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greatest common divisor gcd(i, j) of i and j as the i, j-entry for all integers i
and j between 1 and n is equal to

∏n
k=1 φ(k), where φ is the Euler’s totient

function.
Let f be an arithmetic function and S = {x1, . . . , xn} a set of n distinct

positive integers. Denote by

(f
(
gcd(xi, xj)

)
)
1�i,j�n

and (f
(
lcm(xi, xj)

)
)
1�i,j�n

the n× n matrices having f evaluated at the greatest common divisor
gcd(xi, xj) and the least common multiple lcm(xi, xj) of xi and xj as their
(i, j)-entries, respectively. Smith [21] showed also that

det
(
lcm(xi, xj)

)
1�i,j�n

=
n∏

i=1

φ(xi)π(xi)

and

det (f
(
gcd(xi, xj)

)
)1�i,j�n

=

n∏
i=1

(f ∗ µ)(xi)

if S is factor closed (i.e., d ∈ S if x ∈ S and d | x), where f ∗ µ is the Dirich-
let convolution of f and the Möbius function µ and π is the multiplicative
function defined for any prime power pr by π(pr) := −p. After Smith’s paper
published, this topic has received a lot of attention from many authors and
particularly became extremely active in the past decades (see, for example,
[1]–[20] and [22]–[25]). Twenty years ago, Bourque and Ligh [7] showed that
if S is factor closed and f is a multiplicative function such that f(x) ̸= 0 for
all x ∈ S, then

det (f
(
lcm(xi, xj)

)
)1�i,j�n

=

n∏
i=1

(
f(xi)

) 2( 1

f
∗ µ

)
(xi),

where 1
f (x) :=

1
f(x) if f(x) ̸= 0, and 0 otherwise.

Ligh [18] raised an open problem of calculating the determinant

det
(
gcd(xi, xj)

)
1�i,j�n

with {x1, . . . , xn} being an arithmetic progression. As a special case of Ligh’s
problem, one has the following natural interesting question:

Problem 1. Let m and n be positive integers such that m � n. Calcu-
late the determinants det

(
gcd(i, j)

)
m�i,j�n

and det
(
lcm(i, j)

)
m�i,j�n

.
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Abstract. Smith showed in 1875 that if n � 1 is an integer and G :=
(gcd(i, j))1�i,j�n is the n× n matrix having gcd(i, j) as its i, j-entry for all inte-

gers i and j between 1 and n, then det(G) =
∏n

k=1 φ(k), where φ is the Euler’s
totient function. We show that if n � 2 is an integer and H := (gcd(i, j))2�i,j�n

is the (n− 1)× (n− 1) matrix having gcd(i, j) as its i, j-entry for all integers i
and j between 2 and n, then

det(H) =

( n∏
k=1

φ(k)

) n∑
k=1

k is squarefree

1

φ(k)
.

We also calculate the determinants of the matrices (f(gcd(xi, xj)))1�i,j�n and

(f(lcm(xi, xj)))1�i,j�n having f evaluated at gcd(xi, xj) and lcm(xi, xj) as their

(i, j)-entries, respectively, where S = {x1, . . . , xn} is a set of distinct positive inte-
gers such that xi > 1 for all integers i with 1 � i � n and S ∪ {1} is factor closed
(that is, S ∪ {1} contains every divisor of x for any x ∈ S ∪ {1}). Our result
answers partially an open problem raised by Ligh [18].

1. Introduction

One hundred and forty years ago, Professor H.J.S. Smith at University
of Oxford published [21] his famous result stating that if n is a positive inte-
ger, then the determinant of the n× n matrix

(
gcd(i, j)

)
1�i,j�n

having the
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∏n
k=1 φ(k), where φ is the Euler’s totient

function.
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(f
(
gcd(xi, xj)
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1�i,j�n

and (f
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lcm(xi, xj)

)
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1�i,j�n
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let convolution of f and the Möbius function µ and π is the multiplicative
function defined for any prime power pr by π(pr) := −p. After Smith’s paper
published, this topic has received a lot of attention from many authors and
particularly became extremely active in the past decades (see, for example,
[1]–[20] and [22]–[25]). Twenty years ago, Bourque and Ligh [7] showed that
if S is factor closed and f is a multiplicative function such that f(x) ̸= 0 for
all x ∈ S, then

det (f
(
lcm(xi, xj)

)
)1�i,j�n

=

n∏
i=1

(
f(xi)

) 2( 1

f
∗ µ

)
(xi),

where 1
f (x) :=
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f(x) if f(x) ̸= 0, and 0 otherwise.

Ligh [18] raised an open problem of calculating the determinant
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)
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with {x1, . . . , xn} being an arithmetic progression. As a special case of Ligh’s
problem, one has the following natural interesting question:

Problem 1. Let m and n be positive integers such that m � n. Calcu-
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Clearly, Smith’s result [21] gave an answer to Problem 1 when m = 1.
But so far it is still kept open when m � 2.

Our main goal in this paper is to study Ligh’s question and particularly,
we mainly concern with the above Problem 1. We will present explicit formu-
las for the determinants of the (n− 1)× (n− 1) matrices

(
gcd(i, j)

)
2�i,j�n

and
(
lcm(i, j)

)
2�i,j�n

. Recall that a positive integer is called squarefree if

it is divisible by no other perfect square than 1. The first ten squarefree
integers are given as follows: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14. We have the
following result.

Theorem 2. Let n � 2 be an integer. Then

det
(
gcd(i, j)

)
2�i,j�n

=

( n∏
k=1

φ(k)

) n∑
k=1

k is squarefree

1

φ(k)

and

det
(
lcm(i, j)

)
2�i,j�n

=

( n∏
k=1

φ(k)π(k)

) n∑
k=1

k is squarefree

µ(k)k

φ(k)
.

Obviously, Theorem 2 gives a partial answer to Ligh’s problem [18]. It
also answers Problem 1 when m = 2. Furthermore, the following more gen-
eral result holds.

Theorem 3. Let n � 1 be an integer and f an arithmetic function. Let
S = {x1, . . . , xn} be a set of n distinct positive integers such that xi > 1 for
all integers i with 1 � i � n and S ∪ {1} is factor closed. Then

det (f
(
gcd(xi, xj)

)
)
1�i,j�n

=

n∏
l=1

(f ∗µ)(xl)+f(1)

n∑
k=1

xk is squarefree

n∏
l=1
l ̸=k

(f ∗µ)(xl).

If f is multiplicative and f(x) ̸= 0 for all x ∈ S, then

det (f
(
lcm(xi, xj)

)
)1�i,j�n

=

( n∏
k=1

(
f(xk)

)2)
(

n∏
l=1

(
1

f
∗ µ

)
(xl) +

n∑
k=1

xk is squarefree

n∏
l=1
l ̸=k

(
1

f
∗ µ

)
(xl)

)
.

It should be pointed out that in Theorem 3, the formula about the de-
terminant det (f

(
gcd(xi, xj)

)
)1�i,j�n

is the main result of this paper while
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the formula about the determinant det (f
(
lcm(xi, xj)

)
)
1�i,j�n

is essentially

a byproduct using the well-known equality

g(a)g(b) = g
(
gcd(a, b)

)
g
(
lcm(a, b)

)

with a and b being positive integers and g being a multiplicative function.
The proof of Theorem 3 presented here is similar to that of Smith [21]

in character, but it is more complicated than Smith’s proof.

2. Preliminary lemmas

In this section, we present two useful lemmas that are needed in the next
section. In what follows, we let ω(x) denote the number of distinct prime
factors of the positive integer x.

Lemma 4. Let m � 2 be a given integer. Define the arithmetic function
Fm for any positive integer n by

Fm(n) :=
∑
d|n

µ
(n
d

)
f
(
gcd(m, d)

)
.

Then

Fm(n) =

{
(f ∗ µ)(n), if n | m,

0, otherwise.

Proof. Evidently, Lemma 4 is true if n = 1. In what follows, we let
n � 2. First let n | m. Then gcd(m, nd ) =

n
d for any positive integer d divid-

ing n. Hence

Fm(n) =
∑
d|n

µ(d)f
(n
d

)
= (f ∗ µ)(n)

as required.
Now let n � m. Obviously, we have

Fm(n) =
∑
d|n

f
(
gcd

(
m,

n

d

))
µ(d) =

∑
c|gcd(m,n)

f(c)
∑
d|n

gcd (m,n
d
)=c

µ(d)(1)

=
∑

c|gcd(m,n)

f(c)
∑
d|n

c

gcd (m

c
, n

cd
)=1

µ(d).
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Since ∑

e|gcd (m

c
, n

cd
)

µ(e) = 1

holds only when gcd (mc ,
n
cd) = 1, one then derives that the inner sum in (1)

is equal to

(2)
∑
d|n

c

µ(d)
∑

e|gcd (m

c
, n

cd
)

µ(e) =
∑

e|gcd (m

c
,n
c
)

µ(e)
∑
d| n

ce

µ(d).

But n � m implies that n
c � gcd(mc ,

n
c ). Thus the term e = n

c does not occur
on the right-hand side of (2), and so n

ce > 1 which implies that the inner sum
on the right-hand side of (2) is always zero. Therefore, by (1) and (2) we
deduce immediately that Fm(n) = 0 if n � m. �

Lemma 5. Let m and n be positive integers with m dividing n and m < n.
Then

∑
m|d|n
d�2

µ
(n
d

)
=

{
(−1)ω(n)+1, if m = 1 and n is squarefree,

0, otherwise.

Proof. First of all, one denotes by ∆n,m the sum

∑
m|d|n
d�2

µ
(n
d

)
.

Thus

∆n,m =
∑
mk|n
2�mk

µ
( n

mk

)
=

∑
k| n

m

2�mk

µ
( n

mk

)
.

If m = 1, then

∆n,m =
∑

k|n, 2�k

µ
(n
k

)
=

∑
k|n

µ
(n
k

)
− µ(n)

=

{
(−1)ω(n)+1, if n is squarefree,

0, otherwise.
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If 2 � m < n, then mk � 2 and n
m � 2 since m | n and m < n. So we

have

∆n,m =
∑
mk|n
2�mk

µ
( n

mk

)
=

∑
k| n

m

µ
( n

mk

)
=

∑
k| n

m

µ(k) = 0

as desired. �

3. Proofs of Theorems 2 and 3

Proof of Theorem 3. Let x0 := 1. Without loss of any general-
ity, we assume that x1 < x2 < · · · < xn. We define the (n+ 1)× (n+ 1)
matrix A = (aij) as follows: a11 := 1, ai1 := 0 for all 2 � i � n+ 1, and
aij := f

(
gcd(xi−1, xj−1)

)
for all 1 � i � n+ 1 and 2 � j � n+ 1. For each

integer r with 1 � r � n, we define two sets Rr and Tr of positive integers
as follows:

Rr := {xd : xd | xr, 0 � d < r}, Tr := Rr \ {x0}.

Then 1 = x0 ∈ Rr for any integer r � 1, and Tr = ϕ if and only if xr is
a prime number.

First, for each integer r with 1 � r � n and every xd ∈ Rr, we multiply
by µ(xr

xd
) all the entries of the (d+ 1)-th row of A and then add them to the

corresponding entries of the (r+ 1)-th row of A. We arrive at a new (n+ 1)
× (n+ 1) matrix, denoted by B := (bij). Claim that the following is true:
For all integers i and j with 1 � i, j � n+ 1, one has

bij =




µ(xi−1), if j = 1,

(f ∗ µ)(xi−1), if j > 1 and xi−1 | xj−1,

0, otherwise,

(I)

which will be proved in what follows.
Obviously, one has b11 = a11 = 1 and

b1j = a1j = f
(
gcd(x0, xj−1)

)
= f(1) = (f ∗ µ)(1)

for each integer j with 2 � j � n+ 1. For all integers i and j with 2 � i
� n+ 1 and 1 � j � n+ 1, we have

(3) bij = aij +
∑

xd∈Ri−1

µ

(
xi−1

xd

)
ad+1,j =

∑
xd|xi−1

µ

(
xi−1

xd

)
ad+1,j .
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If 2 � m < n, then mk � 2 and n
m � 2 since m | n and m < n. So we

have

∆n,m =
∑
mk|n
2�mk

µ
( n

mk

)
=

∑
k| n

m

µ
( n

mk

)
=

∑
k| n

m

µ(k) = 0

as desired. �

3. Proofs of Theorems 2 and 3

Proof of Theorem 3. Let x0 := 1. Without loss of any general-
ity, we assume that x1 < x2 < · · · < xn. We define the (n+ 1)× (n+ 1)
matrix A = (aij) as follows: a11 := 1, ai1 := 0 for all 2 � i � n+ 1, and
aij := f

(
gcd(xi−1, xj−1)

)
for all 1 � i � n+ 1 and 2 � j � n+ 1. For each

integer r with 1 � r � n, we define two sets Rr and Tr of positive integers
as follows:

Rr := {xd : xd | xr, 0 � d < r}, Tr := Rr \ {x0}.

Then 1 = x0 ∈ Rr for any integer r � 1, and Tr = ϕ if and only if xr is
a prime number.

First, for each integer r with 1 � r � n and every xd ∈ Rr, we multiply
by µ(xr

xd
) all the entries of the (d+ 1)-th row of A and then add them to the

corresponding entries of the (r+ 1)-th row of A. We arrive at a new (n+ 1)
× (n+ 1) matrix, denoted by B := (bij). Claim that the following is true:
For all integers i and j with 1 � i, j � n+ 1, one has

bij =




µ(xi−1), if j = 1,

(f ∗ µ)(xi−1), if j > 1 and xi−1 | xj−1,
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b1j = a1j = f
(
gcd(x0, xj−1)
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= f(1) = (f ∗ µ)(1)

for each integer j with 2 � j � n+ 1. For all integers i and j with 2 � i
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Since a11 = 1 and ak1 = 0 for all integers k with 2 � k � n+ 1, it follows
that for any integer 2 � i � n+ 1, one has

bi1 =
∑

xd|xi−1

µ

(
xi−1

xd

)
ad+1,1 = µ(xi−1)a11 = µ(xi−1)

as required.
Now let i and j be integers such that 2 � i, j � n+ 1. Since S ∪ {1}

is factor closed and akj = f
(
gcd(xk−1, xj−1)

)
for all integers k with 1 � k

� n+ 1, one can derive from Lemma 4 and (3) that

bij =
∑

xd|xi−1

µ

(
xi−1

xd

)
f
(
gcd(xj−1, xd)

)

=
∑
d|xi−1

µ
(xi−1

d

)
f
(
gcd(xj−1, d)

)
=

{
(f ∗ µ)(xi−1), if xi−1 | xj−1,

0, otherwise.

Therefore claim (I) is proved.
Second, for each integer r with 1 � r � n and for each xd ∈ Tr (if Tr

is nonempty), we multiply by µ(xr

xd
) all the entries of the (d+ 1)-th col-

umn of B, and then add them to the corresponding entries of the (r+ 1)-th
column of B, we obtain another new (n+ 1)× (n+ 1) matrix, denoted by
C := (cij) with cij being the (i, j)-entry of C for all integers i and j with
1 � i, j � n+ 1. Claim that the following holds:

cij =




1, if i = j = 1,

(−1)ω(xi−1), if i > 1, j = 1 and xi−1 is squarefree,

(−1)ω(xj−1)+1f(1), if i = 1, j > 1 and xj−1 is squarefree,

(f ∗ µ)(xi−1), if 1 � i = j � n+ 1,

0, otherwise.

(II)

Now we show that claim (II) is true. Evidently, ci1 = bi1 for all 1 � i
� n+ 1. So for every integer i with 1 � i � n+ 1, one has

ci1 =

{
(−1)ω(xi−1), if xi−1 is squarefree,

0, otherwise

as claimed.
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For all the integers i and j with 1 � i � n+1 and 2 � j � n+1, we have

(4) cij = bij +
∑

xd−1∈Tj−1

µ

(
xj−1

xd−1

)
bid =

∑
xd−1|xj−1

d�2

µ

(
xj−1

xd−1

)
bid.

Since b1k = f(1) for all integers k with 2 � k � n+ 1 and noticing that
S ∪ {1} being factor closed, we deduce from (4) that for all integers j with
2 � j � n+ 1, one has

c1j =
∑

xd−1|xj−1

d�2

µ

(
xj−1

xd−1

)
f(1) = −µ(xj−1)f(1)

=

{
(−1)ω(xj−1)+1f(1), if xj−1 is squarefree and j > 1,

0, otherwise

as required.
Now let i be an integer with 1 � i � n+ 1. Then by (4), one has

cii =
∑

xd−1|xi−1

xi−1|xd−1, d�2

µ

(
xi−1

xd−1

)
(f ∗ µ)(xi−1) = (f ∗ µ)(xi−1)

as desired.
Consequently, for all integers i and j with 2 � j < i � n+1, one has xi−1

� xj−1 implying that bij = 0, and if xd−1 | xj−1 with d � 2, then xi−1 � xd−1

implying that bid = 0. So by (4), we deduce that cij = 0.
Finally, we let 2 � i < j � n+ 1. It remains to show that cij = 0 that

will be done in what follows.
If xi−1 � xj−1, then by claim (I), one has that bij = 0, and that bid = 0

if xd−1 | xj−1 since we must have xi−1 � xd−1, otherwise, one deduces from
xi−1 | xd−1 and xd−1 | xj−1 that xi−1 | xj−1, a contradiction. Hence by (4),
one gets that cij = 0.

If xi−1 | xj−1, then it follows from claim (I) that bij = (f ∗µ)(xi−1), bid =
(f ∗ µ)(xi−1) if xi−1 | xd−1, and bid = 0 if xi−1 � xd−1. Since S ∪ {1} is factor
closed and xi−1 > 1, then by (4) and Lemma 5, one derives that

cij = (f ∗ µ)(xi−1)
∑

xi−1|xd−1|xj−1

d�2

µ

(
xj−1

xd−1

)
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For all the integers i and j with 1 � i � n+1 and 2 � j � n+1, we have

(4) cij = bij +
∑

xd−1∈Tj−1

µ

(
xj−1

xd−1

)
bid =

∑
xd−1|xj−1

d�2

µ

(
xj−1

xd−1

)
bid.
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2 � j � n+ 1, one has

c1j =
∑

xd−1|xj−1

d�2

µ

(
xj−1

xd−1

)
f(1) = −µ(xj−1)f(1)

=

{
(−1)ω(xj−1)+1f(1), if xj−1 is squarefree and j > 1,

0, otherwise

as required.
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cii =
∑

xd−1|xi−1

xi−1|xd−1, d�2

µ

(
xi−1

xd−1

)
(f ∗ µ)(xi−1) = (f ∗ µ)(xi−1)

as desired.
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if xd−1 | xj−1 since we must have xi−1 � xd−1, otherwise, one deduces from
xi−1 | xd−1 and xd−1 | xj−1 that xi−1 | xj−1, a contradiction. Hence by (4),
one gets that cij = 0.

If xi−1 | xj−1, then it follows from claim (I) that bij = (f ∗µ)(xi−1), bid =
(f ∗ µ)(xi−1) if xi−1 | xd−1, and bid = 0 if xi−1 � xd−1. Since S ∪ {1} is factor
closed and xi−1 > 1, then by (4) and Lemma 5, one derives that
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= (f ∗ µ)(xi−1)
∑

xi−1|d|xj−1

d�2

µ
(xj−1

d

)
= 0.

Therefore claim (II) is proved.
Now note that if r > 1 and xr−1 is not squarefree, then by claim (II)

we know that crr = (f ∗ µ)(xr−1) and crj = cir = 0 for all integers i ̸= r and
j ̸= r. It then follows that

(5) det(C) = det(D)

n+1∏
r=2

xr−1 is not squarefree

(f ∗ µ)(xr−1),

where

D :=




1 (−1)ω(xi1 )+1f(1) (−1)ω(xi2 )+1f(1) · · · (−1)ω(xit )+1f(1)

(−1)ω(xi1 ) (f ∗ µ)(xi1) 0 · · · 0

(−1)ω(xi2 ) 0 (f ∗ µ)(xi2) · · · 0
· · · · · · · · · · · · · · ·

(−1)ω(xit ) 0 0 · · · (f ∗ µ)(xit)




with t being a positive integer and xi1 , . . . , xit being all the squarefree inte-
gers in the set {x1, . . . , xn}. Let xi0 := 1. Since f(1) = (f ∗ µ)(1), one can
easily check that

(6) det(D) =
t∑

l=0

t∏
j=0
j ̸=l

(f ∗ µ)(xij ).

But

det (f
(
gcd(xi, xj)

)
)1�i,j�n

= det(A) = det(B) = det(C).

Hence from (5) and (6) we deduce that

det (f
(
gcd(xi, xj)

)
)1�i,j�n

=

(
n∏

r=1
xr is not squarefree

(f ∗ µ)(xr)

)
n∑

k=0
xk is squarefree

n∏
j=0, j ̸=k

xj is squarefree

(f ∗ µ)(xj)

=

n∑
i=0

xi is squarefree

n∏
j=0
j ̸=i

(f ∗ µ)(xj)
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as required. This concludes the proof of the first part of Theorem 3.
We are now in the position to show the second part. Since f is multi-

plicative, one has for all integers i and j with 1 � i, j � n that

f
(
gcd(xi, xj)

)
f
(
lcm(xi, xj)

)
= f(xi)f(xj).

It then follows that

(f
(
lcm(xi, xj)

)
)
1�i,j�n

= diag
(
f(x1), . . . , f(xn)

)

·
(
1

f

(
gcd(xi, xj)

))

1�i,j�n

· diag
(
f(x1), . . . , f(xn)

)
,

where diag
(
f(x1), . . . , f(xn)

)
is the n× n diagonal matrix with f(x1), . . . ,

f(xn) as its diagonal elements. So one obtains that

det (f
(
lcm(xi, xj)

)
)
1�i,j�n

=

( n∏
i=1

(
f(xi)

) 2)
det

(
1

f

(
gcd(xi, xj)

))

1�i,j�n

.

Since f is a nonzero multiplicative function, one has f(1) = 1. Thus the first
part of Theorem 3 applied to 1

f gives us the desired result. �

Proof of Theorem 2. The first formula is a direct consequence of
that of Theorem 3 by letting f = I , where the arithmetic function I is de-
fined for any positive integer x by I(x) = x. On the other hand, one notes
that for any positive integer x,

(
1

I
∗ µ

)
(x) =

π(x)φ(x)

x2
.

Then the second formula follows immediately. �

Remark 6. Although the cases m = 1 and m = 2 of Problem 1 were
answered by Smith [21] and Theorem 2 of this paper, respectively, it keeps
widely open when m � 3. We will continue to explore this interesting ques-
tion in the close future.
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