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A sequence x = (xk) ∈ w is λ-bounded if supm |Λm(x)| < ∞. It is well known
[9] that if limm xm = a in the ordinary sense of convergence, then

lim
m

(

1

λm

( m
∑

k=0

(λk − λk−1)|xk − a|

))

= 0.

This implies that

lim
m

|Λm(x)− a| = lim
m

∣

∣

∣

∣

1

λm

m
∑

k=0

(λk − λk−1)(xk − a)

∣

∣

∣

∣

= 0,

which gives that limm Λm(x) = a and we say x = (xk) is λ-convergent to a.
Here and in the sequel, we shall use the convention that any term with a
negative subscript is equal to zero, that is, λ−1 = x−1 = 0.
In [7] Kórus gave a new appropriate definition for the Λ2-strong conver-
gence by generalizing the original Λ-strong convergence concept given by
Móricz [11].

Let Λ = {λk : k = 0,1, . . .} be a non-decreasing sequence of positive num-
bers tending to infinity. A sequence (xk) of complex numbers converges
Λ2-strongly to a complex number x if

lim
n

Λ2(x)− x = lim
n→∞

1

λn

n
∑

k=0

∣

∣λk(xk − x)− λk−2(xk−2 − x)
∣

∣ = 0,

with the argument λ−1 = λ−2 = x−1 = x−2 = 0.
A function f : [0,∞) → [0,∞) is said to be modulus if it satisfy the fol-

lowing:
(1) f(x) = 0 if and only if x = 0,
(2) f(x+ y) ≤ f(x) + f(y), for all x, y ≥ 0,
(3) f is increasing,
(4) f is right continuous at 0.
Since |f(x)− f(y)| ≤ f(|x− y|), it follows from condition (4) that f is

continuous on [0,∞). The modulus function may be bounded or unbounded.
For example, if we take f(x) = x

x+1 , then f is bounded but if we choose

f(x) = xp, 0 < p < 1 then f is unbounded.
Let X be a linear metric space. A function p : X → R is called para-

norm, if
(1) p(x) ≥ 0 for all x ∈ X ,
(2) p(−x) = p(x) for all x ∈ X ,
(3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X ,
(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a

sequence of vectors with p(xn − x) → 0 as n → ∞, then p(λnxn − λx) → 0
as n → ∞.
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Abstract. Recently, Kórus [7] studied the Λ2-strong convergence of numer-
ical sequences. By using the idea of this paper, we introduce [Λ2, F, u, p]-strongly
convergent sequence spaces defined by a sequence of modulus functions. We also
make an effort to study some inclusion relations, topological and geometric prop-
erties of these spaces. Some characterizations for strong convergent sequences are
given. Finally, we study statistical convergence over these spaces and problems
related to Fourier series.

1. Introduction

Let w be the set of all real or complex sequences and l∞, c and c0, re-
spectively be the Banach spaces of bounded, convergent and null sequences
x = (xk), normed by �x� = supk |xk|, where k ∈ N, the set of positive inte-
gers. Mursaleen and Noman [9] introduced the notion of λ-convergent and
λ-bounded sequences. Let λ = {λk}

∞
k=0 be a strictly increasing sequence of

positive real numbers tending to infinity. A sequence x = (xk) ∈ w is said to
be λ-convergent to the number L and called the λ-limit of x if Λm(x) → L
as m → ∞, where

Λm(x) =
1

λm

m
∑

k=0

(λk − λk−1)xk.
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For example, if we take f(x) = x

x+1 , then f is bounded but if we choose
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A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm
and the pair (X,p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see
[20], Theorem 10.4.2, p. 183). For more details about sequence spaces (see
[1,10,12–16]) and references therein.

Let F = (fk) be a sequence of modulus functions, p = (pk) be a bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly pos-
itive real numbers. Let Λ = {λk} be a non-decreasing sequence of positive
numbers tending to infinity. In the present paper we define the following
classes of sequences:

[Λ2,F, u, p] =
{

x = (xk) :

1

λn

n
∑

k=0

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk = 0 as n → ∞

}

,

[Λ2, F, u, p]0 =
{

x = (xk) :

1

λn

n
∑

k=0

[

ukfk
(

|λkxk − λk−2xk−2|
)]pk = 0 as n → ∞

}

and

[Λ2, F, u, p]∞ =
{

x = (xk) : sup
n

1

λn

n
∑

k=0

[

ukfk
(

|λkxk − λk−2xk−2|
)] pk < ∞

}

.

Let us consider a few special cases of the above classes of sequences.
If F (x) = x, then the sequences [Λ2, F, u, p], [Λ2 , F, u, p]0 and [Λ2, F, u, p]∞
reduces to [Λ2, u, p], [Λ2, u, p]0 and [Λ2, u, p]∞ as follows:

[Λ2,u, p] =
{

x = (xk) :

1

λn

n
∑

k=0

[

uk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk = 0 as n → ∞

}

,

[Λ2, u, p]0 =
{

x = (xk) :

1

λn

n
∑

k=0

[

uk
(

|λkxk − λk−2xk−2|
)]pk = 0 as n → ∞

}
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and

[Λ2, u, p]∞ =
{

x = (xk) : sup
n

1

λn

n
∑

k=0

[

uk
(

|λkxk − λk−2xk−2|
)] pk < ∞

}

.

If pk = 1 for all k ∈ N, we shall write above sequences as

[Λ2, F,u] =
{

x = (xk) :

1

λn

n
∑

k=0

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)

= 0 as n → ∞
}

,

[Λ2, F, u]0 =
{

x = (xk) :
1

λn

n
∑

k=0

ukfk
(

|λkxk − λk−2xk−2|
)

= 0 as n → ∞
}

and

[Λ2, F, u]∞ =
{

x = (xk) : sup
n

1

λn

n
∑

k=0

ukfk
(

|λkxk − λk−2xk−2|
)

< ∞
}

.

The following inequality will be used throughout the paper. If 0 < h = infk pk
≤ pk ≤ supk pk = H , K = max{1, 2H−1}, then

(1.1) |ak + bk|
pk ≤ K

{

|ak|
pk + |bk|

pk
}

for all k ∈ N and ak, bk ∈ C. Also |a|pk ≤ max{1, |a|H} for all a ∈ C.
The main objective of this paper is to introduce the concept of strongly

convergent sequences using modulus function and to construct some new
sequence spaces. We also make an effort to study some topological properties
and prove some inclusion relations between these sequence spaces. Finally,
by using the concept of strong convergence we study statistical convergence
and results related to Fourier series.

2. Main results

Theorem 2.1. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence
of strictly positive real numbers. Then the sequence spaces [Λ2, F, u, p],
[Λ2, F, u, p]0 and [Λ2, F, u, p]∞ are linear over the complex field C.

Proof. Suppose x = (xk) and y = (yk) ∈ [Λ2, F, u, p]∞. Then

sup
n

1

λn

n
∑

k=0

[

ukfk
(

|λkxk − λk−2xk−2|
) ] pk < ∞
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and

sup
n

1

λn

n
∑

k=0

[

ukfk
(

|λkyk − λk−2yk−2|
) ] pk < ∞.

For α, β ∈ C, then there exist integers Mα and Nβ such that |α| ≤ Mα and
|β| ≤ Nβ . Using inequality (1.1) and definition of modulus function, we have

sup
n

1

λ

n
∑

k=0

[

ukfk
(

|α(λkxk − λk−2xk−2) + β(λkyk − λk−2yk−2)|
)]pk

≤ sup
n

1

λn

n
∑

k=0

[ukfk
(

|α(λkxk − λk−2xk−2)|
)

+ ukfk
(

|β(λkyk − λk−2yk−2)|
)

]
pk

≤ K(Mα)
H sup

n

1

λn

n
∑

k=0

[

ukfk
(

|λkxk − λk−2xk−2|
)]pk

+K(Nβ)
H sup

n

1

λn

n
∑

k=0

[

ukfk
(

|λkyk − λk−2yk−2|
)]pk < ∞.

This proves that [Λ2, F, u, p]∞ is a linear space. Similarly, we can prove that
[Λ2, F, u, p] and [Λ2, F, u, p]0 are linear spaces. �

Theorem 2.2. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) a sequence of
strictly positive real numbers. Then [Λ2, F, u, p]0 is a paranormed space with
paranorm

g(x) = sup
n

{

1

λn

n
∑

k=0

[

ukfk
(

|λkxk − λk−2xk−2|
) ] pk

}1/M

,

where H = supk pk < ∞ and M = max{1,H}.

Proof. Clearly, g(x) = g(−x), x = θ implies (|λkxk − λk−2xk−2|) = θ
and fk(0) = 0, where θ is the zero sequence. Therefore, g(θ) = 0. Since
pk/M ≤ 1 and M ≥ 1, using the Minkowski’s inequality and definition of
modulus function, we have

{

1

λn

n
∑

k=0

[

ukfk
(

|λkxk − λk−2xk−2|+ |λkyk − λk−2yk−2|
)]pk

}1/M

≤

{

1

λn

n
∑

k=0

[

ukfk
(

|λkxk − λk−2xk−2|
)

+ ukfk
(

|λkyk − λk−2yk−2|
)]pk

}1/M
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≤

{

1

λn

n
∑

k=0

[

ukfk
(

|λkxk − λk−2xk−2|
)]pk

}1/M

+

{

1

λn

n
∑

k=0

[

ukfk
(

|λkyk − λk−2yk−2|
)]pk

}1/M

.

Now, it follows that g is subadditive. Finally, we prove that the scalar mul-
tiplication is continuous. Let µ be any complex number. By definition of
F = (fk), we have

g(µx) = sup
n

{

1

λn

n
∑

k=0

[

ukfk
(

|µ(λkxk − λk−2xk−2)|
)] pk

}1/M

≤ KH/M
µ g(x),

where Kµ is an integer such that |µ| < Kµ. Let µ → 0 for any fixed x with
g(x) = 0. By definition for |µ| < 1, we have

(2.1)
1

λn

n
∑

k=0

[

ukfk
(

|(λkxk − λk−2xk−2)|
)] pk < ε for n > N(ε).

Also for 1 ≤ n ≤ N , taking µ small enough, since F = (fk) is continuous, we
have

(2.2)
1

λn

n
∑

k=0

[

ukfk(|λkxk − λk−2xk−2|)
]pk < ε.

Equations (2.1) and (2.2) together imply that g(µx) → 0 as µ → 0. This
completes the proof of the theorem. �

Theorem 2.3. Suppose F = (fk), F
′ = (f ′

k), F
′′ = (f ′′

k ) are sequences of

modulus functions, p = (pk) is a bounded sequence of positive real numbers,
u = (uk) is a sequence of strictly positive real numbers and 0 < h = infk pk
≤ pk ≤ supk pk = H < ∞. Then

(i) [Λ2, F ′, u, p]0 � [Λ2, F ◦ F ′, u, p]0,

(ii) [Λ2, F ′, u, p]0 ∩ [Λ2, F ′′, u, p]0 � [Λ2, F ′ + F ′′, u, p]0.

Proof. (i) Let x ∈ [Λ2, F ′, u, p]0. Then, we have

1

λn

n
∑

k=0

[

ukfk(|λkxk − λk−2xk−2|)
] pk = 0.
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Let ε > 0 and choose δ > 0 with 0 < δ < 1 such that fk(t) < ε for 0 ≤ t ≤ δ.
We write yk = [ukf

′
k(|λkxk − λk−2xk−2|)] and let us consider

n
∑

k=0

[fk(yk)]
pk =

∑

1

[fk(yk)]
pk +

∑

2

[fk(yk)]
pk ,

where the first summation is over yk ≤ δ and the second over yk > δ. Since
F = (fk) is continuous, we have

(2.3)
1

λn

∑

1

[fk(yk)]
pk < εH

and for yk > δ, we use the fact that

yk <
yk
δ

≤ 1 +
yk
δ
.

By definition of modulus function, we have for yk > δ, fk(yk) < 2fk(1)
yk

δ .
Hence,

(2.4)
1

λn

∑

2

[fk(yk)]
pk ≤ max

(

1, (2fk(1)δ
−1)H

) 1

λn

n
∑

k=0

[yk]
pk .

So by equations (2.3) and (2.4), we have [Λ2, F ′, u, p]0 � [Λ2, F ◦ F ′, u, p]0.
(ii) Let x ∈ [Λ2, F ′, u, p]0 ∩ [Λ2, F ′′, u, p]0. Then using inequality (1.1) it

can be shown that x ∈ [Λ2, F ′ + F ′′, u, p]0. Hence,

[Λ2, F ′, u, p]0 ∩ [Λ2, F ′′, u, p]0 � [Λ2, F ′ + F ′′, u, p]0. �

Corollary 2.4. Suppose F = (fk), F
′ = (f ′

k), F
′′ = (f ′′

k ) are sequences
of modulus functions, p = (pk) is a bounded sequence of positive real numbers
and u = (uk) is a sequence of strictly positive real numbers. Then

(i) [Λ2, F ′, u, p] � [Λ2, F ◦ F ′, u, p],

(ii) [Λ2, F ′, u, p] ∩ [Λ2, F ′′, u, p] � [Λ2, F ′ + F ′′, u, p],

(iii) [Λ2, F ′, u, p]∞ � [Λ2, F ◦ F ′, u, p]∞,

(iv) [Λ2, F ′, u, p]∞ ∩ [Λ2, F ′′, u, p]∞ � [Λ2, F ′ + F ′′, u, p]∞.

Proof. It is easy to prove by using Theorem 2.3, so we omit the details.
�

Theorem 2.5. Let F = (fk) be a sequence of modulus functions. Then
for any two sequences p = (pk) and t = (tk) of strictly positive real numbers,
we have

(i) [Λ2, F, u, p]0 ∩ [Λ2, F, u, t]0 �= φ,
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(ii) [Λ2, F, u, p] ∩ [Λ2, F, u, t] �= φ,

(iii) [Λ2, F, u, p]∞ ∩ [Λ2, F, u, t]∞ �= φ.

Proof. (i) Since the zero element belongs to [Λ2,F ,u,p]0 and [Λ2,F ,u,t]0,
thus the intersection is non-empty. Similarly, we can prove (ii) and (iii). �

Proposition 2.6. Let F = (fk) be a sequence of modulus functions,
p = (pk) be a bounded sequence of positive real numbers and u = (uk) be

a sequence of strictly positive real numbers. Then, we have

(i) [Λ2, u, p]0 � [Λ2, F, u, p]0,

(ii) [Λ2, u, p] � [Λ2, F, u, p],

(iii) [Λ2, u, p]∞ � [Λ2, F, u, p]∞.

Proof. It is obvious, so we omit the details. �

Theorem 2.7. Let 0 < pk ≤ rk and ( rkpk
) be bounded, then [Λ2, F, u, r]

� [Λ2, F, u, p].

Proof. Let x ∈ [Λ2, F, u, r], tk = [ukfk(λk(xk − x)− λk−2(xk−2 − x))]rk

and µk = (pk

rk
) for all k ∈ N so that 0 < µ ≤ µk ≤ 1. Define the sequence

(vk) and (wk) as follows: For tk ≥ 1, let vk = tk and wk = 0 and for tk < 1,
let vk = 0 and wk = tk. Then, clearly for all k ∈ N, we have tk = vk + wk,
tµk

k = vµk

k + wµk

k , vµk

k ≤ vk ≤ tk and wµk

k ≤ wµ
k . Therefore,

1

λn

n
∑

k=0

tµk

k ≤
1

λn

n
∑

k=0

tk +

[

1

λn

n
∑

k=0

wk

]µ

.

Hence, x ∈ [Λ2, F, u, p]. Thus, [Λ2, F, u, r] � [Λ2, F, u, p]. This completes the
proof of the theorem. �

We now turn to the characterizing of strongly convergent series.
Let F = (fk) be a sequence of modulus functions, p = (pk) be a bounded

sequence of positive real numbers and u = (uk) be a sequence of strictly
positive real numbers. Let Λ = (λk) be a non-decreasing sequence of positive
numbers tending to infinity. A sequence (xk) of complex numbers is said to
converge strongly to a complex number x if

lim
n→∞

1

λn

n
∑

k=0

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)] pk = 0,

with the agreement λ−1 = λ−2 = x−1 = x−2 = 0.

Lemma 2.8. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence
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(ii) [Λ2, F, u, p] ∩ [Λ2, F, u, t] �= φ,

(iii) [Λ2, F, u, p]∞ ∩ [Λ2, F, u, t]∞ �= φ.

Proof. (i) Since the zero element belongs to [Λ2,F ,u,p]0 and [Λ2,F ,u,t]0,
thus the intersection is non-empty. Similarly, we can prove (ii) and (iii). �

Proposition 2.6. Let F = (fk) be a sequence of modulus functions,
p = (pk) be a bounded sequence of positive real numbers and u = (uk) be

a sequence of strictly positive real numbers. Then, we have

(i) [Λ2, u, p]0 � [Λ2, F, u, p]0,

(ii) [Λ2, u, p] � [Λ2, F, u, p],

(iii) [Λ2, u, p]∞ � [Λ2, F, u, p]∞.

Proof. It is obvious, so we omit the details. �

Theorem 2.7. Let 0 < pk ≤ rk and ( rkpk
) be bounded, then [Λ2, F, u, r]

� [Λ2, F, u, p].

Proof. Let x ∈ [Λ2, F, u, r], tk = [ukfk(λk(xk − x)− λk−2(xk−2 − x))]rk

and µk = (pk

rk
) for all k ∈ N so that 0 < µ ≤ µk ≤ 1. Define the sequence

(vk) and (wk) as follows: For tk ≥ 1, let vk = tk and wk = 0 and for tk < 1,
let vk = 0 and wk = tk. Then, clearly for all k ∈ N, we have tk = vk + wk,
tµk

k = vµk

k + wµk

k , vµk

k ≤ vk ≤ tk and wµk

k ≤ wµ
k . Therefore,

1

λn

n
∑

k=0

tµk

k ≤
1

λn

n
∑

k=0

tk +

[

1

λn

n
∑

k=0

wk

]µ

.

Hence, x ∈ [Λ2, F, u, p]. Thus, [Λ2, F, u, r] � [Λ2, F, u, p]. This completes the
proof of the theorem. �

We now turn to the characterizing of strongly convergent series.
Let F = (fk) be a sequence of modulus functions, p = (pk) be a bounded

sequence of positive real numbers and u = (uk) be a sequence of strictly
positive real numbers. Let Λ = (λk) be a non-decreasing sequence of positive
numbers tending to infinity. A sequence (xk) of complex numbers is said to
converge strongly to a complex number x if

lim
n→∞

1

λn

n
∑

k=0

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)] pk = 0,

with the agreement λ−1 = λ−2 = x−1 = x−2 = 0.

Lemma 2.8. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence
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of strictly positive real numbers. Then a sequence (xk) of complex numbers

converges strongly to a number x if and only if

(i) F (xk) converges to F (x) in the ordinary sense; and

(ii) lim
n→∞

1
λn

n
∑

k=2

[ukfk(λk−2|xk − xk−2|)]
pk = 0.

Proof. The representation

λk(xk − x)− λk−2(xk−2 − x) = (λk − λk−2)(xk − x) + λk−2(xk − xk−2)

implies both

1

λn

n
∑

k=0

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

≤
1

λn

n
∑

k=0

[

ukfk
(

(λk − λk−2)|xk − x|
)]pk

+
1

λn

n
∑

k=2

[

ukfk
(

λk−2|xk − xk−2|
)]pk

and

1

λn

n
∑

k=2

[

ukfk
(

λk−2|xk − xk−2|
)]pk

≤
1

λn

n
∑

k=0

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

+
1

λn

n
∑

k=0

[

ukfk
(

(λk − λk−2)|xk − x|
)]pk.

By using these inequalities together with the fact that F (xk) converging to
F (x), we have

lim
n→∞

1

λn

n
∑

k=0

[

ukfk
(

(λk − λk−2)|xk − x|
) ] pk = 0.

Hence, we get the necessity and sufficiency of both (i) and (ii). �

Lemma 2.9. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence

Acta Mathematica Hungarica

10 K. RAJ and C. SHARMA

of strictly positive real numbers. Then a sequence (xk) of complex numbers

converges strongly to a number x if and only if

(i) F (σn) =
1
λn

∑

0≦k≦n
2|n−k

[ukfk((λk − λk−2)xk)]
pk converges to F (x) in the

ordinary sense and

(ii) lim
n→∞

1
λn

n
∑

k=2

[ukfk(λk−2|xk − xk−2|)]
pk = 0.

Proof. Clearly,

F (xn)− F (σn) =
1

λn

∑

0≦k≦n
2|n−k

[

ukfk
(

(λk − λk−2)(xn − xk)
)]pk

=
1

λn

∑

0≦k≦n
2|n−k

[

(λk − λk−2)
]pk

∑

k+2≦j≦n
2|n−j

[

ukfk(xj − xj−2)
]pk

=
1

λn

∑

2≦j≦n
2|n−j

[ukfk(xj − xj−2)]
pk

∑

0≦k≦j−2
2|n−k

[

(λk − λk−2)
]pk

=
1

λn

∑

2≦j≦n
2|n−j

[

ukfk
(

λj−2(xj − xj−2)
)]pk .

Hence,

lim sup
n→∞

∣

∣F (xn)− F (σn)
∣

∣ ≦ lim sup
n→∞

1

λn

n
∑

k=2

[

ukfk
(

λk−2|xk − xk−2|
) ] pk .

According to Lemma 2.8, for the necessity part, it is easy to see that
limn F (σn) = F (x) which comes from the above inequality, condition (ii)
of this lemma and limn F (xn) = F (x). For the sufficient part, we only need
limn F (xn) = F (x) which also comes from the above inequality, condition (ii)
of this lemma and limn F (σn) = F (x). �

3. Statistical convergence

The concept of statistical convergence was introduced by Fast [3] and
Schoenberg [18] independently. Over the years and under different names,
statistical convergence has been discussed in the theory of Fourier analysis,

Acta Mathematica Hungarica

K. RAJ and C. SHARMA404



Acta Mathematica Hungarica 150, 2016

10 K. RAJ and C. SHARMA

of strictly positive real numbers. Then a sequence (xk) of complex numbers

converges strongly to a number x if and only if

(i) F (σn) =
1
λn

∑

0≦k≦n
2|n−k

[ukfk((λk − λk−2)xk)]
pk converges to F (x) in the

ordinary sense and

(ii) lim
n→∞

1
λn

n
∑

k=2

[ukfk(λk−2|xk − xk−2|)]
pk = 0.

Proof. Clearly,

F (xn)− F (σn) =
1

λn

∑

0≦k≦n
2|n−k

[

ukfk
(

(λk − λk−2)(xn − xk)
)]pk

=
1

λn

∑

0≦k≦n
2|n−k

[

(λk − λk−2)
]pk

∑

k+2≦j≦n
2|n−j

[

ukfk(xj − xj−2)
]pk

=
1

λn

∑

2≦j≦n
2|n−j

[ukfk(xj − xj−2)]
pk

∑

0≦k≦j−2
2|n−k

[

(λk − λk−2)
]pk

=
1

λn

∑

2≦j≦n
2|n−j

[

ukfk
(

λj−2(xj − xj−2)
)]pk .

Hence,

lim sup
n→∞

∣

∣F (xn)− F (σn)
∣

∣ ≦ lim sup
n→∞

1

λn

n
∑

k=2

[

ukfk
(

λk−2|xk − xk−2|
) ] pk .

According to Lemma 2.8, for the necessity part, it is easy to see that
limn F (σn) = F (x) which comes from the above inequality, condition (ii)
of this lemma and limn F (xn) = F (x). For the sufficient part, we only need
limn F (xn) = F (x) which also comes from the above inequality, condition (ii)
of this lemma and limn F (σn) = F (x). �

3. Statistical convergence

The concept of statistical convergence was introduced by Fast [3] and
Schoenberg [18] independently. Over the years and under different names,
statistical convergence has been discussed in the theory of Fourier analysis,
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ergodic theory and number theory. Later on it was investigated from the se-
quence space point of view and linked with summability theory by Fridy [4],
Connor [2], Salat [17], Mursaleen [8], Fridy and Orhan [5] and many others.
The notion of statistical convergence depends on the density of subsets of N.
A subset E of N is said to have density δ(E) if

δ(E) = lim
n→∞

1

n

n
∑

k=1

χE(k)

exists, where χE is the characteristic function of E.
A sequence x = (xk) is said to be statistically convergent to L if for every

ε > 0,

lim
n→∞

1

n

∣

∣

{

k ≤ n : |xk − L| ≥ ε
}∣

∣ = 0,

In this case, we write S-limk xk = L or x → L (S). The set of all statistical
convergent sequences is denoted by S.

Definition 3.1. A sequence x = (xk) is said to be [Λ2, F, u, p]-statisti-
cally convergent to x if for any ε > 0,

lim
n→∞

1

λn

∣

∣

∣{k ≤ n :
∣

∣

[

ukfk(λk(xk − x)− λk−2(xk−2 − x))
]pk

∣

∣ ≥ ε}
∣

∣

∣
= 0,

where the vertical bars indicate the number of elements in the closed set. In
this case, we write S-limkΛ

2
k(x) = x and the set of all statistically convergent

sequences is denoted by S(Λ2).

Theorem 3.2. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence

of strictly positive real numbers and supk pk = H < ∞. Then [Λ2, F, u, p]
⊂ (S(Λ2)).

Proof. Let x ∈ [Λ2, F, u, p]. Take ε > 0,
∑

1 denote the sum over k ≤ n
with

( ∣

∣

[

ukfk(λk(xk − x)− λk−2(xk−2 − x))
]pk

∣

∣

)

≥ ε

and
∑

2 denote the sum over k ≤ n with

( ∣

∣

[

ukfk(λk(xk − x)− λk−2(xk−2 − x))
]pk

∣

∣

)

< ε.

Then

1

λn

n
∑

k=0

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk
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=
1

λn

(

∑

1

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

+
∑

2

[

ukfk
(

λk(xk − x)− λk−2(xk−2 − x)
)]pk

)

≥
1

λn

∑

1

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

≥
1

λn

∑

1

[

ukfk(ε)
]pk ≥

1

λn

∑

1
min

(

[ukfk(ε)]
h, [ukfk(ε)]

H
)

=
1

λn

∣

∣

∣{k ≤ n :
∣

∣

[

ukfk(λk(xk − x)− λk−2(xk−2 − x))
]pk

∣

∣ ≥ ε}
∣

∣

∣

×min
(

[ukfk(ε)]
h, [ukfk(ε)]

H
)

.

Hence, x ∈ (S(Λ2)). �

Theorem 3.3. Let F = (fk) be a bounded sequence of modulus func-

tions, p = (pk) be a bounded sequence of positive real numbers and u = (uk) be
a sequence of strictly positive real numbers and 0 < infk pk ≤ pk ≤ supk pk =
H < ∞. Then (S(Λ2)) ⊂ [Λ2, F, u, p].

Proof. Suppose that F = (fk) be bounded. For given ε > 0, denote
∑

1 and
∑

2 the same as in the proof of Theorem 3.2. Since F = (fk) be
bounded there exists an integer M such that fk(x) < M for all x ≥ 0. Then

1

λn

n
∑

k=0

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

≤
1

λn

(

∑

1

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

+
∑

2

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

)

≤
1

λn

∑

1
max(Mh,MH) +

1

λn

∑

2

[

ukfk(ε)
]pk ≤ max(Mh,MH)

1

λn

×
∣

∣

∣{k ≤ n : |
[

ukfk
(

λk(xk − x)− λk−2(xk−2 − x)
)]pk| ≥ ε}

∣

∣

∣

+max
(

[ukfk(ε)]
h, [ukfk(ε)]

H
)

.

Hence, x ∈ [Λ2, F, u, p]. �
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=
1

λn

(

∑

1

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

+
∑

2

[

ukfk
(

λk(xk − x)− λk−2(xk−2 − x)
)]pk

)

≥
1

λn

∑

1

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

≥
1

λn

∑

1

[

ukfk(ε)
]pk ≥

1

λn

∑

1
min

(

[ukfk(ε)]
h, [ukfk(ε)]

H
)

=
1

λn

∣

∣

∣{k ≤ n :
∣

∣

[

ukfk(λk(xk − x)− λk−2(xk−2 − x))
]pk

∣

∣ ≥ ε}
∣

∣

∣

×min
(

[ukfk(ε)]
h, [ukfk(ε)]

H
)

.

Hence, x ∈ (S(Λ2)). �

Theorem 3.3. Let F = (fk) be a bounded sequence of modulus func-

tions, p = (pk) be a bounded sequence of positive real numbers and u = (uk) be
a sequence of strictly positive real numbers and 0 < infk pk ≤ pk ≤ supk pk =
H < ∞. Then (S(Λ2)) ⊂ [Λ2, F, u, p].

Proof. Suppose that F = (fk) be bounded. For given ε > 0, denote
∑

1 and
∑

2 the same as in the proof of Theorem 3.2. Since F = (fk) be
bounded there exists an integer M such that fk(x) < M for all x ≥ 0. Then

1

λn

n
∑

k=0

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

≤
1

λn

(

∑

1

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

+
∑

2

[

ukfk
(

|λk(xk − x)− λk−2(xk−2 − x)|
)]pk

)

≤
1

λn

∑

1
max(Mh,MH) +

1

λn

∑

2

[

ukfk(ε)
]pk ≤ max(Mh,MH)

1

λn

×
∣

∣

∣{k ≤ n : |
[

ukfk
(

λk(xk − x)− λk−2(xk−2 − x)
)]pk| ≥ ε}

∣

∣

∣

+max
(

[ukfk(ε)]
h, [ukfk(ε)]

H
)

.

Hence, x ∈ [Λ2, F, u, p]. �
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4. Results for Fourier series

In this section by using the concept of strongly convergence we shall
show some results related to Fourier series. The space of all 2π periodic
complex-valued continuous functions is a Banach space endowed with the
norm �f�C = maxt |f(t)| and is denoted by C. Let

(4.1)
1

2
a0(f) +

∞
∑

k=1

(

ak(f) coskt+ bk(f) sin kt
)

be the Fourier series of f ∈ C and denote by sk(f) the k-th partial sum of
the series (4.1). We shall denote by UF,u,p, AF,u,p and S(Λ2

F,u,p) respectively
the classes of functions f ∈ C whose Fourier series converges uniformly, ab-
solutely and strongly on [0, 2π). In other words, a function f ∈ S(Λ2

F,u,p) if

(4.2) lim
n

∥

∥

∥

∥

1

λn

n
∑

k=0

[

ukfk
(

|λk(sk(f)− f)− λk−2(sk−2(f)− f)|
)] pk

∥

∥

∥

∥

C

= 0.

and λ−1 = λ−2 = x−1 = x−2 = 0. The space UF,u,p is a Banach space with
the norm

�f�UF,u,p
= sup

k

∥

∥

[

ukfk(sk(f))
]pk

∥

∥

C

and the space AF,u,p is also a Banach space with the norm

�f�AF,u,p
=

1

2

[

ukfk(|a0(f)|)
]pk +

∞
∑

k=1

[

ukfk
(

|ak(f)|+ |bk(f)|
)]pk

One can easily prove that UF,u,p and AF,u,p are Banach spaces. We shall give
the proof only for S(Λ2

F,u,p) in the next theorem. Now, we define the norm

�f�S(Λ2

F,u,p)
= sup

n

∥

∥

∥

∥

1

λn

n
∑

k=0

[

ukfk
(

|λk(sk(f)−f)−λk−2(sk−2(f)−f)|
)] pk

∥

∥

∥

∥

C

,

which is finite for every f ∈ S(Λ2
F,u,p). By using triangle inequality, we have

�f�S(Λ2

F,u,p)

≤ �f�C + sup
n

∥

∥

∥

∥

1

λn

n
∑

k=0

[

ukfk
(

|λk(sk(f)− f)− λk−2(sk−2(f)− f)|
)]pk

∥

∥

∥

∥

C

Acta Mathematica Hungarica

14 K. RAJ and C. SHARMA

and this sup is due to equation (4.2). The norm inequalities corresponding
to in [11, equation (3.6)] are

(4.3) �f�UF,u,p
≤ �f�S(Λ2

F,u,p)
≤ 2�f�AF,u,p

,

which implies that AF,u,p ⊂ S(Λ2
F,u,p) ⊂ UF,u,p.

Lemma 4.1. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence
of strictly positive real numbers. Then f ∈ S(Λ2

F,u,p) if and only if

(i) lim
k

�sk(f)− f�C = 0 and

(ii) lim
k

∥

∥

∥

1
λn

n
∑

k=2

[

ukfk
(

λk−2|ak(f) coskt+ bk(f) sin kt|
)] pk

∥

∥

∥

C
= 0.

Proof. It follows from Lemma 2.8, so we omit it. �

Let

(4.4) σn(f) =
1

λn

n
∑

k=0

[

ukfk
(

(λk − λk−2)sk(f)
)] pk (n = 0, 1, . . .).

Lemma 4.2. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence of
strictly positive real numbers. Then f ∈ S(Λ2

F,u,p) if and only if

(i) lim
k

�σk(f)− f�C = 0 and

(ii) lim
k

∥

∥

∥

1
λn

n
∑

k=2

[

ukfk
(

λk−2|ak(f) coskt+ bk(f) sin kt|
)] pk

∥

∥

∥

C
= 0.

Theorem 4.3. The set S(Λ2
F,u,p) endowed with norm

�f�S(Λ2

F,u,p)
= sup

n

∥

∥

∥

∥

1

λn

n
∑

k=0

[

ukfk
(
∣

∣λk(sk(f)−f)−λk−2(sk−2(f)−f)
∣

∣

) ] pk

∥

∥

∥

∥

C

is a Banach space.

Proof. The only thing we have to prove is completeness. For this, let
{sj}j≥1 be a Cauchy sequence in the norm � · �S(Λ2

F,u,p)
. Then by equa-

tion (4.3), {sj} is a Cauchy sequence in the norm � · �UF,u,p
as well so there

exists a sequence s ∈ S(Λ2
F,u,p) such that limj→∞ �sj − s�UF,u,p

= 0.

Now, we show that s ∈ S(Λ2
F,u,p). Suppose ε > 0, then by assumption

there exists v = v(ε) such that

(4.5) �sj − si�S(Λ2

F,u,p)
≤ ε for all i, j ≥ v.
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Let sj = {sjk : k = 0, 1, . . .} and s = {sk : k = 0, 1, . . .}. We shall fix i, n.
Similarly by equation (4.3), we have

1

λn

n
∑

k=0

[

ukfk
(

|λk(sjk − sk)− λk−2(sj(k−2) − sk−2)|
)]pk(4.6)

≤ �sj − s�UF,u,p

1

λn

n
∑

k=0

[

ukfk(λk + λk−2)
]pk ≤ ε,

provided j is large enough, due to limj→∞ �sj − s�UF,u,p
= 0. Here j depends

on n and ε and assume that j ≥ v. Applying triangle inequality by taking
equations (4.5) and (4.6) into account we obtain that

1

λn

n
∑

k=0

[

ukfk
(
∣

∣λk(sjk − sk)− λk−2(sj(k−2) − sk−2)
∣

∣

)]pk

≤
1

λn

n
∑

k=0

[

ukfk
(
∣

∣λk(sjk − sik)− λk−2(sj(k−2) − si(k−2))
∣

∣

)]pk

+
1

λn

n
∑

k=0

[

ukfk
(∣

∣λk(sik − sk)− λk−2(si(k−2) − sk−2)
∣

∣

)]pk

≤ �sj − si�S(Λ2

F,u,p)
+ ε = 2ε,

for j ≥ v. Since this hold for any n ≥ 0, by definition �sj − si�S(Λ2

F,u,p)
≤ 2ε

for j ≥ v. This proves limj→∞ �sj − s�S(Λ2

F,u,p)
= 0 and s ∈ S(Λ2

F,u,p) which

completes the proof. �

The next result indicates that strong convergence exhibits some of the
characteristics of absolute values. Such fact is provided in [11] and [19].

Lemma 4.4. Let F = (fk) be a sequence of modulus functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence of
strictly positive real numbers. If a trigonometric series

∞
∑

k=1

(ak coskt+ bk sin kt)

converges strongly for t belonging to a set of positive measure or of second
category, then

lim
n

1

λn

n
∑

k=2

[

ukfk
(

λk−2(|ak|+ |bk|)
)] pk = 0.
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