h(i, j) < h(i′, j′).

The construction is possible since given some l ∈ ω we have {l}×ω ∈ G2

and hence A \ ({0, 1, . . . , l} × ω) �∈ G2.
Let A′ =

⋃

i,j∈ω A
i
j ⊆ A. By Corollary 2.2 it suffices to show that

A′ ∈ H(G2).
We are ready to define the required isomorphism f : A′ → ω2. Given

(a, b) ∈ Ai
j find k, l such that (a, b) = vij + αi

j · (k, l). Then define f(a, b) =

(k +
∑

n<i 2
n, l + 2i · j).

Fig. 1: Illustration of the image of the function f

To prove that f witnesses A′ ∈ H(G2), set any B �∈ G2. Assume first that
B ⊆ A′. It can be shown that by condition (ii) actually for each k there are
v, α and i, j such that v + α · {1, 2, . . . , k}2 ⊆ Ai

j ∩B. Since in this case

f [v + α · {1, 2, . . . , k}2] is also of the form v′ + α′ · {1, 2, . . . , k}2 for some v′

and α′, we conclude that f [B] �∈ G2.
To finish the proof we need to check that f−1[B] is not in G2 for ev-

ery B �∈ G2. Actually, it is enough to show that for every v and α the
set f−1[v + α · {1, 2, . . . , 8k}2] contains v′ + α′ · {1, 2, . . . , k}2 for some v′

and α′. Indeed, consider the set pr1[v + α · {1, 2, . . . , 8k}2]. It is an arith-
metic progression of length 8k and a common difference α. It can be
shown that in this case there is i such that Ii ∩ pr1[v + α · {1, 2, . . . , 8k}2],
where Ii = [

∑

n<i 2
n, (

∑

n<i 2
n) + 2i − 1], contains an arithmetic progression

of length 2k and a common difference α (cf. the proofs of [10, Proposition 4]
and [5, Theorems 3.3]). Therefore, there is w such that

w + α · {1, 2, . . . , 2k}2 ⊆ v + α · {1, 2, . . . , 8k}2
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and pr1[w+α · {1,2, . . . ,2k}2] ⊆ Ii. Now it suffices to observe that there are
also w′ and j with w′ + α · {1, 2, . . . , k}2 ⊆ Ii × [j · 2i, (j + 1) · 2i]. It follows
that f−1[v + α · {1, 2, . . . , 8k}2] contains v′ + α′ · {1, 2, . . . , k}2 for some v′

and α′.

The above examples suggest that the following should be true.

Problem 2.8. Define the Folkman ideal

F = {A ⊆ ω : ∃n>1∀B⊆ω if |B| = n then FS(B) �⊆ A}

(note that F is closed under finite unions by the Folkman’s Theorem, cf. [7,
Ch. 3.4]). Is F homogeneous?

Let I and J be two ideals on X and Y , respectively. By I ⊗ J we
denote the product of the ideals I and J given by

A ∈ I ⊗ J ⇔ {x ∈ X : Ax �∈ J } ∈ I,

for every A ⊆ X × Y , where Ax = {y ∈ Y : (x, y) ∈ A}.

Remark. Observe that G2 �= W ⊗W , since the set D = {(i, j) ∈ ω2 :
i ≥ j} belongs to W ⊗W and does not belong to G2 (in fact, one can also
give an example of a set belonging to G2 \W ⊗W).

The next result gives us many more examples of homogeneous ideals.

Proposition 2.9. If I and J are homogeneous ideals then so is I ⊗J .

Proof. Take any A �∈ I ⊗J . Then the set B = {n ∈ ω : An �∈ J } does
not belong to I . Define

A′ =
⋃

n∈B

{n} ×An �∈ I ⊗ J .

By Corollary 2.2 it suffices to show that A′ ∈ H(I ⊗ J ).
For each n ∈ B there is a bijection fn : An → ω such that X ∈ J ⇔

f−1
n [X] ∈ J |An for each X ⊆ ω. There is also a bijection g : B → ω such
that X ∈ I ⇔ g−1[X] ∈ I|B for each X ⊆ ω. Define ϕ : A′ → ω × ω by
ϕ((i, j)) = (g(i), fi(j)) for each (i, j) ∈ A′. Then ϕ is a bijection witnessing
that I ⊗ J ∼= I ⊗ J |A′. �

Remark. Let Fin1 = Fin and Finn+1 = Fin⊗ Finn for all n > 1. By
Example 2.3 and Proposition 2.9 all ideals Finn, for n ≥ 1, are homogeneous.
Note that this fact is also shown in [6, Section 5].

Now we proceed to some applications of our results to topology.
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Let I be an ideal on ω. When X is any given topological space, a se-
quence (xn)n∈ω ∈ Xω is I-convergent to x ∈ X if

{

n ∈ A : xn �∈ U
}

∈ I

for every open neighborhood U ⊆ X , x ∈ U . In a special case, when (xn)n∈ω
is a sequence of reals, it is I-convergent to x ∈ R, if {n ∈ ω : |xn − x| ≥ ε}
∈ I for any ε > 0. We say that a pair (X,I), where X is a topological space
and I is an ideal on ω, has

• BW property, if every sequence (xn)n∈ω ⊆ X has an I-convergent
subsequence (xn)n∈A with A �∈ I ;

• FinBW property, if every sequence (xn)n∈ω ⊆ X has a convergent
subsequence (xn)n∈A with A �∈ I ;

• hBW property, if every sequence (xn)n∈A ⊆ X with A �∈ I has an
I-convergent subsequence (xn)n∈B with B �∈ I ;

• hFinBW property, if every sequence (xn)n∈A ⊆ X with A �∈ I has a
convergent subsequence (xn)n∈B with B �∈ I .

Proposition 2.10. Suppose that X and Y are topological spaces and I
is a homogeneous ideal.

(a) (X,I) has the BW property if and only if (X,I) has the hBW prop-
erty ;

(b) (X,I) has the FinBW property if and only if (X,I) has the hFinBW
property ;

(c) if both (X,I) and (Z,I) have the BW property (FinBW property),
then so does (X × Y,I).

Proof. Straightforward. �

Remark. Proposition 2.10 generalizes results of [5], [9] and [10], where
(a), (b) and (c) were proved for I = W and I = H.

3. Maximal ideals

In this section we answer [1, Question 1].
It is easy to see that for any ideal I and injection f : ω → ω, if Fix(f)

∈ I⋆ then f is bi-I-invariant. We say that an ideal I on ω satisfies condition
(C1), if the above implication can be reversed, i.e. for any bi-I-invariant
injection f : ω → ω we have Fix(f) ∈ I⋆. Firstly we answer the first part
of [1, Question 1] about a characterization of the class of ideals satisfying
condition (C1).

Theorem 3.1. The following are equivalent for any ideal I on ω:
(a) I does not satisfy condition (C1);
(b) there are A,B ⊆ ω such that A△B �∈ I and I|A ∼= I|B.
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Proof. (a) ⇒ (b) By the assumption there is a bi-I-invariant injec-
tion f : ω → ω such that Fix(f) �∈ I⋆. We can assume that f [ω] �∈ I (if
f [ω] ∈ I , then ω = f−1[f [ω]] ∈ I , a contradiction). First we deal with the
case f [ω] �∈ I⋆. Define A = ω and B = f [ω]. Then A△B �∈ I and f wit-
nesses that I|A = I ∼= I|B since f is bi-I-invariant.

Assume now that f [ω] ∈ I⋆. We inductively pick points an and bn for
n ∈ ω. We start with a0 = min(ω \ Fix(f)) and b0 = f(a0). If all ak and bk
for k ≤ n are defined, let

an+1 = min(ω \
�

Fix(f) ∪ {ak : k ≤ n} ∪ {bk : k ≤ n} ∪ f−1[{ak : k ≤ n}]
�

)

and bn+1 = f(an+1). Define A = {an : n ∈ ω} and B = {bn : n ∈ ω}. Then
A ∩B = ∅. Moreover, A△B �∈ I . Indeed, if A△B ∈ I then also f−1[A]
∈ I , which contradicts A ∪B ∪ f−1[A] = ω \ Fix(f) �∈ I . Finally, observe
that f ↾ A is a bijection between A and B witnessing that I|A ∼= I|B.

(b) ⇒ (a) There is a bijection f : A → B witnessing I|A ∼= I|B. Since
A△B �∈ I , either A\B �∈ I or B \A �∈ I . Suppose that A\B �∈ I (the other
case is similar). There are two possibilities.

If the set A′ = {a ∈ A \B : f(a) ∈ B \A} is not in I , then define
g : ω → ω by

g(x) =











f(x), if x ∈ A′,

f−1(x), if x ∈ f [A′],

x, if x �∈ A′ ∪ f [A′].

Then g is a bi-I-invariant injection and Fix(g)c ⊇ A′ �∈ I .
If the set A′′ = {a ∈ A \B : f(a) ∈ A ∩B} is not in I , then define

g : ω → ω by

g(x) =











f(x), if x ∈ A′′,

f−1(x), if x ∈ f [A′′],

x, if x �∈ A′′ ∪ f [A′′].

Then g is a bi-I-invariant injection and Fix(g)c ⊇ A′′ �∈ I . �

If I and J are two ideals on ω then I ⊕J is an ideal on {0,1}×ω consist-
ing of all A ⊆ {0,1}×ω such that {n ∈ ω : (0, n) ∈ A} ∈ I and {n ∈ ω : (1, n)
∈ A} ∈ J .

Remark. From the previous theorem it is easy to see that if some ideal
satisfies condition (C1), then it is anti-homogeneous. On the other hand,
if I is any maximal ideal, then the ideal J = I ⊕ I is anti-homogeneous,
however, it does not satisfy condition (C1). In Theorem 4.8 we construct an
Fσδ anti-homogeneous ideal not satisfying condition (C1).
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Now we proceed to examples of ideals satisfying condition (C1) (which
are also examples of anti-homogeneous ideals, by the above remark). The
following two examples come from [1], however, we give much simpler proofs.

Example 3.2 cf. [1, Corollary 9]. Let I be any maximal ideal. Then I
satisfies condition (C1).

Indeed, if A△B �∈ I , then either A ∈ I and B ∈ I⋆ or B ∈ I and A ∈ I⋆.
But then I|A and I|B cannot be isomorphic, since one of those ideals is iso-
morphic to I , while the second one is isomorphic to P(ω).

Example 3.3 cf. [1, Example 10]. Let I and J be two non-isomorphic
maximal ideals. Then the ideal I ⊕ J satisfies condition (C1).

Indeed, suppose that A△B �∈ I ⊕ J for some A,B ⊆ ω. Without loss
of generality we can assume that A ∩ ({0} × ω) ∈ I but A ∩ ({1} × ω) �∈ J
and B ∩ ({0}×ω) �∈ I but B ∩ ({1}×ω) ∈ J . Then we have (I ⊕J )|A ∼= J
and (I ⊕ J )|B ∼= I . Hence, I|A �∼= I|B.

The next example is new and more complicated than the previous ones.
Before presenting it, we need to introduce some notations and notions.

If (Xi)i∈I is a family of sets, then
∑

i∈I Xi denotes their disjoint sum,
i.e. the set of all pairs (i, x), where i ∈ I and x ∈ Xi. For an ideal J on ω
and a sequence (Ji)i∈ω of ideals on ω the family of all sets of the form
∑

i∈ABi ∪
∑

i∈ω\A ω, for A ∈ J ⋆ and Bi ∈ Ji, constitutes a basis of an ideal

on ω × ω. We denote this ideal by J -
∑

i∈ω Ji and call J -Fubini sum of the
ideals (Ji)i∈I .

Example 3.4. Let (Ji)i∈ω be a sequence of pairwise non-isomorphic
maximal ideals on ω. Then the ideal I = Fin-

∑

i∈ω Ji satisfies condition
(C1).

Indeed, suppose that there are A,B ⊆ ω2 such that A△B �∈ I and
I|A ∼= I|B. Then A,B �∈ I (if A ∈ I , then B ∈ I by I|A ∼= I|B, which con-
tradicts A△B �∈ I). Therefore, the set R = {n ∈ ω : An ∈ J ⋆

n} is infinite.
Let f : A → B be a bijection witnessing that I|A ∼= I|B. Define

S = {n ∈ R : ∃k(n)∈ω (f [{n} ×An])k(n) ∈ J ⋆
k(n)}

and T = R\S. Note that if n �= m and n,m ∈ S then k(n) �= k(m), because if
k(n) = k(m) for some n,m ∈ ω, both (f [{n}×An])k(n) and (f [{m}×Am])k(n)
would belong to J ⋆

k(n), which contradicts the fact that those sets are disjoint.

There are two possible cases.
Case 1: T �∈ Fin. Then consider f

[
⋃

i∈T ({i} ×Ai)
]

�∈ I|B. Let L con-
sist of those l ∈ ω for which infinitely many f [{j}×Aj]’s, for j ∈ T , intersect
{l} × ω. Observe that L �∈ Fin and L× ω ∩ f

[
⋃

i∈T ({i} ×Ai)
]

�∈ I .
Firstly we will show that the set T ′ consisting of those j ∈ T for which

there is some l(j) ∈ L such that (f−1[{l(j)} × ω ∩B] ∩ {j} ×Aj)j ∈ J ⋆
j , is
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finite. Suppose otherwise and consider the case that there is some l ∈ L such
that l = l(j) for infinitely many j ∈ T ′. Then X = {l} × ω ∩B ∈ I|B, but
f−1[X] �∈ I|A, a contradiction. On the other hand, if there is no such l, then
the set

X =
⋃

j∈T ′

f−1
[

{l(j)} × ω ∩B
]

∩ {j} ×Aj

is such that X �∈ I|A. However, f [X] ∈ I|B since

(f [X])l(j) =
⋃

{j′∈T ′:l(j′)=l(j)}

(

f [{j′} ×Aj′ ]
)

l(j)
∈ Jl(j)

for all j ∈ T ′ (by the fact that j ∈ T ) and (f [X])i = ∅ for i �∈ {l(j) : j ∈ T ′}.
Again we get a contradiction. Therefore, T ′ is finite.

Let T \ T ′ = {t0, t1, . . .} and L = {l0, l1, . . .}. Consider the set

X =
⋃

i∈ω

(

f [{ti} × Ati ] \ ({0, 1, . . . , li} × ω)
)

.

Then X ∈ I|B. To get a contradiction we need to show that f−1[X] �∈ I|A.
Indeed, it follows from the fact that for each i ∈ ω we have

f−1 [X] ∩Ati = Ati \
⋃

j<li

f−1 [{lj} × ω ∩B]

and f−1 [{lj} × ω ∩B] ∈ Jli , since ti �∈ T ′.
Case 2: T ∈ Fin. Then S �∈ Fin. Since A△B �∈ I , we can pick k(n)’s

in such a way that S′ = {n ∈ S : n �= k(n)} �∈ Fin. Let {s0, s1, . . .} be
an enumeration (without repetitions) of S′. Note that Jsi |Asi

∼= Jsi and
Jk(si)|f [Asi ]

∼= Jk(si) by maximality of all Ji’s. Since the ideals (Ji)i∈ω are
pairwise non-isomorphic, for each i ∈ ω one can find Xsi ⊆ Asi such that
Xsi ∈ Jsi |Asi but f [{si}×Xsi ] �∈ Jk(si)|f [Asi ] (if for some i there is Ysi ⊆ Asi
such that Ysi �∈ Jsi |Asi but f [{si}×Ysi] ∈ Jk(si)|f [Asi ] then by the maximal-
ity of Ji’s it suffices to take Xsi = Asi \ Ysi). Define

X =
⋃

i∈ω

{si} ×Xsi .

Then obviously X ∈ I|A. Moreover, f [X] �∈ I|B (since k(si) �= k(sj) for
i �= j), a contradiction.

Problem 3.5. Is there a “nice” (for instance Borel or analytic) ideal
satisfying condition (C1)?
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Now we proceed to answering the second part of [1, Question 1] about a
characterization of the class of ideals I such that for any I-invariant injec-
tion f : ω → ω we have either Fix(f) ∈ I⋆ or f [ω] ∈ I .

Theorem 3.6. The following are equivalent for any ideal I on ω:
(a) there is an I-invariant injection f : ω → ω with Fix(f) �∈ I⋆ and

f [ω] �∈ I;
(b) there are A,B ⊆ ω such that B �∈ I , A△B �∈ I and I|A ⊑ I|B;
(c) I is not a maximal ideal.

Proof. (a) ⇒ (c) Let I be a maximal ideal. We will show that I
does not satisfy condition (a). Suppose that there is an I-invariant injec-
tion f : ω → ω with Fix(f) �∈ I⋆ and f [ω] �∈ I . Then C ∈ I and f−1[C] ∈ I⋆

would contradict f [ω] ∈ I⋆, so actually f is bi-I-invariant. But then I can-
not be maximal by Theorem 3.1 and Example 3.2, a contradiction.

(c) ⇒ (b) Take any ideal I which is not maximal. Assume first that
I is not dense. Take C ⊆ ω such that I|C ∼= Fin. Let A and B be two
infinite and disjoint subsets of C. Then A and B witness that I satisfies
condition (b).

Assume now that I is dense and take A = ω and any B �∈ I ∪ I⋆. Then
A△B = Bc �∈ I . Define φ : B → ω by f(x) = x for all x ∈ B. Let us recall
that if J1 is a dense ideal, then J1 ⊑ J2 if and only if there is a 1− 1 func-
tion f :

⋃

J2 →
⋃

J1 such that f−1[A] ∈ J2 for all A ∈ J1 (cf. [2] or [3]).
Therefore, by the above fact we get that I|A ⊑ I|B.

(b) ⇒ (a) If I = Fin, then obviously there is an I-invariant injection
f : ω → ω with Fix(f) �∈ I⋆ and f [ω] �∈ I (consider for instance the function
given by x �→ x+ 1 for all x ∈ ω). So we can suppose that I �= Fin. Take
an infinite C ∈ I . We can assume that (A ∪B) ∩C = ∅ (otherwise consider
A′ = A \ C and B′ = B \ C).

We are ready to define the I-invariant injection f . Let f ↾ A be equal to
the inverse of the function witnessing that I|A ⊑ I|B (so we already have
f [ω] ⊇ f [A] = B �∈ I), f ↾ (C∪(B \A)) be any bijection betweenC ∪ (B \A)
and C, and f ↾ (ω \ (A ∪ B ∪ C)) be the identity function. Then f is an
I-invariant injection. Moreover, Fix(f)c contains the set A△B �∈ I . Hence,
Fix(f) �∈ I⋆. This finishes the entire proof. �

4. Ideals induced by submeasures

In this section we answer [1, Question 2]. Firstly, we present its context.
A map φ : P(ω) → [0,∞] is a submeasure on ω if φ(∅) = 0 and φ(A)

≤ φ(A ∪B) ≤ φ(A) + φ(B) for all A,B ⊆ ω. It is lower semicontinuous if
additionally φ(A) = limn→∞ φ(A ∩ {0, . . . , n}) for all A ⊆ ω. For a lower
semicontinuous submeasure φ on ω we define

Fin(φ) =
{

A ⊆ ω : φ(A) is finite
}

,
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Exh(φ) = {A ⊆ ω : lim
n→∞

φ(A ∩ {n, n+ 1, . . .}) = 0}.

An ideal I is a P-ideal if for every {Xn : n ∈ ω} ⊆ I there is X ∈ I⋆ with
X ∩Xn finite for all n ∈ ω.

For any lower semicontinuous submeasure φ on ω such that ω ∈ Exh(φ),
the ideal Exh(φ) is an Fσδ P-ideal, while for any lower semicontinuous sub-
measure such that Fin ⊆ Fin(φ) and ω �∈ Fin(φ), Fin(φ) is an Fσ ideal con-
taining Exh(φ) [4, Lemma 1.2.2].

Proposition 4.1 [1, Proposition 11]. Let ϕ be a lower semicontinuous
submeasure and f : ω → ω be an increasing injection such that there is cf > 0
with ϕ(A) ≥ cfϕ(f [A]) for all A ⊆ ω. Then f is both Fin(ϕ)-invariant and
Exh(ϕ)-invariant. Moreover, if there is c′f > 0 with ϕ(A) ≥ c′fϕ(f

−1[A]) for

all A ⊆ ω, then f is both bi-Fin(ϕ)-invariant and bi-Exh(ϕ)-invariant.

Set a function f : ω → [0,∞) such that
∑

n∈ω f(n) = +∞. For A ⊆ ω
and an interval I ⊆ ω we denote Af (I) =

∑

n∈I∩A f(n). Define the summable
ideal associated with f by the formula

If =
{

A ⊆ ω :
∑

n∈A

f(n) is finite
}

and the Erdős–Ulam ideal associated with f by the formula

EUf =
{

A ⊆ ω : lim sup
n→∞

Af [1, n]

ωf [1, n]
= 0

}

.

Then If = Exh(φ) = Fin(φ) for a lower semicontinuous submeasure φ : P(ω)
→ [0,∞] given by φ(A) =

∑

n∈A f(n) for all A ⊆ ω. Hence, If is an Fσ

P-ideal. What is more, EUf = Exh(ϕ) for a lower semicontinuous submea-
sure ϕ : P(ω) → [0,∞] given by

ϕ(A) = sup
n∈ω

Af [1, n]

ωf [1, n]

for all A ⊆ ω. Hence, EUf is an Fσδ P-ideal.

Proposition 4.2 [1, Section 4]. Let g : ω → [0,+∞) be such that
∑

n∈ω g(n) = +∞. Assume additionally that g is nonincreasing. Then every
increasing injection f : ω → ω is both EUg-invariant and Ig-invariant.

The next proposition shows that monotonicity condition imposed on g
is crucial.

Proposition 4.3 [1, Proposition 15]. There are an Erdős–Ulam ideal I
and an increasing injection f : ω → ω such that neither f nor f−1 is I-in-
variant.
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We are ready to formulate the problem. Let g : ω → [0,∞) be nonde-
creasing. Is it true that the class of all increasing injections f : ω → ω which
are bi-EUg-invariant equals the class of all increasing injections f : ω → ω
which are bi-I(1/g)-invariant?

Note that originally in [1, Question 2] the function g is increasing. How-
ever, in the following considerations it would be clearer to use a nonde-
creasing function instead of an increasing one. We can always modify a
nondecreasing g to an increasing g′ ≥ g without changing the original ideal
by making sure that

∑

n∈ω g′(n)− g(n) is convergent.
The next theorem shows that the answer is positive in the case of

g(n) = n.

Theorem 4.4 [1, Corollary 20]. Let f : ω → ω be an increasing injec-
tion. The following are equivalent :

• f is bi-Id-invariant ;
• d(f [ω]) > 0;
• there is c ∈ ω such that f(n) ≤ Cn for all n ≥ 1;
• f is bi-I(1/n)-invariant.

We answer the problem in negative.

Proposition 4.5. There is a nondecreasing function g : ω → [0,∞) such
that the classes of all increasing injections f : ω → ω which are bi-EUg-invari-
ant and of all increasing injections f : ω → ω which are bi-I(1/g)-invariant
are not equal.

Proof. If g : ω → [0,∞) is a nondecreasing bounded function, then
EUg = Id, while I(1/g) = Fin. Since there are increasing functions that are
not bi-Id-invariant, the classes of their increasing bi-I-invariant functions
are different. �

We can weaken the above property in the following way. We say that
an Erdős–Ulam ideal I satisfies condition (C2), if there is a nondecreasing
function g : ω → [0,∞) such that I = EUg and the class of all increasing
functions f : ω → ω which are bi-EUg-invariant equals the class of all in-
creasing injections f : ω → ω which are bi-I(1/g)-invariant. Is it true that all
Erdős–Ulam ideals I satisfy condition (C2)?

We have two counterexamples. The first one, however, is not dense.

Proposition 4.6. There is an Erdős–Ulam ideal which does not satisfy
condition (C2).

Proof. Let (In)n∈ω be a sequence of consecutive intervals such that
|In| = (2n)! for each n. Denote I = EUh, where h(k) = (2n)! for all k ∈ In.

Since all summable ideals defined by monotonic functions are transitive,
the increasing injection f : ω → ω defined by f(n) = n+ 1, for all n, is bi-
I(1/g)-invariant for every nondecreasing function g. However, we will show
that this function is not bi-I-invariant.
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Let A = {max In : n ∈ ω}. Then A ∈ I , since for each k ∈ In ∩A we
have

Ah[1, k]

ωh[1, k]
≤

n · (2n)!

((2n)!)2
n→∞
−−−→ 0.

On the other hand, for k ∈ In+1 ∩ f [A] we have

f [A]h[1, k]

ωh[1, k]
≥

(2n+1)!

((2n+1)! + n · ((2n)!)2)
.

Since (2n+1)!
((2n)!)2 ≥ 22

n

, the right hand side of the above inequality tends to 1.

Thus, f [A] �∈ I and f is not bi-I-invariant.
To see that I is not dense, we only need to notice that we have shown

above that h(k)/ωh[1, k] does not converge to 0. �

Theorem 4.7. There is a dense Erdős–Ulam ideal which does not satisfy
condition (C2).

Proof. Let (kn)n∈ω be a sequence defined by k0 = 0 and

kn = min
{

x ∈ ω :
2x

2kn−1

≥ n
}

for all n > 0. Define In = [2kn , 2kn+1) and I = EUh, where h : ω → ω is given
by h(i) = 2kn for all i ∈ In.

Notice that for i ∈ In we have

h(i)

ωh[1, i]
≤

2kn

(2kn−1)2
≤

2n

2kn−1

n→∞
−−−→ 0.

Therefore, I is dense.
For x ∈ R, by [x] we denote the nearest integer to x. Observe that given

any sequence of positive reals (an)n∈ω bounded by 1, if A denotes the set
consisting of the first [an2

kn] elements of each In+1, then

(1) A ∈ I ⇐⇒ lim
n→∞

an = 0,

since

Ah(In+1)

ωh(In)
=

an · 2kn · 2kn+1

2kn · (2kn+1 − 2kn)
≈ an ·

n+ 1

n
,

while Ah(In)
ωh(In)

≤ an

n .

Let g : ω → [0,∞) be a nondecreasing function such that I = EU g and let
J = I(1/g) be the appropriate summable ideal. Consider sets Bb for b ∈ (0, 1]

consisting of the last [b2kn] elements of each interval In. We have two cases:
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1. there is b ∈ (0, 1] such that Bb ∈ J ,
2. Bb �∈ J for all b ∈ (0, 1].
Case 1. Consider the set C = Bb ∈ J and define f : ω → ω by

f(x) =











0, if x = 0,

2kn+1, if x = min(In ∩ C) for some n,

f(x− 1) + 1, otherwise.

Observe that f [C] consists of the first [b2kn ] elements of each In+1.

Hence, f [C] �∈ I by (1). On the other hand, Ch(In)
ωh(In)

≤ b
n , so C ∈ I . Thus,

f is not bi-I-invariant.
Since the sequence ( 1

g(n))n∈ω is nonincreasing and f is increasing, f is

obviously J -invariant. We will show that f−1 is J -invariant as well. Set
D �∈ J . We only need to see that

�

i∈f [D]

1

g(i)
≥

�

i∈D

1

g(i)
−

�

i∈C

1

g(i)
,

since ( 1
g(n))n∈ω is nonincreasing and

�

i∈C
1

g(i) is convergent. Therefore,

f [D] �∈ J whenever D �∈ J .
Case 2. First, observe that for all b ∈ (0, 1] the ratio

(Bb + b2kn)g(In+1)

(Bb)g(In)

has to tend to infinity in order to maintain I = EUg. Indeed, if it were
bounded on some subsequence (in)n∈ω, then each set formed of some first
elements of each Iin would be in EUg if and only if appropriate subset of Bb

would be in EUg. That is not the case for I , since Bb ∈ I for all b ≤ 1 while
�

n∈ω((Bb∩ In)+ b2kn) �∈ I by (1) for all b ≤ 1. Therefore, for all M > 0 and

c ∈ (0,1], there is such N ∈ ω that for all n ≥ N we have g(max In+c2kn )
g(max In)

≥ M .

Next we find such a nonincreasing sequence (bn)n∈ω tending to 0 that
the set B consisting of the last [bn2

kn] elements of each interval In does not

belong to J while the sequence (Mn)n∈ω, where Mn = g(max In+bn2kn )
g(max In)

for

each n ∈ ω, tends to infinity.
Due to the Abel–Dini Theorem [8, Theorem 173], which says that

when
�

n∈ω xn diverges, then
�

n∈ω
xn

(x1+···+xn)1+δ converges for all δ > 0,

we can find a sequence (cn)n∈ω such that
�

n∈ω cnB1/g(In) diverges while
�

n∈ω
cnB1/g(In)

Mn
converges. To do that, we only need to make sure that

(c1B1/g(I1) + · · ·+ cnB1/g(In))
2 tends to infinity and is not greater than Mn

at the same time.
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Define the set C as a union of the first [cn|B ∩ In|] elements of each
B ∩ In. Let f : ω → ω be given by

f(x) =











0, if x = 0,

2kn+1 + [bn2
kn] + [(1− cn)|B ∩ In|], if x = min(In ∩ C) for some n,

f(x− 1) + 1, otherwise.

Observe that since
�

n∈ω C1/g(In) ≥
�

n∈ω cnB1/g(In), the set C does
not belong to J . Moreover, we can see that

�

n∈ω

f [C]1/g(In+1) ≤
�

n∈ω

cnB1/g(In)

Mn
,

thus f [C] ∈ J . Hence, f is not bi-J -invariant.
To show that f is bi-I-invariant, pick D ⊆ ω. Both B and f [B] belong

to I (by (1)), so without loss of generality we may assume that D ∩B = ∅.
Firstly, consider the case that D ∈ I . It is easy to see that f [D] ∈ I , since
for i ∈ D ∩ In we have f(i) ∈ In and the function h is constant on In. On
the other hand, if D �∈ I then there are α > 0 and infinitely many i ∈ ω such

that Dh[1,i]
ωh[1,i]

> α. Then for such i ∈ In we have

f [D]h[1, i]

ωh[1, i]
≥

Dh[1, i− 2bn2
kn−1 ]

ωh[1, i]
> α−

2bn · 2kn−1 · 2kn

2kn−1 · (2kn − 2kn−1)
.

To finish the proof it remains to notice that the right hand side of the above
inequality is greater than α/2 for almost all n. Therefore, f [D] �∈ I . �

We end this section with an example of a “nice” anti-homogeneous ideal.
All examples of anti-homogeneous ideals presented in Section 3 were not
“nice” (i.e. they were not Borel or even analytic). The ideal presented below
is an Erdős–Ulam anti-homogeneous ideal.

Theorem 4.8. There is an Erdős–Ulam anti-homogeneous ideal.

Proof. Let (In)n∈ω be a family of consecutive intervals such that each
In has length n!. Let also (ϕn)n∈ω be a family of measures on ω given by

ϕn({k}) =

�

1
n! , if k ∈ In,

0, if k ∈ ω \ In.

Consider the ideal I = {A ⊆ ω : limn→∞ϕn(A) = 0}. This is a density ideal
(in the sense of Farah, cf. [4, Ch. 1.13]). Moreover, it is an Erdős–Ulam ideal
by [4, Theorem 1.13.3]. We will show that I is anti-homogeneous.
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Take any B �∈ I ∪I⋆. Then there areM > 0 and some infinite T ⊆ ω \M
such that ϕn(B) ≥ 1

M for all n ∈ T . For each n ∈ T pick An ⊆ In ∩B such

that |An| =
n!
M . We will show that A = ω \

⋃

n∈T An is not in H(I). By
Theorem 2.1 it will follow that Bc �∈ H(I).

Assume that A ∈ H(I) and f : ω → A is a bijection witnessing it. Denote

ω+ =
⋃

n∈ω

{x ∈ In : f(x) > max In}, ω− =
⋃

n∈ω

{x ∈ In : f(x) < min In},

ω= =
⋃

n∈ω

{x ∈ In : f(x) ∈ In}.

Observe that ϕn(ω
−) = ϕn(ω

− ∩ In) <
2
n for each n. Hence, ω− ∈ I . Note

also that ω= ⊆ A �∈ I⋆. Therefore, ω+ �∈ I .
On the other hand,

ϕn(f [ω
+]) = ϕn

(

f

[

⋃

k<n

Ik ∩ ω+

])

<
2

n

for each n. Hence, f [ω+] ∈ I which contradicts the fact that f witnesses
A ∈ H(I). Therefore, A �∈ H(I). �

5. Ideal convergence

In this section we consider ideal convergence and answer [1, Question 3]
and [1, Question 4].

Let I be an ideal on ω. Recall that a sequence of reals (xn)n∈ω is I-con-
vergent to x ∈ R, if {n ∈ ω : |xn − x| ≥ ε} ∈ I for any ε > 0. We say that
an ideal I on ω satisfies condition (C3), if for any sequence (xn)n∈ω of reals
I-convergence of (xn)n∈ω to some x ∈ R implies convergence of (xf(n))n∈ω
to x (in the classical sense) for some bi-I-invariant injection f . [1, Ques-
tion 3] asks about a characterization of ideals satisfying condition (C3).

It is easy to see that Fin⊕P(ω) does not satisfy condition (C3).
Recall that an ideal I is a P-ideal if for every {Xn : n ∈ ω} ⊆ I there is

X ∈ I⋆ with X ∩Xn finite for all n ∈ ω. Similarly, I is a weak P-ideal if for
every {Xn : n ∈ ω} ⊆ I there is X �∈ I with X ∩Xn finite for all n ∈ ω.

Proposition 5.1 [1, Proposition 22]. All admissible P-ideals satisfy con-
dition (C3).

Proposition 5.2 [1, Proposition 23]. All ideals that are not weak P-
ideals do not satisfy condition (C3).

Now we give a characterization of ideals satisfying condition (C3).
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Proposition 5.3. The following are equivalent for any admissible ideal

I on ω:
(a) I satisfies condition (C3);
(b) for every countable family {An : n ∈ ω} ⊆ I there exists A ∈ H(I)

such that A ∩ An is finite for every n ∈ ω.

Proof. (a) ⇒ (b) Pick a countable family {An : n ∈ ω} ⊆ I and sup-
pose that for every A ∈ H(I) there is some n ∈ ω with A ∩An infinite.
Consider the sequence (xn)n∈ω defined by

xn =

{

1
k , if n ∈ Ak \

⋃

m<k Am for some k,

0, otherwise.

Then the sequence (xn)n∈ω is clearly I-convergent to 0. However, for every
bi-I-invariant injection f there is k ∈ ω such that f [ω]∩Ak is infinite (since
f [ω] ∈ H(I)). Thus, there are infinitely many elements n ∈ ω for which xf(n)
≥ 1/k. Therefore (xf(n))n∈ω is not convergent to 0.

(b)⇒ (a) Let (xn)n∈ω be a sequence of reals I-convergent to some x ∈ R.
Define Ak = {n ∈ ω : |xn−x| > 1

k}. We can find a bi-I-invariant injection f
such that f [A]∩Ak is finite for every k. Then (xf(n))n∈ω is convergent to x.
�

Remark. An admissible homogeneous ideal satisfies condition (C3) if
and only if it is a weak P-ideal. Moreover, an anti-homogeneous ideal satis-
fies condition (C3) if and only if it is a P-ideal.

Now we move to another problem. It is known that for a sequence of
reals (xn)n∈ω and some x ∈ R, if any sequence of indices (nk)k∈ω contains
a subsequence (nkl

)l∈ω such that (xnkl
)l∈ω converges to x, then the whole

sequence (xn)n∈ω converges to x as well. We are interested in ideals for
which the ideal version of the above fact holds. Namely, say that an ideal
I on ω satisfies condition (C4) if for any sequence (xn)n∈ω of reals and
x ∈ R the fact that for every bi-I-invariant f : ω → ω there is a bi-I-invari-
ant g : ω → ω such that (xg(f(n))) is I-convergent to x, implies that (xn)n∈ω
is I-convergent to x. [1, Question 4] concerns a characterization of ideals
satisfying condition (C4). In [1] it is pointed out that condition (C1) implies
condition (C4).

Proposition 5.4. The following are equivalent for any ideal I on ω:
(a) I satisfies condition (C4);
(b) I is anti-homogeneous.

Proof. (a) ⇒ (b) Suppose that I is not anti-homogeneous, i.e. there is
A ∈ H(I) \ I⋆. Let g : ω → A be an isomorphism witnessing that I|A ∼= I .

Acta Mathematica Hungarica

HOMOGENEOUS IDEALS ON COUNTABLE SETS 157



Acta Mathematica Hungarica 151, 2017

20 A. KWELA and J. TRYBA

Then g is bi-I-invariant. Define

xn =

{

1, if n ∈ A,

0, if n ∈ ω \A.

Then (xn)n∈ω is clearly not I-convergent. On the other hand, for every bi-
I-invariant f : ω → ω we have g[f [ω]] ⊆ A. Thus, (xg(f(n)))n∈ω is a constant
sequence, hence convergent. A contradiction with the assumption. There-
fore, I is anti-homogeneous.

(b) ⇒ (a) Since I is anti-homogeneous, for every bi-I-invariant func-
tions f, g : ω → ω we have g[f [ω]] ∈ I⋆. To finish the proof it is sufficient to
observe that if (xn)n∈A is I-convergent to x for some A ∈ I⋆, then (xn)n∈ω
is obviously I-convergent to x as well. �

Notice that Id does not satisfy condition (C4) (since Id|{0, 2, 4, . . .} ∼=
Id). However, we can change the domain and codomain of g and investigate
a slightly weaker property. We say that an ideal I on ω satisfies condition
(C5), if for any sequence (xn)n∈ω of reals and x ∈ R the fact that for every
bi-I-invariant f : ω → ω there is a bi-I-invariant g : f [ω] → f [ω] such that
(xg(f(n))) is I-convergent to x implies that (xn)n∈ω is I-convergent to x.

Remark. Ideal Fin⊕P(ω) satisfies condition (C5). However, it does
not satisfy condition (C4).

Proposition 5.5. The following are equivalent for any admissible ideal I
on ω:

(a) I satisfies condition (C5);
(b) for every A �∈ I ∪ I⋆ there is B ∈ H(I) such that for all C ∈ H(I)

with C ⊆ B we have A ∩ C �∈ I .

Proof. (a) ⇒ (b) Suppose that there is A �∈ I ∪ I⋆ such that for each
B ∈ H(I) there is C ∈ H(I) with C ⊆ B and A ∩ C ∈ I . Define

xn =

{

1, if n ∈ A,

0, if n ∈ ω \A.

Then clearly (xn)n∈ω is not I-convergent. On the other hand, let f : ω → ω
be any bi-I-invariant function and denote B = f [ω]. By our assumption
there is C ∈ H(I) with C ⊆ B and A ∩ C ∈ I . Let g : B → B be a bi-I-in-
variant function such that g[B] = C. Observe that (xg(f(n)))n∈ω is I-con-
vergent to 0, since A ∩ C ∈ I . A contradiction with the assumption that I
satisfies condition (C5).

(b) ⇒ (a) Suppose that I does not satisfy condition (C5) and let (xn)n∈ω
be such a sequence of reals that for any bi-I-invariant f : ω → ω there is a
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bi-I-invariant g : f [ω] → f [ω] such that (xg(f(n)))n∈ω is I-convergent to x,
but it is not I-convergent to x. Then there is an ε > 0 such that A = {n
∈ ω : |xn − x| > ε} �∈ I ∪ I⋆.

By our assumption there is B ∈ H(I) such that for all C ∈ H(I) with
C ⊆ B we have A ∩ C �∈ I . Let f : ω → ω be a bi-I-invariant function
witnessing that B ∈ H(I), i.e. f [ω] = B. Then for every bi-I-invariant
g : B → B we have g[B]∩A �∈ I . Thus, {n ∈ g[B] : |xn−x| > ε} �∈ I . There-
fore, (xg(f(n)))n∈ω is not I-convergent to x, a contradiction. Hence, I satis-
fies condition (C5). �

Remark. Note that all homogeneous and anti-homogeneous ideals sat-
isfy condition (C5).

We will show that the ideal Id does not satisfy condition (C5). We need
the following fact.

Theorem 5.6. Let A ∈ H(Id) and {a0, a1 . . .} be an increasing enumer-

ation of A. Then the function f : ω → A given by fA(n) = an witnesses that

Id|A ∼= Id.

Proof. Suppose that f(n) = an is not an isomorphism between Id|A
and Id. Let g : ω → A be such an isomorphism. Since every increasing func-
tion is Id-invariant, there is B �∈ Id such that f [B] ∈ Id. Let {b0, b1, . . .} be
an increasing enumeration of B.

We define inductively sets Bn for n ∈ ω. Let B0 consist of elements b0i
such that b00 = min{x ∈ ω \B : x > b0} and

b0i = min{x ∈ ω \B : x > b0i−1 ∧ x > bi}

for all i > 0. Then f [B0] ∈ Id as well. Suppose now that B0, B1, . . . , Bn−1

are already constructed. Let

bn0 = min{x ∈ ω \ (B ∪B0 ∪ · · · ∪ Bn−1) : x > bn−1
0 }

and

bni = min{x ∈ ω \ (B ∪B0 ∪ · · · ∪ Bn−1) : x > bn−1
i ∧ x > bni−1}

for all i > 0. Let Bn consist of all bni for i ∈ ω. It is easy to see that f [Bn]
∈ Id.

Define intervals In = {22n, 22n + 1, . . . , 22n+2 − 1} for all n ∈ ω. Since

B �∈ Id, there are M > 0 and infinitely many such n ∈ ω that |B∩In|
|In|

> 1
M .

Therefore, there is some k ∈ ω such that In ⊆ B ∪B0 ∪ · · · ∪Bk for infinitely
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many n ∈ ω (not necessarily the same as above). Let C be the union of those
In’s and define

C= =
⋃

n∈ω

{

c ∈ C : c ∈ In ∧ f(min In) ≤ g(c) ≤ f(max In)
}

,

C+ =
⋃

n∈ω

{

c ∈ C : c ∈ In ∧ g(c) > f(max In)
}

,

C− =
⋃

n∈ω

{

c ∈ C : c ∈ In ∧ g(c) < f(min In)
}

.

Observe that f [C] ∈ Id. Hence, g[C
=] belongs to Id. Moreover,

|g[C+] ∩ n| < |f [C] ∩ n| for all n > f(minC),

so g[C+] belongs to Id as well. Thus, C+ ∪ C= ∈ Id.

On the other hand, if C ⊇ In for some n then |(C\C−)∩In|
|In|

≥ 2/3, since

|In| = 3|
⋃

k<n Ik|, hence
|C−∩In|

|In|
≤ 1/3. Thus, C \C− �∈ Id, a contradiction.

�

Corollary 5.7. For any B ⊆ ω we have B ∈ H(Id) if and only if
d(B) > 0.

Proof. It follows from Theorems 5.6 and 4.4. �

Problem 5.8. Characterize ideals I such that for any A ∈ H(I) the
function fA : ω → A given by fA(n) = an, where {a0, a1 . . .} is an increasing
enumeration of A, witnesses that I|A ∼= I .

Proposition 5.9. The ideal Id does not satisfy condition (C5).

Proof. Pick A �∈ Id such that d(A) = 0. For every B ∈ H(Id) we have
d(B \A) > 0, since d(B) > 0 (by Corollary 5.7) and d(B) ≤ d(A)+d(B \A).
Thus, there is a set C = B \A ⊆ B which is in H(Id) (by Corollary 5.7)
while C ∩A = ∅ ∈ Id. �
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