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Abstract. We investigate weak and strong structures for generalized topo-
logical spaces, among others products, sums, subspaces, quotients, and the com-
plete lattice of generalized topologies on a given set. Also we introduce T3.5

generalized topological spaces and give a necessary and sufficient condition for a
generalized topological space to be a T3.5 space: they are exactly the subspaces
of powers of a certain natural generalized topology on [0, 1]. For spaces with at
least two points here we can have even dense subspaces. Also, T3.5 generalized
topological spaces are exactly the dense subspaces of compact T4 generalized topo-
logical spaces. We show that normality is productive for generalized topological
spaces. For compact generalized topological spaces we prove the analogue of the
Tychonoff product theorem. We prove that also Lindelöfness (and κ-compactness)
is productive for generalized topological spaces. On any ordered set we introduce
a generalized topology and determine the continuous maps between two such gen-
eralized topological spaces: for |X|, |Y | ≧ 2 they are the monotonous maps contin-
uous between the respective order topologies. We investigate the relation of sums
and subspaces of generalized topological spaces to ways of defining generalized
topological spaces.

1. Introduction

In this paper we do not require acquaintance with the terminology of cat-
egory theory, although we use some of its concepts. These will be explained
in the respective places.

In Section 2 we collect material needed later in our paper, and give the
necessary definitions.
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In Section 3 we investigate weak and strong structures for generalized
topological spaces (GTS’s), in particular, products (different from Császár’s
products), sums, subspaces, quotients, and the complete lattice of gener-
alized topologies (GT’s) on a set X . Our definition of the product is the
categorical definition. It will turn out that GTS’s form a topological cate-
gory over sets (its definition cf. in Theorem 3.1). This is a slight variant of
[26], Theorem 4.8.

In Section 4 we will investigate productivity of certain topological prop-
erties with respect to our definition of product. These include the natural
analogues for GTS’s of the separation axioms T0, T1, T2 ,T3, but also that
of T4. For compact GTS’s there holds the analogue of the Tychonoff product
theorem. However, also Lindelöf property and κ-compactness are produc-
tive for GT’s. We will define T3.5 GTS’s that have an analogous relation to
the GT on [0, 1] having a base {[0, x), (y, 1] | x, y ∈ [0, 1]} as T3.5 topologi-
cal spaces (TS’s) have to the usual topology on [0, 1]: a GTS is T3.5 if and
only if it is a subspace of some power of the GTS [0, 1] if and only if it is a
subspace of a normal T4 GTS. For ordered spaces (X,≦) there is a natural
GT on X , and the continuous functions between two such spaces X , Y , for
|X|, |Y | ≧ 2 are exactly the monotonous maps continuous in the respective
order topologies.

In Section 5 we will investigate the relation of generating GT’s by a
monotonous map γ : P (X) → P (X), and by an enlargement k : µ → P (X),
to subspaces and sums of GTS’s.

2. Preliminaries

2.1. The concept of generalized topology dates back to antiquity, then
called “closure operator” (which could have still some additional properties,
like, e.g., idempotence). A large number of such additional properties of
closure operators and their interrelations are discussed in the monographs
[19] and [5]. Early examples are the linear spans of a subset of a vector
space, or more generally, subalgebras generated by subsets of some algebraic
structure, like groups, semigroups, etc. For history and many properties of
such closure operators cf. the papers [17] and [18] from 1987 and 1989, and
particularly the monograph of D. Dikranjan and W. Tholen [19] from 1995,
and the more recent monograph of G. Castellini [5] from 2003. Also cf. the
monograph of E. Čech, Z. Froĺık and M. Katětov [6], from 1966, but that
deals only with one type of closure spaces, called Čech-closure spaces, or
pretopologies (definition cf. later).

Let X be a set and P (X) its power set. [19], pp. (xiii) and 147, defined a
closure operator c : P (X) → P (X) as follows. It should be increasing (called
there extensive) i.e., A ⊂ cA and monotonous i.e., A ⊂ B =⇒ cA ⊂ cB. A
closure space, also written as CS, is a pair (X, c), where X is a set and
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c : P (X) → P (X) is a closure operator. [19], p. 147 also investigated con-
tinuous maps between closure spaces f : (X, c) → (Y, d), i.e., maps X → Y ,
satisfying

(2.1) A ⊂ X =⇒ fcA ⊂ dfA ⇐⇒ cA ⊂ f−1dfA ,

or, equivalently,

(2.2) B ⊂ Y =⇒ cf−1B ⊂ f−1dB ⇐⇒ fcf−1B ⊂ dB

(cf. [19], p. 25 and [5], p. 42, Proposition 4.2). All closure spaces and all
continuous maps between them form a (so called) category , denoted by CS.
(Actually the setting of [19] and [5] was more general: a category X , with a
distinguished class M of subobjects, and the closure operator mapped any
distinguished subobject of any object X of X to some distinguished sub-
object of the same object X . Additionally, all morphisms f : X → Y were
required to be continuous from the closure operator on X to the closure
operator on Y . E.g., for topological groups, each morphism f carries the
closure of any subgroup X0 of X into the closure of the subgroup f(X0)
of Y . Here X and M had to satisfy some natural hypotheses, which hold
in our cases. However, their main topic is not a generalization of the in-
vestigation of generalized topological spaces. Namely, for X = Set and M
being all monomorphisms in Set their resulting category is just Set. If
we let X = GenTop and M all monomorphisms in GenTop, the category
GenTop is already contained in the hypotheses, so this is no definition of
GenTop. A reader not interested in category theory may just skip this
point.) Initial, i.e., weak and final, i.e., strong structures for supratopologi-
cal spaces — which are closely related to generalized topological spaces, cf.
below — are proved to exist and are investigated in [26].

[6] required that a closure operator c : P (X) → P (X) should be increas-
ing, and preserve finite unions, also called finitely additive, i.e., c∅ = ∅ (in
[19] p. xiii groundedness) and A,B ⊂ X =⇒ c(A∪B) = (cA)∪ (cB) (in [19]
p. xiii and in [5], p. 65, Definition 6.1 additivity). Such an operator c is called
a Čech-closure and the pair (X, c) a Čech-closure space, or more recently a
pretopology and a pretopological space. The pretopological spaces with the
corresponding continuous maps were investigated in great detail in [6]. They
form the (so called) category PrTop. In particular, initial, i.e., weak and fi-
nal, i.e., strong structures for pretopological spaces are proved to exist and
are investigated in detail in [6], Section 32 and Section 33. In our paper
pretopological spaces will not be investigated. We have to remark that also
in [19] most of the concrete examples in topology were connected with pre-
topological spaces, while in [5] such examples are rare — just pretopological
spaces are defined in p. 91, Example 7.12 — and GTS’s and closure spaces
were not systematically investigated from the topological point of view in
[19] and [5].

Acta Mathematica Hungarica

WEAK AND STRONG STRUCTURES 3



Acta Mathematica Hungarica 150, 2016

4 E. MAKAI, JR., E. PEYGHAN and B. SAMADI

2.2. In topology, generalized topologies (X,µ) formally seem (almost)
to have been defined almost simultaneously by S. Lugojan [29], in 1982, un-
der the very name “generalized topological spaces” (which remained almost
unnoticed because of its language, although a bit of knowledge of French suf-
fices to understand it) and by A. S. Mashhour, A. A. Allam, F. S. Mahmoud,
F. H. Khedr [32], in 1983, under the name of “supratopological spaces”, where
however in both of these papers X open was required (a strong generalized
topology). The terminology supratopological spaces persists till now. Cate-
gorical topologists investigate them by this name, as one of the many types
of structures in topology (the most well-known of these are beside topolog-
ical spaces the uniform spaces), and investigate the relationships of these
different types of structures in topology. However, unfortunately the termi-
nologies collide: categorical topologists used to call supratopological spaces
also as closure spaces (cf. e.g., [26]), which is in conflict with the usage of the
monograph [19]. We will use the term strong generalized topological space.
What is closure space in [19], yet satisfying the extra condition that the clo-
sure of the empty set is the empty set, is called by categorical topologists
a neighbourhood space. It is given by a system of neighbourhoods N (x) for
each point x of a set X , such that N ∈ N (x) =⇒ x ∈ N , N ′ ⊃ N ∈ N (x)
=⇒ N ′ ∈ N (x), and X ∈ N (x).

Then Á. Császár [8] in 2002 introduced generalized topological spaces,
which differ from supratopological spaces just by omitting the requirement of
openness of X from their definition. His motivation was the previous investi-
gation of a number of generalizations of open sets in topological spaces, like
semiopen sets ([28], 1963), α-open sets ([35], 1965), preopen sets ([30], 1982),
β-open sets ([1], 1983) defined by A ⊂ cl intA, A ⊂ int cl intA, A ⊂ int clA,
A ⊂ cl int clA, for A a subset of a topological space X , respectively. An ex-
tensive literature cf. in [8] from 2002. These definitions led Á. Császár [7]
to introduce their common generalization, the so called γ-open sets, where
γ : P (X)→ P (X) is an arbitrary monotonous map, via the propertyA ⊂ γA.
The concept of γ-open sets already includes all generalized topologies (for
suitable γ, namely for γ the interior operator of the generalized topology).

In [8] Á. Császár made a further step: he considered the system of γ-open
sets, which is always a generalized topology, and disregarded from which
γ was it derived. Thus he [8] arrived to the concept of generalized topolo-
gies, and began their systematic topological investigation. The paper [8] was
the basis for about 200 subsequent papers in this subject (by MathSciNet).
This has been one of the important developments of general topology in the
recent years.

We note that beginning with a topology, the first four above given
generalizations of open sets form only generalized topologies, except for
α-openness, when we obtain a topology. Moreover, the first four above
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types of generalized open sets can be introduced also in generalized topolog-
ical spaces, cf. [10].

We remark that the difference between supratopological spaces and gen-
eralized topological spaces is minor. Many proofs for supratopologies carry
over to generalized topologies, sometimes with some notational complica-
tions. But of course, there are also differences between them.

Á. Császár [14] in 2008 introduced generalized neighbourhood systems,
which is a generalization of the above mentioned neighbourhood spaces, by
omitting the condition that X ∈ N (x). This concept is equivalent to that
of the closure spaces. In fact, from a closure operator c : P (X) → P (X)
one derives N (x) by N ∈ N (x) ⇐⇒ x �∈ c(X \N), and the same formula
derives c : P (X) → P (X) from �N (x) | x ∈ X�. Continuity can be rewritten
as follows: f : (X, �N (x) | x ∈ X�)→ (Y, �M(y) | y ∈ Y �) satisfies x ∈ X =⇒
f−1M(fx) ⊂ N (x).

2.3. Let X be a set and µ ⊂ P (X). (We observe that some authors
require still X �= ∅. However then e.g. intersections of subspaces are not
subspaces, the empty sum does not exist, etc., so we must allow X = ∅.)
Then µ is called a generalized topology , briefly GT on X if ∅ ∈ µ and any
union of elements of µ belongs to µ. A set X with a GT µ is said to be
a generalized topological space (X,µ), briefly GTS . The elements of µ are
called µ-open sets, and their complements are called µ-closed . We say that
µ is strong if X ∈ µ. A base of a GTS (X,µ) is a subset β of µ such that
each M ∈ µ is a union of a subfamily (possibly empty) of β, cf. [11].

For A ⊂ X , we denote by cµ(A) the intersection of all µ-closed sets con-
taining A and by iµ(A) the union of all µ-open sets contained in A. Then
the map cµ : P (X) → P (X) is increasing, monotonous and idempotent (i.e.,
c2 = c). If some c : P (X) → P (X) has these properties, then it defines a
GT via µc := {X \ c(A) | A ⊂ X}. The description of GT’s by open sets,
or by the closure operator are equivalent: µ is sent to cµ, and c to µc, and
these maps define bijections inverse to each other. For GT’s we will use
the notations µ, ν, ̺ for the set of all open sets, and the notations c, d, e for
the associated closure operators. (The description by closed sets is clearly
equivalent to the description by open sets, so we will not consider it in this
paper.)

For maps, f : (X,µ) → (Y, ν) or f : (X, c) → (Y, d) is continuous if
f−1(ν) ⊂ µ, or in terms of closure operators if (2.1) or, equivalently, (2.2)
holds. We will write also that f is (µ, ν)-continuous, or (c, d)-continuous.
Identifying the µ’s and c’s on a set X via the above bijections µ �→ cµ and
c �→ µc, these concepts become equivalent. The GTS’s, with the continu-
ous maps between any two of them form a (so called) category , denoted
by GenTop. If f : (X,µ) → (Y, ν) is continuous, and has a continuous in-
verse g : (Y, ν) → (X,µ) (or we may use (X, c), (Y, d)), then it is called a
homeomorphism.
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For A ⊂ P (X) and X0 ⊂ X we write A|X0 := {A ∩X0 | A ∈ A} (trace
of A on X0).

2.4. For concepts of category theory, we refer to [24], [2]. However, in
this paper we do not want to suppose acquaintance with category theory.
An exception is when we speak about limits or colimits, but then the reader
may restrict himself to their special cases products or sums. However, be-
cause of this we have to recall the general concepts of products and sums in
categories.

We begin with a notation. Recall that {(·)α | α ∈ J} is the family (set,
or class) of all (·)α’s, for α ∈ J . Here multiple occurrence of the same (·)α
amounts to the same as if it occurred only once. If we write �(·)α | α ∈ J�,
this means the indexed family of all (·)α’s, for α ∈ J . That is, �(·)α | α ∈ J�
is a function from J , whose values may coincide for different α’s. When the
indexed family is a set (i.e., J is a set), we write indexed set .

In a category, like e.g. that of all sets (as objects) and all functions be-
tween them (as morphisms), or all generalized topological spaces (as objects)
and all continuous maps between them (as morphisms), etc., one defines
products and sums in the following way.

For an indexed set of objects �Xα | α ∈ J� their product
∏

α∈J Xα is the
up to isomorphism unique object, for which there exist so called projec-
tions πα :

∏
α∈J Xα → Xα, which have the following universality property.

For any morphisms �fα : Y → Xα | α ∈ J� there exists a unique morphism
g : Y →

∏
α∈J Xα such that for each α ∈ J we have fα = παg. The underly-

ing set of (X,µ) (or of (X, c)) is X . (More details cf. in Section 3.) In our
categories the product of an indexed set of objects exists and may be sup-
posed to have as underlying set the product of the underlying sets. We will
actually suppose this.

For an indexed set of objects �Xα | α ∈ J� their sum
∐

α∈J Xα is the
up to isomorphism unique object, for which there exist so called injec-
tions ια : Xα →

∐
α∈J Xα, which have the following universality property.

For any morphisms �fα : Xα → Y | α ∈ J� there exists a unique morphism
g :

∐
α∈J Xα → Y such that for each α ∈ J we have fα = gια. In our cate-

gories the sum of an indexed set of objects exists and may be supposed to
have as underlying set the sum (i.e., disjoint union) of the underlying sets.
We will actually suppose this. Moreover, we may identify Xα and ιαXα via
ια, and then we may consider the underlying set of

∐
α∈J Xα as the disjoint

union of the underlying sets of the Xα’s, that we will do also.
Analogously, if we have an injection X0 → X , then we may consider this

as an inclusion of a subset, that we will do as well.
The empty product (or 0’th power of a space) is by this definition that

up to isomorphism unique object Xfin (final object) for which for any ob-
jectX there is exactly one morphism X → Xfin. InGenTop this is (X,{∅}),
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where |X| = 1. Similarly, the empty sum is that object Xinit (initial object)
for which for any object X there is exactly one morphism Xinit → X . In
GenTop this is (∅, {∅}).

2.5. A way to produce GT’s is given by the following ([8]). We call
γ : P (X) → P (X) monotonous as in Section 2.1, (and write γA for γ(A)),
and denote by Γ(X) the family of all such mappings. A set A ⊂ X is said
to be γ-open if A ⊂ γA. The γ-open sets constitute a GT on X (cf. [7],
1.1), which we denote by µ(γ). Actually, all GT’s on a given set X can be
obtained in this way (see Lemma 1.1 of [8] and also our Subsection 2.2).

Another way to produce GT’s is given by the following (see [13]). A map-
ping k : µ → P (X) is said to be an enlargement on (X,µ) if M ⊂ kM , when-
ever M ∈ µ. A subset A ⊂ X is κ(µ, k)-open iff x ∈ A implies the the ex-
istence of a µ-open set M such that x ∈ M and kM ⊂ A. Császár in [13]
proved that the collection κ(µ, k) of all κ(µ, k)-open sets is a GT on X that
is coarser than µ (i.e. κ(µ, k) ⊂ µ) whenever µ is a GT on X . Some further
aspects of enlargements are investigated in Y. K. Kim, W. K. Min [27].

[15] defined a sort of product of GTS’s and obtained some of its basic
properties. One can find more results related to this concept in [33], [37]
and [42]. Its definition cf. in Section 3 of this paper, Definition 3.11. We will
call this the Császár product of GTS’s, but this will not be investigated in
our paper.

2.6. There are some papers related to separation axioms on GTS’s such
as [29], [9], [12], [33] and [23]. In particular, T0, T1, T2, regularity , T3 (i.e.,
regular T1, or equivalently regular T0, like for topologies), normality and T4

(i.e., normal T1) are defined word for word as for topological spaces. (Ob-
serve that if X is a T1 — e.g., T2 — GTS with |X| ≧ 2 or X = ∅ then X
is strong. For |X| = 1 there are two GT’s on X : (X, {∅}) and (X, {∅,X}).
Both are T2 hence T1, and the first one is not strong, the second one is strong.
For normality the situation is converse: a not strong GTS is vacuously nor-
mal, since there are no two disjoint closed subsets (empty or non-empty).
For regularity we have: a GTS of the form (X, {∅}) is vacuously regular —
but regularity of a GTS (X,µ) with µ �= {∅} implies strongness of (X,µ).
Normal T0 does not imply T1, already for topologies, e.g. for R with open
base {(−∞, r) | r ∈ R}.) Also, [12] studied normal GTS’s and exhibited a
suitable form of Urysohn lemma ([12], Theorem 3.3) by defining a suitable
GT on [0, 1]: it has as a base {[0, x), (y, 1] | x, y ∈ [0, 1]}.

2.7. Let X be a set. We say that A ⊂ P (X) is a stack (also called
ascending) if A ∈ A and A ⊂ B ⊂ X imply B ∈ A (cf. [26]). For B ⊂ P (X)
we write StackB := {C ⊂ X | ∃B ∈ B such that C ⊃ B}. This is called the
stack generated by B (or the ascending hull of B).
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We recall that [14] investigated generalized neighbourhood systems
(GNS’s), i.e., functions ψ : X → P (P (X)) with the property that x ∈ X
and V ∈ ψ(x) imply x ∈ V . The filter property is not required, and also
ψ(x) = ∅ is allowed. Moreover, not even the stack property is required.
However, for what [14] uses these GNS’s, remains invariant if we take the
generated stack Stackψ(x) := (Stackψ)(x) :=Stack (ψx) rather than ψ(x).
That is, we may suppose that each ψ(x) is a stack. These functions ψ(·) are
equivalent to the closure operators defined above, cf. the end of Section 2.2.

[14] defined for such a ψ a GT µψ := {M ⊂ X | x ∈ M =⇒ ∃V ∈ ψ(x)
V ⊂ M}, called the GT generated by ψ. By [14], Lemma 2.2 here for Stackψ
we have µψ = µStackψ , so here we may assume the stack property of ψ. [14],
p. 396 established that each GT can be generated by at least one GNS,
that can be supposed by [14], Lemma 2.2 to consist of stacks. [14] Example
2.1 and p. 397 showed that several different GNS’s ψ = Stackψ can gen-
erate the same µψ . Conversely, a GT µ generates a GNS , by the formula
ψµ(x) := Stack {M ∈ µ | x ∈ M}, [14], proof of Lemma 1.3. For two GNS’s
there can be defined the continuous maps: f : (X,ψ) → (Y,ψ′) is continu-
ous if and only if x ∈ X ⇒ f−1 (ψ′ (f(x))) ⊂ ψ(x). These continuous maps
remain continuous if we replace the GNS’s by the GT’s generated by them,
cf. [14], Proposition 2.1. However, the converse is not true: a map between
GNS’s which is continuous between the generated GT’s is not necessarily
continuous between the GNS’s. Cf. [8], Example 2.2, where the generated
GT’s are even equal, so different GNS’s may generate the same GT. These
discrepancies between GT’s and GNS’s are the difference between the cate-
gories of GTS’s and CS’s.

W. K. Min [34] investigated the relationship of GNS’s and GT’s further.

3. Topologicity of GenTop over Set

Let GenTop be the category of all GTS’s (called objects) and all contin-
uous maps between them (called morphisms). Similarly, Set is the category
of all sets (as objects) and all functions between sets (as morphisms). As well
known, there are several ways to define the category GenTop. E.g., with
generalized open sets, i.e., objects are pairs (X,µ), with {∅} ⊂ µ ⊂ P (X),
where µ is closed under arbitrary unions, and morphisms f : (X,µ) → (Y, ν)
characterized by f−1ν ⊂ µ. Or with closure operators c : P (X) → P (X),
that are increasing, monotonous and idempotent. Then, as for topological
spaces, f : (X, c) → (Y, d) is a morphism iff (2.1) holds, or, equivalently, iff
(2.2) holds (cf. beside [19], p. 25 and [5], p. 42, Proposition 4.2 also [8], [39]).

A source, or sink in a category C is an indexed family (set or class) of
morphisms with common domain X , or codomain Y , i.e., �fα : X → Yα |
α ∈ J�, or �gα : Xα → Y | α ∈ J�.
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If we have an indexed family of mappings �fα : P (X) → P (Y ) | α ∈ J�,
for some sets X and Y , then their union and intersection are defined point-
wise:
(3.1)( ⋃

α∈J

fα

)
(A) :=

⋃

α∈J

(fαA), and

( ⋂

α∈J

fα

)
(A) :=

⋂

α∈J

(fαA), for A ⊂ X .

The following theorem has to be preceded by some definitions.
The underlying set functor U : GenTop → Set maps the generalized

topological space (X,µ) (or (X, c)) to the set X and the continuous
map f : (X,µ) → (Y, ν) (or (X, c) → (Y, d)) to the function f : X → Y .
U is called faithful if f, g : (X,µ) → (Y, ν) being different implies that also
Uf,Ug : X → Y are different. This is evident for GenTop. U is called
amnestic if the following holds. If the identity map on X is (underlies) a
continuous map (X,µ) → (X, ν) and also is (underlies) a continuous map
(X, ν) → (X,µ), then µ = ν. This is also evident for GenTop. U is fibre-
small , if any set X is the underlying set of only set many (X,µ)’s. This
is also evident for GenTop, since the cardinality of GT’s on a set X is at
most exp(exp |X|)).

The definition of initial lifts, also called weak structures is the following.
If for a set X there is an indexed class of morphisms �ϕα : X → U(Yα, να) =
Yα | α ∈ J� in Set (i.e., a source in Set), then there is a (by the way, unique)
so called initial, or weak structure (X,µ) on X , such that all ϕα underlie
morphisms fα : (X,µ) → (Yα, να), and this source �fα | α ∈ J� in GenTop

has the following universality property. If for any (Z,λ) there are morphisms
�gα : (Z, ̺) → (Yα, να) | α ∈ J� (another source in GenTop) such that

Ugα = ϕαh for all α ∈ J

for some h : UZ → X , then there exists an h′ : (Z, ̺) → (X,µ), such that

h = Uh′ and for each α ∈ J we have gα = fαh
′.

If we reverse in this definition the direction of the maps (i.e., → is re-
placed by ← and vice versa), we obtain the definition of final lifts, also called
strong structures. In details, this is the following. If for a set X there is an
indexed class of morphisms �ψα : U(Yα, να) = Yα → X | α ∈ J� in Set (i.e.,
a sink in Set), then there is a (by the way, unique) so called final structure
(X,µ) on X , such that all ψα underlie morphisms fα : (Yα, να) → (X,µ), and
this sink �fα | α ∈ J� in GenTop has the following universality property. If
for any (Z, ̺) there are morphisms �gα : (Yα, να) → (Z, ̺) | α ∈ J� (another
sink in GenTop) such that

Ugα = hψα for all α ∈ J
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for some h : X → UZ, then there exists a h′ : (X,µ) → (Z, ̺), such that

h = Uh′ and for each α ∈ J we have gα = h′fα .

The existence of all initial (weak) structures is equivalent to the existence
of all final (strong) structures (faithfulness and fibre-smallness supposed) [2],
Theorem 21.9, [38], [21].

The initial lift of (i.e., weak structure for) the empty source for a set X is
the indiscrete GT, i.e., (X,{∅}), i.e., (X, c) with ∀A ⊂ X cA = X . The final
lift of (i.e., strong structure for) the empty sink for a set X is the discrete
GT, i.e., (X,P (X)), i.e., (X, c) with ∀A ⊂ X cA = A. (Therefore in our
Propositions 3.2, 3.3, 3.4, 3.6 we might investigate only non-empty sources
and sinks.)

For topological categories over Set we refer to J. Adámek, H. Herrlich,
G. E. Strecker, Abstract and concrete categories: the joy of cats, [2], Ch. 21,
G. Preuss, Theory of Topological Structures [38], or for a synopsis Encyclo-
pedia of Math. Vol. 9 [21] pp. 201–202. cf. also the text of Theorem 3.1 for
the definition.

Theorem 3.1 (for supratopologies cf. [26], Theorem 4.8). The category
GenTop, with its underlying set functor U : GenTop → Set is a topological
category over Set. That is, U is faithful, amnestic, fibre-small, and there
exist all initial lifts (i.e., weak structures) or equivalently there exist all final
lifts (i.e., strong structures). Hence in GenTop there exist both limits and
colimits of all diagrams, which can be obtained from the respective underlying
diagrams in Set by initial/final lifts.

Above we already observed faithfulness, amnesticity and fibre-smallness
for U . Existence of all limits (e.g., products) and all colimits (e.g., sums)
and the way of obtaining them hold in any topological category over Set

[2], Proposition 21.15, [21]. So only the weak and strong structures need be
given.

We give the simple proof of Theorem 3.1, even in several forms. We
explicitly give all initial and all final lifts, i.e., weak and strong structures,
both for the open sets and the closure operator definition.

Proposition 3.2 (for supratopologies cf. [26], Proposition 4.1 and The-
orem 4.4). Let X be a set. Let us have a source �ϕα : X → U(Yα, να) =
Yα | α ∈ J� in Set. Then its initial lift (i.e., weak structure) in GenTop is

(X,µ) :=

(
X,

{ ⋃

α∈J

ϕ−1
α (Mα) | Mα ∈ να

})
.

Proof. Clearly (X,µ) is a GTS, and ϕα becomes (underlies) a contin-
uous map fα : (X,µ) → (Yα, να) in GenTop, for each α ∈ J .
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We turn to show the universality property. Let us have for some (Z, λ)
morphisms �gα : (Z, ̺) → (Yα, να) | α ∈ J� (a source in GenTop) such that

Ugα = ϕαh for all α ∈ J

for some h : UZ → X . Then

̺ ⊃ g−1
α (να) = (Ugα)

−1(να) = (ϕαh)
−1(να) = h−1ϕ−1

α (να) .

Hence

̺ ⊃
⋃

α∈J

h−1ϕ−1
α (να) = h−1

⋃

α∈J

ϕ−1
α (να) .

Thus h−1 maps µ into ̺, hence h = Uh′ for a continuous map h′ : (Z, ̺)
→ (X,µ). �

Proposition 3.3. Let X be a set. Let us have a sink �ψα : U(Yα, να) =
Yα → X | α ∈ J� in Set. Then its final lift (strong structure) in GenTop is

(X,µ) :=
(
X, {M ⊂ X | ∀α ∈ J ψ−1

α (M) ∈ να}
)
.

Proof. Clearly (X,µ) is a GTS, and ϕα becomes (underlies) a contin-
uous map fα : (Yα, να) → (X,µ) in GenTop, for each α ∈ J .

We turn to show the universality property. Let us have for some (Z, λ)
morphisms �gα : (Yα, να) → (Z, ̺) | α ∈ J� (a sink in GenTop) such that

Ugα = hψα for all α ∈ J

for some h : X → UZ. Then

να ⊃ g−1
α (̺) = (Ugα)

−1(̺) = (hψα)
−1(̺) = ψ−1

α h−1(̺) .

Hence

∀α ∈ J h−1(̺) ⊂ {M ⊂ X | ψ−1
α (M) ∈ να}

i.e.,

h−1(̺) ⊂ {M ⊂ X | ∀α ∈ J ψ−1
α (M) ∈ να} .

Thus h = Uh′ for a continuous map h′ : (X,µ) → (Z, ̺). �

We recall 3.1 for notations in the following proofs.

Proposition 3.4. Let X be a set. Let us have a source

�ϕα : X → U(Yα, dα) = Yα | α ∈ J�
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in Set. Then its initial lift (i.e., weak structure) in GenTop is (X,c), where
for A ⊂ X we have

cA :=
⋂

α∈J

ϕ−1
α dαϕα(A).

Proof. Obviously c is increasing and monotonous. To show idempo-
tence of c, it is sufficient to show c2(A) ⊂ c(A) for each A ⊂ X , i.e.,

⋂

β∈J

ϕ−1
β dβϕβ

[ ⋂

α∈J

ϕ−1
α dαϕα(A)

]
⊂

⋂

β∈J

ϕ−1
β dβϕβ(A).

It suffices to show the inclusion (3.2) obtained by deleting here
⋂

β∈J from
both sides. We have

ϕ−1
β dβϕβ

[ ⋂

α∈J

ϕ−1
α dαϕα(A)

]
⊂ ϕ−1

β dβϕβ

[
ϕ−1
β dβϕβ(A)

]
(3.2)

⊂ ϕ−1
β dβdβϕβ(A) = ϕ−1

β dβϕβ(A) .

Here we used
[ ⋂

α∈J ϕ
−1
α dαϕα(A)

]
⊂ ϕ−1

β dβϕβ(A) and ϕβϕ
−1
β (Bβ) ⊂ Bβ for

Bβ ⊂ Yβ and d2β = dβ . Thus we have obtained the claimed inclusion (3.2).
Let A ⊂ X . Then

cA =
⋂

α∈J

ϕ−1
α dαϕα(A) ⊂ ϕ−1

α dαϕα(A)

shows that ϕα : X → Yα becomes (underlies) a continuous map fα : (X, c)
→ (Y, dα) for each α ∈ J .

We turn to show the universality property. Let us have for some (Z, e)
morphisms �gα : (Z, e) → (Yα, dα) | α ∈ J� (a source in GenTop) such that

Ugα = ϕαh for all α ∈ J

for some h : Z → X . We have to show that h becomes (underlies) a contin-
uous map h′ : (Z, e) → (X, c). That is, we have to show for C ⊂ Z that

eC ⊂ h−1chC = h−1
⋂

α∈J

ϕ−1
α dαϕαhC = h−1

( ⋂

α∈J

ϕ−1
α dαϕα

)
hC .

For C ⊂ Z we have, for each α ∈ J , by continuity of gα that

eC ⊂ g−1
α dαgαC = (Ugα)

−1dα(Ugα)C

= (ϕαh)
−1dα(ϕαh)C = h−1(ϕ−1

α dαϕα)hC .
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Therefore we have

eC ⊂
⋂

α∈J

h−1(ϕ−1
α dαϕα)hC = h−1

( ⋂

α∈J

ϕ−1
α dαϕα

)
hC = h−1chC ,

which shows that h = Uh′ for a continuous map h′ : (Z, e) → (X, c). This
shows the universality property of (X, c) and ends the proof of the proposi-
tion. �

For the next proposition we will need the following concept.

Definition 3.5 (for the special case of PrTop [6], Ch. 16B, Topo-
logical modifications, in full generality [19], pp. xiv-xv, Ch. 4.6, Idempo-
tent hull and weakly hereditary core, and [5], p. 74, Definition 6.9 and
p. 87, Proposition 7.6). Let (X, γ) be a CS (with γ not necessarily idem-
potent). Let λ be any ordinal (also κ will denote here ordinals) and
A ⊂ X . Then γλ(A) is defined in the following way. We let γ0(A) := A.
For λ = κ+ 1 we let γλ(A) := γ(γκ(A)). For λ a limit ordinal we let
γλ(A) :=

⋃
κ<λ γ

κ(A). Then for any A ⊂ X there is a smallest ordinal λ0

such that γλ0+1(A) = γλ0(A). (Clearly λ0 has a cardinality at most |X|.)
Then the operator A �→ γ∞(A) := γλ0(A) is called the idempotent hull (or
transfinite iteration) of γ. Clearly γ∞ is increasing, monotonous and idem-
potent. Namely, it equals γλ1 , where λ1 is the initial ordinal of the cardinal
successor of |X| for X infinite, or λ1 = ω for X finite, for which these prop-
erties are obvious.

We will write id for the identity operation (its domain will be clear from
the context).

Proposition 3.6. Let X be a set. Let us have a sink �ψα : U(Yα, dα) =
Yα → X | α ∈ J� in Set. Then its final lift (strong structure) in GenTop

is (X, c), where

c is the idempotent hull γ∞ of the closure operator γ

on P (X) given by γA :=

[ ⋃

α∈J

ψαdαψ
−1
α (A)

]
∪A.

Proof. Clearly γ is increasing and monotonous. Hence its idempotent
hull is increasing, monotonous and idempotent. Let A ⊂ X . Then

cA =

[[ ⋃

α∈J

ψαdαψ
−1
α

]
∪ id

]∞
(A) ⊃

[ ⋃

α∈J

ψαdαψ
−1
α (A)

]
∪A

⊃
⋃

α∈J

ψαdαψ
−1
α (A) ⊃ ψαdαψ

−1
α (A)
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shows that ψα becomes (underlies) a continuous map fα : (Yα, dα) → (X, c),
for each α ∈ J .

We turn to the universality property. Let us have for some (Z, e) mor-
phisms �gα : (Yα, dα) → (Z, e) | α ∈ J� (a sink in GenTop) such that

Ugα = hψα for all α ∈ J

for some h : X → Z. We have to show that h becomes (underlies) a contin-
uous map h′ : (X, c) → (Z, e). That is, we have to show for C ⊂ Z that

eC ⊃ hch−1C = h

[[ ⋃

α∈J

ψαdαψ
−1
α (A)

]
∪ id

]∞
h−1C .

For C ⊂ Z we have, for each α ∈ J , by continuity of gα that

eC ⊃ gαdαg
−1
α C = (Ugα)dα(Ugα)

−1C

= (hψα)dα(hψα)
−1C = h(ψαdαψ

−1
α )h−1C .

Therefore we have

eC ⊃
⋃

α∈J

h(ψαdαψ
−1
α )h−1C = h

( ⋃

α∈J

ψαdαψ
−1
α

)
h−1C ,

which implies together with C ⊂ eC that for γ = [
⋃

α∈J ψαdαψ
−1
α ] ∪ id we

have

hγh−1C = h

([⋃

α∈J

ψαdαψ
−1
α

]
∪ id

)
h−1C(3.3)

= h

(⋃

α∈J

ψαdαψ
−1
α h−1C

)
∪ hh−1C ⊂

[
h

(⋃

α∈J

ψαdαψ
−1
α

)
h−1C

]
∪ C ⊂ eC .

Applying (3.3) to eC rather than C, we obtain

(3.4) hγh−1eC ⊂ e(eC) = eC .

Now we show by transfinite induction that for each ordinal λ and any
C ⊂ Z we have

(3.5) hγλh−1C ⊂ eC .

For λ = 0 (3.5) is evident (since hh−1C ⊂ C ⊂ eC), and for λ = 1 this
is (3.3)). Now let for λ = κ+ 1 (3.5) hold for the ordinal κ and any C ⊂ Z,
and we prove it for λ and any C ⊂ Z. We have

hγκ+1h−1C = hγ id γκh−1C ⊂ hγh−1(hγκh−1C) ⊂ hγh−1(eC) ⊂ eC .
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In the first inclusion we used that h−1h was increasing, in the second in-
clusion we used the induction hypothesis and in the third inclusion we used
(3.4). Now let λ be a limit ordinal, and let us suppose that we know (3.5)
for all ordinals κ < λ and for all C ⊂ Z. Then

hγλh−1C = h
⋃

κ<λ

γκh−1C =
⋃

κ<λ

(hγκh−1C) ⊂
⋃

κ<λ

eC = eC .

Therefore, by transfinite induction, for each ordinal λ we have (3.5). In
particular, for the ordinal λ0 associated to the set C (cf. Definition 3.5) and
to the operation γ we obtain

hch−1C = hγ∞h−1C = hγλ0h−1C ⊂ eC ,

which shows that h = Uh′ for a continuous map h′ : (X, c) → (Z, e). This
shows the universality property of (X, c), and ends the proof of the proposi-
tion. �

Proof. The proof of Theorem 3.1 follows from any of Propositions 3.2,
3.3, 3.4, 3.6. �

Remark 3.7. In Proposition 3.6 it is in fact necessary to use transfinite
iteration over all ordinals. As an example, let us take the set {0, 1}, and for
some set J we consider X := {0, 1}J . We consider the following sink to X .
We let

{Yα | α ∈ J} = {Y ⊂ X | |Y | = 2, Y = {y1, y2},

and y1 and y2 differ in exactly one coordinate}.

On each Yα we consider the indiscrete topology, i.e., dα∅ = ∅ and the clo-
sure of a non-empty subset is Yα. The maps ψα are the natural injections
Yα → X. We investigate the strong structure on X associated to the sink
�ψα : Yα → X | α ∈ J�. Let x0 ∈ X be the point with all coordinates 0. We
write for A ⊂ X

γA :=

[ ⋃

α∈J

ψαdαψ
−1
α A

]
∪A .

Then γ{x0} = {x ∈ X | x has at most one non-zero coordinate}. Similarly,
γ2{x0} = {x ∈ X | x has at most two non-zero coordinates}, and, in general,
for any ordinal λ, γλ{x0} = {x ∈ X | x has at most |λ| non-zero coordinates}.
Therefore the smallest ordinal λ0 such that γλ0+1{x0} = γλ0{x0} is the ini-
tial ordinal belonging to the cardinal |J |, that can be arbitrarily large.
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Now we give some corollaries to Theorem 3.1 and Propositions 3.2, 3.3,
3.4, 3.6, to some particular kinds of initial and final lifts (weak and strong
structures), and of limits and colimits.

If the source consists of a single map ϕ : X → U(Y, ν) = Y , and ϕ is
injective, then the weak structure is called subspace of (Y, ν). Here we may
suppose that ϕ is actually the embedding of a subset , which we will suppose.
If the sink consists of a single map ψ : U(Y, ν) = Y → X , and ψ is surjective,
then the strong structure is called quotient of (Y, ν).

For (Y, ν) a GTS and X ⊂ Y , we write (Y, ν)|X := (X, ν|X), where for
A ⊂ P (X) we have A|X = {A ∩X | A ∈ A}, Subsection 2.3 (cf. also [40]).

Corollary 3.8 (for supratopologies cf. [29], § 1, Example 2, and [26],
Proposition 4.10, or [26], Theorem 4.4 and Proposition 4.9. Cf. also [40]).
Subspaces exist in the category GenTop, and they can be given as follows.
For (Y, ν) and i : X → Y an embedding of a subset, the subspace structure
on X is (Y, ν)|X = (X, ν|X). For (Y, d) and i : X → Y an embedding of a
subset, the subspace structure (X, c) on X is given by c(A) := d(A) ∩X for
A ⊂ X .

Corollary 3.9. Quotient spaces exist in the category GenTop, and
they can be given as follows. For (Y, ν) and an onto map q : Y → X
in the category Set the quotient space structure on X (by the map q) is
(X, {M ⊂ X | q−1(M) ∈ ν}). For (Y, d) and an onto map q : Y → X in the
category Set the quotient space structure on X (by the map q) is (X, c),
where c is the idempotent hull of the closure operator on P (X) given by
A �→ qdq−1(A) ∪A.

Corollary 3.10 (for supratopologies cf. [26], Proposition 4.10, or
[26], Theorem 4.4 and Proposition 4.9). Products exist in the category
GenTop, and they can be given as follows. For �(Yα, να) | α ∈ J� the
product is (

∏
α∈J Yα, µ) (together with the natural projections πα), where

µ :=
{ ⋃

α∈J π
−1
α (Nα) | Nα ∈ να

}
. For

〈
(Yα, dα) | α ∈ J

〉
the product is

(
∏

α∈J Yα, c), where for M ⊂
∏

α∈J Xα we have c(M) :=
∏

α∈J dαπαM .

Definition 3.11. The Császár product of GTS’s is defined as follows.
Let J be an index set, let Yα for α ∈ J be sets, and X =

∏
α∈J Yα. Sup-

pose that, for α ∈ J , να is a GT on Yα. Let B :=
{ ∏

α∈J Nα | Nα ∈ να
and, with the exception of finitely many indices α, Nα = Mνα

}
, where

Mνα
:=

⋃
B∈να

B. The GT on X having B as a base is called the Császár
product of the GTS’s �(Yα, να) | α ∈ J�.

Remark 3.12. Obviously, Császár’s products of strong GTS’s are finer
than the product GTS’s (they have the same underlying set

∏
α∈J Yα), but

if strongness is omitted, they are in general incomparable, even for |J | = 2.
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Also the (categorical) product of GT’s in general is not a topology, even if
the factors are topological spaces, but the Császár product is the topological
product in this last case.

Categorical products coincide with the Császár product only in some
particular cases. The empty Császár product is (X0,{∅,X0}) with |X0| = 1,
while the empty product is (X0, {∅}) with |X0| = 1. For |J | = 1 both the
Császár product and the product equal the unique factor. If some Yα is
empty, both the Császár product and the product are (∅, {∅}). For |J | ≧ 2
and ∀α ∈ J Yα �= ∅, the equality of the Császár product and the product is
equivalent to that each (Yα, να) is strong, and there is at most one α ∈ J
such that να �= {∅, Yα}.

Corollary 3.13. Sums exist in the category GenTop, and they can
be given as follows. For �(Yα, να) | α ∈ J� the sum is (

∐
α∈J Yα, µ) (together

with the natural injections ια), where µ :=
{ ⋃

α∈J ιαNα | ∀α ∈ J Nα ∈ να
}
.

For �(Yα, dα) | α ∈ J� the sum is
( ∐

α∈J Yα, c
)
, where for Nα ⊂ Yα we have

c
( ⋃

α∈J ιαNα

)
:=

⋃
α∈J ιαdαNα.

Corollary 3.14 (for supratopologies cf. [26], Proposition 4.1 and The-
orem 4.4). Let X be a set. Then all generalized topologies on X form a
complete lattice, with (X,µ) ≦ (X, ν) meaning that the identical map of X
is (underlies) a continuous map (X, ν) → (X,µ). The union, or intersec-
tion of a set of generalized topologies {(X, να) | α ∈ J} is (X,µ), where
µ :=

{ ⋃
α∈J Nα | Nα ∈ να

}
, or µ :=

⋂
α∈J να, respectively. The union, or

intersection of a set of generalized topologies
{
(X, dα) | α ∈ J

}
is (X, c),

where c(A) :=
⋂

α∈J dα(A) for A ⊂ X , or c is the idempotent hull of the clo-

sure operator A �→
[ ⋃

α∈J dα(A)
]
∪A for A ⊂ X , respectively.

In the last formula “union with A” is necessary only for J = ∅.

4. T3.5, normal, compact, Lindelöf GTS’s and the analogue of

Tychonoff’s embedding theorem

Further on, products of GTS’s will be meant in the categorical sense, cf.
Subsection 2.4. Császár’s products will not be used.

Császár [12] introduced a useful GT on the set of real numbers R as
follows. It has as a base

β :=
{
(−∞, s) | s ∈ R

}
∪
{
(t,∞) | t ∈ R

}
.

This is a strong GT.
Henceforth, we assign the notation γ just for this GT. We believe that

this GTS is the appropriate choice for R as a GTS. Indeed, (R, γ) as a
GTS has a similar role as the standard topology on R in general topology.
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Similarly, we use the notation ([0, 1], γ0) for the subspace [0, 1] of R (i.e.,
γ0 = γ|[0, 1], cf. Corollary 3.8).

Remark 4.1 ([3], Remark after Example 2.4). The GTS (R, γ) is T4.
(Namely a simple discussion shows that its closed sets are just the convex
subsets of R which are closed in the usual sense. Then two non-empty dis-
joint closed sets can be included into two disjoint halflines which are open in
the usual sense. The T1 property is evident.) By [12], Proposition 2.5 nor-
mality is closed-hereditary, as well as the T1 property, hence T4 property of
(R, γ) implies the T4 property of ([0, 1], γ0).

Remark 4.2. Let n ≧ 2. We suppose that the appropriate GTS ana-
logue of the n-dimensional real vector space is not the n’th power of (R, γ)
(this depends on some preassigned representation of the n-dimensional real
vector space as a direct sum of 1-dimensional subspaces). We suppose the
proper choice should be the GT with base all open (in the usual sense)
halfspaces. Then the closed sets are exactly the closed (in the usual sense)
convex subsets, and the associated closure operator is the closed (in the usual
sense) convex hull of a subset (cf. e.g., [4], §1, 3, [20], V.2.7 Theorem 10,
[41], Theorem 1.3.7). These have been extensively investigated in geome-
try and functional analysis, cf. e.g. the just cited three books. (For weak
topologies on locally convex topological vector spaces there is an analogue
of this construction: we consider inverse images of (r,∞), where r ∈ R, by
continuous linear functionals, as basic generalized open sets, and then the
generalized closed sets are still the closed (in the usual sense) convex sets,
and the associated closure operator is the closed convex hull of a subset. For
this, including the necessary definitions, cf. [20].)

Observe that this space is not normal for n ≧ 2: the closed sets F1 :=
x1 . . . xn−1-coordinate hyperplane and F2 := {(x1, . . . , xn) | ∀ i ∈ {1, . . . , n}
xi > 0, x1 . . . xn ≧ 1} are disjoint closed subsets which cannot be included
into two disjoint open subsets. In fact, non-empty disjoint open sets M1,M2

are unions of open (in the usual sense) half-spaces {M1,α | α ∈ A} and
{M2,β | β ∈ B}. Then each M1,α and each M2,β , being disjoint, have parallel
boundary hyperplanes. So M1,M2 also are open (in the usual sense) half-
spaces, having parallel boundary hyperplanes. Therefore we may suppose
that |A| = |B| = 1, A = {α0}, B = {β0}, and the boundary hyperplanes of
M1,α0

and M2,β0
(in the usual sense) are parallel to F1. If F1 ⊂ M1,α0

, then
M1,α0

contains a parallel slab containing some usual open ε-neighbourhood
F1,ε of F1, and then M1 ∩M2 ⊃ F1,ε ∩ F2 �= ∅.

By the GTS ([0, 1], γ0) [12] exhibited a generalization of the Urysohn
lemma for normal GTS’s, as follows.

Theorem 4.3 ([12], Theorem 3.3). Let (X,µ) be a normal GTS, and
F,F ′ ⊂ X be disjoint µ-closed sets. Then there exists a continuous function
f : (X,µ) → ([0,1], γ0) such that f(x) = 0 for x ∈ F and f(x) = 1 for x ∈ F ′.
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By the above discussions we are able to define and investigate T3.5 spaces.

Definition 4.4. A GTS (X,µ) is completely regular if for each x ∈ X
and each µ-closed set F of X not containing x, there is a continuous func-
tion f : (X,µ) → ([0,1], γ0) such that f(x) = 0 and f(F ) ⊂ {1}. We say that
(X,µ) is T3.5 (or Tychonoff ) if it is a completely regular T1 space.

We will write T3.5 spaces rather than Tychonoff spaces. In Definition 4.4
we can write f(F ) = {1} if we require F �= ∅, which we may suppose. (For
F = ∅ (X,µ) is strong, and then we can take the identically 0 function to
([0,1], γ0), which is now continuous.) In particular, T3.5 is equivalent to com-
pletely regular T0, since by Subsection 2.6, a regular T0 space is T1. Clearly,
every T3.5, or completely regular space is a T3, or regular space (cf. Subsec-
tion 2.6), moreover, by Theorem 4.3, every T4 space is a T3.5 space. Also, as
in the case of regularity (cf. Subsection 2.6), a GTS of the form (X, {∅}) is
vacuously completely regular, but complete regularity of a GTS (X,µ) with
µ �= {∅} implies its regularity, and hence its strongness (cf. Subsection 2.6).

We are going to exhibit a generalized version of Tychonoff’s embedding
theorem to obtain a necessary and sufficient condition for a GTS to be a
T3.5 space.

Example 4.5. Consider the GTS ([0, 1], γ0). Then

γ0 =
{
∅, [0, 1]

}
∪
{
[0, p) | p ∈ (0, 1]

}

∪
{
(q, 1] | q ∈ [0, 1)

}
∪
{
[0, r) ∪ (s, 1] | r, s ∈ (0, 1), r ≦ s

}

By Remark 4.1 ([0, 1], γ0) is T4, hence it is a T3.5 GTS as well.

Definition 4.6. A source �fα : X → Yα | α ∈ J� in GenTop, Set is
point-separating (also called monosource) if for x1, x2 ∈ X distinct there is
an α ∈ J such that fα(x1) �= fα(x2).

Proposition 4.7 (for supratopologies, for T2 for subspaces cf. [29],
Section 3, Observation 1, and for regularity cf. Theorem 4.4). Let �fα : X
→ U(Yα, να) = Yα | α ∈ J� be a source in Set.

(1) If each (Yα, να) is regular or completely regular, then also the initial
(weak) GTS structure on X defined by this source is regular or completely
regular.

(2) If each (Y, να) is T0, T1, T2, T3 or T3.5, and still �fα | α ∈ J� is point-
separating, then also the initial (weak) GTS structure on X defined by this
source is T0, T1, T2, T3 or T3.5. In particular, subspaces and products of T0,
T1, T2, regular, T3, completely regular or T3.5 GTS’s are T0, T1, T2, regular,
T3, completely regular or T3.5.

Proof. In case (1) we give the proof for complete regularity, and in case
(2) for T1. All other proofs are analogous.
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We prove (1) for complete regularity. Suppose we have a source �ϕα:
X → U(Yα, να) = Y | α ∈ J� in Set, with all (Yα, να) completely regular.
By Proposition 3.2 the weak structure w.r.t. this source is the GT on X
having as base

⋃
α∈J ϕ

−1
α (να). Therefore it suffices to prove that for x ∈ X ,

x ∈ N := ϕ−1
α (Nα), Nα ∈ να, α ∈ J and F := X \N there is a continuous

function h : (X,µ) → ([0, 1], γ0) such that h(x) = 0 and h(F ) ⊂ {1}, i.e.,
h−1[0, 1) ⊂ N .

Observe that ϕα(x) ∈ Nα. We have that ϕα becomes (underlies) a con-
tinuous map fα : (X,µ) → (Yα, να) in GenTop. By complete regularity of
(Yα, να) there is a continuous function gα : (Yα, να) → ([0, 1], γ0) such that
gα (fα(x)) = 0 and g−1

α [0, 1) ⊂ Nα. Then we define h := gα ◦ fα which satis-
fies the claimed properties.

We prove (2) for T1. Suppose that we have a source like above, which
is additionally point-separating. We use the notation fα like above. Let
x1 �= x2 be inX . Then there exists an index α ∈ J such that fα(x1) �= fα(x2).
Then by the T1 property of Yα there is some open set Nα in (Yα, να) such
that fα(x1) ∈ Nα �∋ fα(x2). Then x1 ∈ ϕ−1

α Nα �∋ x2, and by continuity of fα
we have f−1

α Nα ∈ µ, proving the claimed T1 property of (X,µ). �

Corollary 4.8. The GTS on the n-dimensional real vector space in
Remark 4.2 is T3.5.

Proof. This GTS is the weak structure w.r.t. all non-0 linear function-
als, as functions to the GTS (R, γ). �

Now, we are ready to prove the following variant of Tychonoff’s embed-
ding theorem that characterizes T3.5 GTS’s. As for topological spaces, a map
f : (X,µ) → (Y, ν) in GenTop is dense, if Z := f(X) is dense in (Y, ν), i.e.,
if the closure of Z in (Y, ν) equals Y .

We begin with the analogue of the embedding lemma in topology. We
call f : (X,µ) → (Y, ν) in GenTop open, if f(µ) ⊂ ν.

Lemma 4.9. Let (X,µ) be a GTS, and let us have a point-separating
source (monosource) �fα : (X,µ) → (Yα, να) | α ∈ J� in GenTop. Suppose
that for any x ∈ M ∈ µ there exists an α ∈ J and fα(x) ∈ Nα ∈ να such that
(x ∈) f−1

α (Nα) ⊂ M . Then the mapping f : (X,µ) →
∏

α∈J(Yα, να) defined
by f(x) := �fα(x) | α ∈ J� satisfies that f is a homeomorphism to its image( ∏

α∈J (Yα, να)
)
|f(X).

Proof. The proof is analogous to the case of topological spaces. Recall
that

⋃
α∈J π

−1
α (να) is a base for

∏
α∈J (Yα, να) (where the πα’s are the natural

projections). Also, by hypothesis, f is injective.
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The hypothesis means that
{
f−1
α (Nα) | α ∈ J , Nα ∈ να

}
is a base of µ.

We factorize f : (X,µ) →
∏

α∈J(Yα, να) across the image f(X) as

(X,µ)
F
→

( ∏

α∈J

(Yα, να)

)∣∣f(X) →֒
∏

α∈J

(Yα, να).

We are going to show that F is open.
It suffices to show that for all α ∈ J , and for all Nα ∈ να we have that

ff−1
α (Nα) is open in

( ∏
α∈J(Yα, να)

)
|f(X). We have evidently

ff−1
α (Nα) = �fβ | β ∈ J�f−1

α (Nα) ⊂ f(X) ∩ π−1
α (Nα).

Next we show the converse inclusion. Let f(x) ∈ f(X) ∩ π−1
α (Nα). Then

fα(x) = πα�fβ | β ∈ J�(x) = παf(x) ∈ Nα, hence x ∈ f−1
α (Nα), and f(x) ∈

ff−1
α (Nα). This shows the converse inclusion, hence ff−1

α (Nα) = f(X) ∩
π−1
α (Nα) is a basic open set in

( ∏
α∈J (Yα, να)

)
|f(X).

Thus F : (X,µ) →
( ∏

α∈J(Yα, να)
)
|f(X) is open. Thus F is continuous,

open and bijective, hence is a homeomorphism. �

Definition 4.10. For (X,µ) a GTS, we define its T0-reflection as fol-
lows. We define x, y ∈ X equivalent, written x ≡ y, by ∀M ∈ µ (x ∈ M
⇐⇒ y ∈ M). This is an equivalence relation, and we let Y be the quotient
of X w.r.t. this equivalence relation. Hence we have an onto map q : X → Y ,
where q(x) is the equivalence class of x. The quotient space structure on Y
(cf. Corollary 3.9), say, (Y, ν), is the T0-reflection of (X,µ). Then (Y, ν)
is T0.

Proposition 4.11. (1) Definition 4.10 is correct. Also, (X,µ) is the ini-
tial (weak) structure associated to the one-element source Uq : X → U(X,µ)
in Set. Moreover, the map q : (X,µ) → (Y, ν) has the following universality
property. If (Z, ̺) is a T0 GTS, and f : (X,µ) → (Z, ̺) is continuous, then
there exists a unique continuous h : (Y, ν) → (Z, ̺), such that hq = f .

(2) With the above notations, we have the following equivalences: (X,µ)
is regular (completely regular) ⇐⇒ (Y, ν) is regular (completely regular)
⇐⇒ (Y, ν) is T3 (T3.5).

Proof. (1) For x1, x2, x3 ∈ X , with x1 ≡ x2 ≡ x3 we have, for each
M ∈ µ, that x1 ∈ M =⇒ x2 ∈ M =⇒ x3 ∈ M . The converse implication is
proved in the same way, hence x1 ≡ x3.

The statement about the initial structure is evident.
Let f : (X,µ) → (Z, ̺), where (Z, ̺) is T0. Then the equivalence re-

lation on (Z, ̺) is the finest one (i.e., each equivalence class is a single-
ton). Then for z1 �= z2 we have that f−1(z1), f

−1(z2) ⊂ X contain no x1, x2
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such that x1 ≡ x2. Therefore the equivalence relation on (X,µ) (that cor-
responds to the partition {q−1(y) | y ∈ Y }) is finer than the equivalence re-
lation corresponding to the partition {f−1(z) | z ∈ Z}. Let C ∈ ̺. Then
f−1(C) ∈ µ is a union of some sets f−1(z) with z ∈ Z, hence is a union
of some equivalence classes associated to µ. Therefore f : (X,µ) → (Z, ̺)

factors as (X,µ)
q
→ (Y, ν)

h
→ (Z, ̺). Unicity of such an h follows since q is

onto.
(2) The first equivalences follow from the definition of (Y, ν). The sec-

ond equivalences follow since (Y, ν) is T0, which by regularity imply T1, and
hence T3 (T3.5). �

Theorem 4.12. A GTS (X,µ) is T3.5 (completely regular) if and only
if it is homeomorphic to a subspace Y of a power of the GTS ([0, 1], γ0) (has
the weak structure w.r.t. a source ϕ : X → U([0, 1], γ0)

J = [0, 1]J in Set —
consisting of a single map — for some J). For |X| ≧ 2 (for µ �⊂ {∅,X}) we
may even suppose that Y is dense (ϕ is dense).

Proof. 1. We begin with the T3.5 property. Necessity is a direct con-
sequence of Proposition 4.7(2), because ([0, 1], γ0) is a T3.5 space.

We turn to sufficiency. The space (∅, {∅}) is a subspace of any power
of ([0, 1], γ0). For |X| = 1, (X, {∅}) ∼= ([0, 1], γ0)

0 (cf. Subsection 2.4), and
(X, {∅,X}) is a subspace of ([0, 1], γ0). So we may suppose |X| ≧ 2, that by
T1 implies strongness and µ �⊂ {∅,X}.

Put J := {(x,M) | x ∈ M ∈ µ}. By µ �= {∅} we have |J | ≧ 1. Since X
is a completely regular space therefore for every α = (x,M) ∈ J there ex-
ists a continuous function fα : (X,µ) → ([0, 1], γ0) such that fα(x) = 0 and
fα(X \M) ⊂ {1}. Then for M �= X we have fα(X \M) = {1}, and for
M = X by strongness of (X,µ) we can choose for fα the constant 0 func-
tion. Now we define f : (X,µ) → ([0, 1], γ0)

J by f(x) := �fα(x)) | α ∈ J�. If
x, y ∈ X and x �= y, then by the T1 property of (X,µ), {y} is a µ-closed
set not containing x — therefore, there is α ∈ J such that fα(x) = 0 and
fα(y) = 1. Hence, in presence of the T1 property of (X,µ), �fα | α ∈ J� is
point-separating.

Applying Lemma 4.9 we obtain that the map f is a homeomorphism to
its image (Y, ν) := ([0, 1], γ0)

J |f(X).
Now we prove the addition about denseness. If |X| ≧ 2 and we have T1,

then µ �⊂ {∅,X}, and |J | ≧ 1, and (Y, ν) is a subspace of ([0, 1], γ0)
J . Then

(Y, ν) is a subspace of
∏

α∈J παY . We distinguish the cases whether M = X
or M �= X . For M = X we have that παY = ({0},{∅,{0}}). All such factors
have product (up to isomorphism) this same space ({0}, {∅, {0}}), and we
may omit all such factors. For M �= X we have that παY ⊃ {0, 1}. Hence
cγ0

παY = [0, 1], for all non-omitted factors, which factors correspond to a
set J ′ (⊂ J), of cardinality at least 1 (by T1 and |X| ≧ 2). Then a homeo-
morphic copy (Y ′, ν ′) of (Y, ν) is contained in the product ([0, 1], γ0)

J ′

of
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the non-omitted factors — namely, (Y ′, ν ′) := ([0, 1], γ0)
J ′

|�fα | α ∈ J ′�(X)
— whose product with ({0}, {∅, {0}}) is, up to isomorphism, (Y, ν). Since
for all α ∈ J ′ we have cγ0

παY = [0,1], therefore by Corollary 3.10 the closure

of Y ′ in ([0, 1], γ0)
J ′

is [0, 1]J
′

, i.e., Y ′ is dense in ([0, 1], γ0)
J ′

.
2. We turn to the complete regularity. Spaces of the form (X, {∅}) and

(for X �= ∅) (X,{∅,X}) are completely regular, and have the weak structures
w.r.t. the sources consisting of the single map to ([0, 1], γ0)

0 ∼= ({0}, {∅}),
and the identically 0 map to ([0,1], γ0), respectively. Hence we may suppose
µ �⊂ {∅,X}, when the T0-reflection of (X,µ) has at least two points, and
when the functions fα : (X,µ) → ([0,1], γ0) for M �∈ {∅,X} satisfy fα(x) = 0
and fα(X \M) = {1}. Hence J �= ∅, and even J ′ �= ∅ from part 1 of this
proof.

Necessity follows, since for a source consisting of a single map ϕ:
X → U(([0, 1], γ0)

J) = [0,1]J we have that ([0,1], γ0)
J |ϕ(X) is T3.5 by Propo-

sition 4.7(2). Then the initial lift (weak structure) for this source ϕ : X →

U(([0,1], γ0)
J) is the same as that for the sourceX

q
→ϕ(X) (→֒ U(([0,1], γ0)

J),
where (ϕ(X), γJ0 |ϕ(X)) is the T0-reflection of (X,µ), and q from Defini-
tion 4.10 pointwise coincides with ϕ. By Proposition 4.11(2), the T3.5 prop-
erty of

(
ϕ(X), γJ0 |ϕ(X)

)
implies the complete regularity of (X,µ).

For sufficiency, let (X,µ) be completely regular, and let (Y, ν) be its
T0-reflection (with an onto map q : X → Y from Definition 4.10), which is
T3.5 by Proposition 4.11(2), hence is a subspace of some power ([0, 1], γ0))

J

by part 1 of this proof. Let i: (Y, ν) →֒ ([0,1], γ0)
J be the inclusion. Then, by

Proposition 4.11(1), (X,µ) has the weak structure for the source consisting
of the single map iq : X → U(([0, 1], γ0)

J). �

It is interesting to observe that one can completely describe the con-
tinuous maps of (R, γ), or of ([0, 1], γ0), to itself. We do this in greater
generality. Recall that for an ordered set (X,≦) the order topology has as
subbase

{
{x ∈ X | x < a} | a ∈ X

}
∪
{
{x ∈ X | x > b} | b ∈ X

}
.

Definition 4.13. Let (X,≦) be an ordered set. Its order GT has as
base

{
{x ∈ X | x < a} | a ∈ X

}
∪
{
{x ∈ X | x > b} | b ∈ X

}
. We will write

these sets as (−∞, a) and (b,∞). Analogously we use the notations (−∞, a]
and [b,∞) for {x ∈ X | x ≦ a} and {x ∈ X | x ≧ b}, respectively. (Observe
that ±∞ are just symbols and not elements of X , even if X happens to have
a minimal or a maximal element. Also, we will use the same symbols for any
other ordered space Y as well, but this will not cause misunderstanding.)

Remark 4.14. Letting (X̃,≦) be the Dedekind completion of (X,≦),
the open sets of the order GT of X are exactly of the form ∅, or X (this only
for |X| �= 1), {x ∈ X | x < x̃1}, or {x ∈ X | x > x̃2}, or {x ∈ X | x < x̃1 or

x > x̃2}, where x̃1, x̃2 ∈ X̃ with x̃1 ≦ x̃2, but excluding x̃1 = x̃2 ∈ X̃ \X .
Thus, the closed sets are of the form X , or ∅ (this only for |X| �= 1),
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or {x ∈ X | x ≦ x̃1} or {x ∈ X | x ≧ x̃2}, or {x ∈ X | x̃1 ≦ x ≦ x̃2}, where

x̃1, x̃2 ∈ X̃ with x̃1 ≦ x̃2, but excluding x̃1 = x̃2 ∈ X̃ \X . I.e., for |X| �= 1,
the closed sets in X are exactly the convex subsets (i.e., which contain with
any two of their points the whole interval between them) which are closed
in the (finer) order topology of (X,≦).

For X = ∅ (with the void ordering) we have that the order GT is (∅,{∅}),
that is strong. For |X| = 1 we have that the order GT is (X, {∅}), that is not
strong. For |X| ≧ 2 the order GT is strong (since it is T1, cf. Subsection 2.6).

As a generalization of our Remark 4.1, [3] Remark after Example 2.4
claimed that the order GT associated to any ordered set (X,≦) is T4. (A de-
tailed simple proof can be given for |X| ≦ 1 from the preceding paragraph,
while for |X| ≧ 2 by using the case distinctions from the second preceding
paragraph.)

Proposition 4.15. Let (X,≦) and (Y,≦) be two ordered sets, with or-
der GT’s µ and ν. Then the continuous functions f : (X,µ) → (Y, ν) are
the following ones. For |X| = 1 < |Y | there is no continuous map f : (X,µ)
→ (Y, ν). Else the continuous maps are the (non-strictly) monotonically
increasing or monotonically decreasing maps, which are continuous between
the respective order topologies.

Proof. First we settle the case min{|X|, |Y |} = 0. For Y = ∅ there ex-
ists an f : (X,µ)→ (Y, ν) only ifX = ∅. ForX = ∅ we have (X,µ) = (∅,{∅}),
hence to any (Y, ν) there is exactly one set map X → Y , that is continu-
ous, and also is monotonous and continuous between the respective order
topologies.

For min{|X|, |Y |} = 1 we may have |X| = |Y | = 1 and then the unique
set map X → Y is continuous, and also is monotonous and continuous be-
tween the respective order topologies. For |X| = 1 < |Y | we have that (Y, ν)
is strong, while X is not strong, hence there is no continuous map f : (X,µ)
→ (Y, ν). For |X| > 1 = |Y | there is a unique set map X → Y , that is contin-
uous, and also is monotonous and continuous between the respective order
topologies.

From now on let |X|, |Y | ≧ 2. Suppose that f is not monotonous. Then
there are a, b, c, d ∈ X such that

(4.1) a < b and f(a) < f(b), and c < d and f(c) > f(d) .

Let {a, b, c, d} = {x1, . . . , xk}, where xi < xi+1. By (4.1) 3 ≦ k ≦ 4. If for
some i we have f(xi) = f(xi+1) then we delete from {x1, . . . , xk} the point
xi+1. Thus we obtain x′1, . . . , x

′
l, where by (4.1) x′i < x′i+1 and 3 ≦ l ≦ 4.

Now for each i we have f(xi) < f(xi+1) or f(xi) > f(xi+1). By (4.1) there
is some i such that f(xi) > f(xi+1) < f(xi+2) or f(xi) < f(xi+1) > f(xi+2).
We may suppose that we have the first case (else we consider the converse
ordering on Y ).
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By Remark 4.14 the closed sets in X and Y are exactly the con-
vex subsets which are closed in the (finer) order topology. Then the set
f−1

(
[min{f(xi), f(xi+2)},∞)

)
contains xi and xi+2, but does not contain

xi+1. Thus the inverse image of a closed set is not convex, hence is not
closed, a contradiction.

So f is monotonous. We may suppose that it is monotonically increas-
ing (else we take the converse ordering on Y ). Then it suffices to prove that
in the sense of topology, f is continuous from the left at any point x ∈ X .
(Namely then a similar reasoning shows that in the sense of topology, f is
also continuous from the right, hence is, in the sense of topology, continu-
ous.) Observe that in the sense of topology f is continuous from the left at
x ∈ X if x has an immediate predecessor in X . Therefore we suppose that
(−∞, x) has no largest element (in particular, x is not a minimal element
of X).

Suppose the contrary, namely that for some x ∈ X and some X ∋ x′ < x,
we have f((x′, x)) ⊂ (−∞, y], for some Y ∋ y < f(x), hence also f((−∞, x))
⊂ (−∞, y], for some Y ∋ y < f(x). Then (y,∞) is a neighbourhood of f(x)
in the sense of GT’s, such that even no topological neighbourhood N of x
satisfies f(N ∩ (−∞, x)) ⊂ (y,∞), hence no such N satisfies f(N) ⊂ (y,∞),
although (y,∞) is also a topological neighbourhood of f(x).

Conversely, continuity of a (non-strictly) monotonically increasing or de-
creasing function f between the order topologies of (X,≦) and (Y,≦) implies
its continuity between the order GT’s of (X,≦) and (Y,≦) (recall |X|, |Y |
≧ 2). It is sufficient to prove this for f monotonically increasing. It is
sufficient to show that the inverse image by f of a basic open set in the
order GT of (Y,≦) is open in the order GT of (X,≦). It is sufficient to
prove this for a basic open set of the form (−∞, y) ⊂ Y . By continuity of f
in the topological sense we have that f−1(−∞, y) is open in the topology
of (X,≦). Therefore it is the union of non-empty basic open sets in the
sense of topology, say f−1(−∞, y) =

⋃
α∈J (aα, bα). Also, by the monotoni-

cally increasing property of f , we have that f−1(−∞, y) is downward closed
(i.e., x′ < x ∈ f−1(−∞, y) implies x′ ∈ f−1(−∞, y)). Therefore we have also
f−1(−∞, y) =

⋃
α∈J(−∞, bα). Thus f−1(−∞, y) is a union of open sets in

the order GT of (X,≦), hence it is open in the order GT of (X,≦) as well.
�

For topological spaces X , Y where Y is T2, and continuous maps
f, g : X → Y , if f , g coincide on a dense subset of X , then they are equal.
For GTS’s this is false.

Example 4.16. Let X = Y = ([0, 1], γ0). Let f, g : [0, 1] → [0, 1] be any
two different strictly monotonically increasing maps in GenTop, continuous
in the topological sense, with f(0) = g(0) = 0 and f(1) = g(1) = 1. Then
f , g are even homeomorphisms of ([0, 1], γ0) in GenTop, coinciding on the

Acta Mathematica Hungarica

WEAK AND STRONG STRUCTURES 25



Acta Mathematica Hungarica 150, 2016

26 E. MAKAI, JR., E. PEYGHAN and B. SAMADI

dense subset {0, 1} (cf. Remark 4.14), but f �= g. Even, we can choose f
and g so, that {x ∈ [0, 1] | f(x) = g(x)} = {0, 1}.

As is well known ([22], Example 2.3.12 and Theorem 5.2.8, Hist. and
Bibl. Notes to Section 5.2) T4 is not even finitely productive for topological
spaces. Also, all powers of some topological space X are T4 if and only if X
is compact T2 ([36]). However, for GTS’s we have

Proposition 4.17. Let �(Xα, µα) | α ∈ J} be an indexed set of normal
(or T4) GTS’s. Then their product is also normal (or T4).

Proof. Since T1 is productive (cf. Proposition 4.7), we investigate the
case of normal spaces only.

First we settle the case of the empty product. By the Subsection 2.4,
this is the GTS (X0, {∅}), where |X0| = 1, which is normal.

Now we suppose J �= ∅. Let F1, F2 be disjoint closed sets in (X,µ) :=∏
α∈J(Xα, µα). By Corollary 3.10 we have Fi =

∏
α∈J Fi,α, where Fi,α ⊂ Xα

is µα-closed. If for each α ∈ J we have F1,α ∩ F2,α �= ∅, then F1 ∩ F2

�= ∅. Hence for some α0 ∈ J we have F1,α0
∩ F2,α0

= ∅. Then by normal-
ity of (Xα0

, µα0
) there are disjoint µα0

-open sets M1,α0
, M2,α0

, such that
Fi,α0

⊂ Mi,α0
for i = 1, 2. Then Fi ⊂ Mi,α0

×
∏

α∈J\{α0}
Xα, for i = 1, 2.

These last sets are disjoint µ-open sets in X . �

We say that a GTS (X,µ) is compact (cf. [29], Section 3, Definition 2),
or Lindelöf if any open cover of X has a finite, or at most countably infinite
subcover of X , respectively. This is the exact analogue of compactness and
the Lindelöf property for topological spaces. In particular, if X �∈ µ, then X
is compact. More generally, for κ an infinite cardinal, we say that a GTS
(X,µ) is κ-compact if any open cover of (X,µ) has an (open) subcover of X ,
of cardinality less than κ. This is the analogue of κ-compactness for topo-
logical spaces, cf. [25], p. 6. For κ = ℵ0 this is compactness, for κ = ℵ1 this
is the Lindelöf property.

By Tychonoff’s theorem compactness is productive for topological spaces
(i.e., products of compact spaces are compact), but Lindelöfness is not even
finitely productive, cf. [22], 3.8.15. For GTS’s the situation is very different,
as shown by the next Proposition.

Proposition 4.18. For any infinite cardinal κ, κ-compactness is closed-
hereditary and productive for GTS’s, and is also inherited by surjective im-
ages for GTS’s.

Proof. Closed-hereditariness and inheriting by surjective images (for
compactness cf. [29], Section 3, Propositions 5 and 6) are proved exactly as
for topological spaces.

We turn to products. Let �(Xα, µα) | α ∈ J� be an indexed set of
κ-compact GTS’s, with product (X,µ). We may suppose that each Xα
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is non-empty. Let G = {Gβ | β ∈ B} be an open cover of (X,µ). By Corol-
lary 3.10 we have for each β ∈ B that

Gβ =
⋃

α∈J

π−1
α (Mα,β) ,

where Mα,β ∈ να. Also by Corollary 3.10 we have that an open base of (X,µ)
is

⋃
{π−1

α (να) | α ∈ J}. We define the set system H on X as follows:

H :=
{
π−1
α (Mα,β) | α ∈ J, β ∈ B

}
.

Then H is a cover of X since ∪H = ∪G and G is a cover of X , and consists of
open sets in (X,µ) since each element of H belongs to the above mentioned
base of (X,µ).

We distinguish two cases.
(i) Either for each α ∈ J we have

⋃
{Mα,β | β ∈ B} �= Xα, or

(ii) for some α0 ∈ J we have
⋃
{Mα0,β | β ∈ B} = Xα0

.
In case (i) we choose for each α ∈ J a point xα ∈ Xα not contained by the

union in (i). Then the point �xα | α ∈ J� is not covered by H, a contradiction.
In case (ii) the union in (ii) is an open cover of Xα0

, hence by κ-compactness
of Xα0

it has an open subcover {Mα0,β | β ∈ B′} of Xα0
with |B′| < κ. Then

{π−1
α0

(Mα0,β) | β ∈ B′} is an open cover of (X,µ), of cardinality less than κ.

Now recall that for each β ∈ B′ ⊂ B we have π−1
α0

(Mα0,β) ⊂ Gβ . Therefore
{Gβ | β ∈ B′} is a subset of G, which is also an open cover of X , and has
cardinality less than κ. �

A topological space X is T3.5 if and only if it is a subspace or a dense
subspace of some (compact) T4 space. Namely, one can consider the Stone–
Čech compactification of X that is compact T2 hence T4. It is interesting
that an analogue of this statement holds also for GTS’s, although with a
completely different proof.

Proposition 4.19. A GTS (X,µ) is T3.5 (completely regular) if and
only if it is homeomorphic to a subspace, or equivalently to a dense subspace
of a T4 GTS, which can be supposed to be also compact (has the weak struc-
ture w.r.t. a map, or equivalently w.r.t. a dense map from UX to a T4 GTS,
which can be supposed to be also compact).

Proof. 1. We begin with the “if” part. T4 implies the hereditary
property T3.5 (cf. Proposition 4.7), which implies complete regularity, and
complete regularity is inherited by initial (weak) structures, in particular for
sources consisting of one map, cf. Proposition 4.7. Hence all subspaces of T4

spaces are T3.5, and initial (weak) structures for all sources consisting of a
single map ϕ : X → U(Y, ν) = Y with Y T4 are completely regular.

2. Conversely, for the “only if” part, we begin with the trivial cases
|X| ≦ 1, i.e., with (∅,{∅}), and with (X,{∅}) and (X, {∅,X}) where |X| = 1.
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Each of these three spaces are finite hence compact, are T1 and normal (the
second space has no disjoint closed sets, and the other ones are discrete, i.e.,
of the form (X,P (X)), which are normal). Then they are dense subspaces
of themselves, which proves for them the “only if” part of the theorem.

Now let (X,µ) be T3.5 with |X| ≧ 2. By Theorem 4.12, (X,µ) is home-
omorphic to a dense subspace of some power of ([0, 1], γ0). By Remark 4.1,
([0, 1], γ0) is T4, and then by Proposition 4.17 each power of ([0, 1], γ0) is T4.
Since ([0, 1], γ0) is coarser than the topological [0, 1] space, it is compact as
well, hence all its powers are compact as well by Proposition 4.18. This ends
the proof of the “only if” part for T3.5 GTS’s.

3. We turn to complete regularity, to the “only if” part. Let (X,µ) be
completely regular, let (Y, ν) be its T0-reflection, with canonical quotient
map q : (X,µ) → (Y, ν) from Definition 4.10. Then by Proposition 4.11(2),
(Y, ν) is T3.5, hence by part 2 of this proof it admits a dense embedding
i : (Y, ν) → (Z, ̺) to some compact T4 GTS (Z, ̺). Then the source consist-
ing of the single map U(iq) : U(X,µ) = X → U(Z, ̺) has as initial lift (weak
structure) (X,µ), and iq : (X,µ) → (Z, ̺) is a dense map. This ends the
proof of the “only if” part for completely regular GTS’s. �

As known, a T2 topological space of density κ has cardinality at most
exp(exp(κ)), cf. [25], p. 13. For GTS’s the situation is completely different.

Example 4.20. For GTS’s we may have a two-point dense subset in
a compact T4 GTS of arbitrarily large cardinality. Namely, in ([0, 1], γ0)

κ,
which is compact by Proposition 4.18 and is T4 by Proposition 4.17, the two
points having all coordinates 0, or all coordinates 1, form a dense subspace
in ([0, 1], γ0)

κ (cf. Corollary 3.10).

5. Subspaces and sums of GTS’s

We recall Corollary 3.13 about the construction of the sum of an indexed
set �(Xα, µα) | α ∈ J� or �(Xα, cα) | α ∈ J� of GTS’s.

As mentioned in Subsection 2.5, a common way to produce GT’s is given
by the GT’s µ(γ) (see [7] and also our Subsection 2.5), where X is a set and
γ ∈ Γ(X).

Let γα : Xα → Xα be monotonous. We define

γ : P

( ∐

α∈J

Xα

)
→ P

( ∐

α∈J

Xα

)

by

γ(A) :=
∐

α∈J

γα(A ∩Xα) .

Then γ ∈ Γ(
∐

α∈J Xα).
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Now we can consider two GT’s on the same set X :=
∐

α∈J Xα. The
first one is µ(γ) and the second one is

∐
α∈J µ(γα) (notations cf. in Subsec-

tion 2.5).
Similarly, for γ : P (X)→ P (X) monotonous, andX0 ⊂ X , for γ0 : P (X0)

→ P (X0) defined by

γ0A0 := (γA0) ∩X0 ,

we have γ0 ∈ Γ(X0). Then we have two GT’s on X0, the first one is µ(γ0)
and the second one is µ(γ)|X0.

We are going to compare these two pairs of GT’s by the following propo-
sition. We recall that γ : P (X) → P (X) is completely additive if for any
{Aα | α ∈ J} ⊂ P (X) we have γ

( ⋃
α∈J Aα

)
=

⋃
α∈J γ(Aα).

Proposition 5.1. (1) Let �Xα | α ∈ J� be an indexed set of sets and
γα : P (Xα) → P (Xα), for α ∈ J be monotonous. Then, with the notations
introduced before this Proposition,

( ∐

α∈J

Xα, µ(γ)

)
=

∐

α∈J

(Xα, µ(γα)) .

(2) Let X be a set and γ : P (X)→ P (X) be monotonous, and let X0 ⊂ X .
Then, with the notations introduced before this Proposition,

µ(γ0) ⊂ µ(γ)|X0 .

The converse inclusion is false even if γ is completely additive and γ(P (X))
= {∅,X}.

Proof. 1. As in Subsection 2.4, we suppose that the sets Xα, for α ∈ J ,
form a partition of

∐
α∈J Xα. Let A ⊂

∐
α∈J Xα. We write Aα := A ∩Xα;

hence A =
∐

α∈J Aα. We have A ⊂ γA ⇐⇒ ∀α ∈ J Aα ⊂ γαAα. Hence
µ(γ) =

∐
α∈J µ(γα).

2. First we show µ(γ0) ⊂ µ(γ)|X0. We have for A0 ⊂ X0 that A0 ∈ µ(γ0)
⇐⇒ A0 ⊂ γ0A0 ⇐⇒ A0 ⊂ γ(A0) ∩X0 ⇐⇒ A0 ⊂ γ(A0) ⇐⇒ A0 ∈ µ(γ).
Then A0 ∈ µ(γ0) ⇐⇒ A0 ∈ µ(γ) =⇒ A0 = A0 ∩X0 ∈ µ(γ)|X0, therefore
µ(γ0) ⊂ µ(γ)|X0.

About the converse inclusion we give the following counterexample. Let
|X| ≧ 2, X0 ⊂ X and X0 �∈ {∅,X}. Let γ ∈ Γ(X) be defined as follows. For
A ⊂ X0 we have γ(A) = ∅, for A ⊂ X and A �⊂ X0 we have γ(A) = X . Thus
γ is completely additive and γ (P (X)) = {∅,X}. Then by X0 �= X we have
µ(γ) = {A ⊂ X | A ⊂ γA} = {∅} ∪ {A ⊂ X | A �⊂ X0}, hence

µ(γ)|X0 = P (X0) .
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On the other hand

µ(γ0) =
�
A0 ⊂ X0 | A0 ⊂ γ0A0

�
=

�
A0 ⊂ X0 | A0 ⊂ γ(A0) ∩X0

�

=
�
A0 ⊂ X0 | A0 ⊂ γ(A0)

�
=

�
∅
�
.

Therefore, by X0 �= ∅ we have

µ(γ0) = {∅} �⊃ P (X0) = µ(γ)|X0 . �

As mentioned in Subsection 2.5, another common way to produce GT’s
is given by the GT’s κ(µ, k) (see [13] and also our Subsection 2.5), where
(X,µ) is a GTS and k : µ → P (X) is an enlargement on (X,µ).

Now, let �(Xα, µα) | α ∈ J� be an indexed set of GTS’s and kα : µα →
P (Xα) be an enlargement on Xα, for α ∈ J . Let

(5.1)





(X,µ) :=
�

α∈J

(Xα, µα) and

� �

α∈J

Xα,
�

α∈J

κ(µα, kα)

�
:=

�

α∈J

�
Xα, κ(µα, kα)

�
.

We can ask if there is an enlargement k on the sum set X :=
�

α∈J Xα, such
that (X,κ(µ, k)) =

�
α∈J(Xα, κ(µα, kα)). Actually, here we will have only

a one-sided inclusion. The converse inclusion is in general false, but the
necessary and sufficient condition for equality will be given.

Similarly, for subspaces (X0, µ0) of (X,µ), one could ask if on (X0, µ0)
there is an enlargement k0 : µ0 → P (X0), such that

(X0, κ(µ0, k0)) = (X,κ(µ, k))|X0.

Actually, here we will have only a one-sided inclusion, and only under some
additional hypotheses. The converse inclusion is false, even under more re-
strictive additional hypotheses.

Proposition 5.2. Let �(Xα, µα) | α ∈ J� be an indexed set of GTS’s
and kα : µα → P (Xα) be an enlargement on (Xα, µα), for α ∈ J . Then
the enlargement k on (X,µ) :=

�
α∈J(Xα, µα) defined for M ∈ µ by kM :=�

α∈J kα(M ∩Xα) satisfies κ(µ, k) ⊂
�

α∈J κ(µα, kα). Here equality holds if
and only if either |{α ∈ J | Xα �= ∅}| ≦ 1 or |{α ∈ J | Xα �= ∅}| ≧ 2 and for
each α ∈ J we have kα∅ = ∅.

Let (X,µ) be a GTS and k : µ → P (X) be an enlargement on (X,µ). Let
X0 ⊂ X . If k is also monotonous and µ is closed under the intersections of
pairs of elements and X0 is µ-open, then the enlargement k0 on (X0, µ0) de-
fined for M0 ∈ µ0 by k0M0 : = (kM0) ∩X0 satisfies κ(µ, k)|X0 ⊂ κ(µ0, k0).
The converse inclusion is false even for µ a topology, X0 µ-open, and k a
topological closure.
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Proof. 1. We begin with the case of sums. As in Subsection 2.4, we
suppose that the sets Xα for α ∈ J form a partition of

∐
α∈J Xα.

We have kM =
∐

α∈J kα(Mα), where M ∈ µ and Mα := M ∩Xα. Then
M =

∐
α∈J Mα ⊂

∐
α∈J kαMα = kM ⊂ X , thus k is an enlargement on

(X,µ).
Since for Xα = ∅ we have µα = κ(µα, kα) = {∅}, these contribute nothing

to either µ, or to k, or to κ(µ, k), or to
∐

α∈J κ(µα, kα), therefore we may
omit all empty Xα’s simultaneously. Therefore we will suppose that each
Xα is non-empty. If we have at most one non-empty Xα, then evidently∐

α∈J κ(µα, kα) = κ(µ, k). Therefore we suppose that there are at least two
non-empty Xα’s.

First we prove

(5.2) κ(µ, k) ⊂
∐

α∈J

κ(µα, kα) .

Let A ∈ κ(µ, k) ⊂ µ. We write Aα := A ∩Xα ∈ µα. If Aα = ∅, then Aα ∈
κ(µα, kα), so we need to deal only with such α’s, for which Aα �= ∅. Let
xα ∈ Aα ⊂ A. Then there exists an M ∈ µ such that xα ∈ M and kM ⊂
A. Writing Mα := M ∩Aα and Mβ := M ∩Xβ for β ∈ J \ {α}, this means
that xα ∈ Mα ∈ µα and kαMα ⊂ Aα and for β ∈ J \ {α} that Mβ ∈ µβ and
kβMβ ⊂ Aβ . (For β �= α the condition for Aβ is weaker than the condition
for Aα, so we disregard the condition about all β ∈ J \ {α}. Observe that
any β ∈ J \ {α} — with Xβ �= ∅ — can occur in the role of α.) Then we
obtain Aα ∈ κ(µα, kα), that is, (5.2) is proved.

Second we deal with the validity of the inclusion
∐

α∈J

κ(µα, kα) ⊂ κ(µ, k) .

Since
∐

α∈J κ(µα, kα) has as base
⋃

α∈J κ(µα, kα), this inclusion is equivalent
to

⋃

α∈J

κ(µα, kα) ⊂ κ(µ, k), i.e., to ∀α ∈ J κ(µα, kα) ⊂ κ(µ, k) .

Let Aα ∈ κ(µα, kα), i.e.,

(5.3)

{
for each xα ∈ Aα there exists an Mα ∈ µα

such that xα ∈ Mα ⊂ kαMα ⊂ Aα ⊂ Xα.

Then Aα ∈ κ(µ, k) if and only if

(5.4)

{
for each xα ∈ Aα there exists an M ∈ µ

such that xα ∈ M ⊂ kM ⊂ Aα ⊂ Xα.
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Here M ∈ µ and M ⊂ Xα means M =: Mα ∈ µα, hence (5.4) is equivalent
to

(5.5)





for each xα ∈ Aα there exists an M ∈ µ such that

Xα ⊃ Aα ⊃ kM = kMα =
�

β∈J

kβM
α

= (kαM
α)

�� �

β∈J\{α}

kβ∅

�
⊃ Mα = M ∋ xα.

Then kαMα ⊂ Aα is satisfied for Mα := Mα, thus we need to satisfy yet that
for all β ∈ J \ {α} we have for kβ∅ ⊂ Xβ that also kβ∅ ⊂ Xα (cf. (5.5). But
then kβ∅ ⊂ Xα ∩Xβ = ∅, i.e., kβ∅ = ∅. However, this is just the necessary
and sufficient hypothesis for the case |{α ∈ J | Xα �= ∅}| ≧ 2, given in this
Theorem. (Observe that here we have kβ∅ = ∅ only for β ∈ J \ {α}. How-
ever, since now |J | ≧ 2, we change α ∈ J to another element α′ ∈ J , and
then we obtain kα∅ = ∅ as well.)

Conversely, |{α ∈ J | Xα �= ∅}| ≧ 2 and ∀α ∈ J kα∅ = ∅ implies

κ(µα, kα) ⊂ κ(µ, k),

i.e., (5.3) =⇒ (5.5) ⇐⇒ (5.4).
2. We turn to the case of subspaces. We have k0M0 = k(M0) ∩X0 for

M0 ∈ µ0 (thus M0 ⊂ X0). Here k(M0) is defined since M0 is the intersection
of some open set of (X,µ) and X0, hence is µ-open by hypothesis. Then
k0M0 ⊃ M0 ∩X0 = M0, thus k0 is an enlargement on (X0, µ0).

Let A ⊂ X be κ(µ, k)-open, i.e., x ∈ A implies ∃M ∈ µ such that x ∈ M
and kM ⊂ A. Let A0 := A ∩X0. Then for x0 ∈ A0 (⊂ X0) there exists
x0 ∈ M ⊂ A such that kM ⊂ A. Then also

x0 ∈ M ∩X0 ⊂ A ∩X0 and k(M ∩X0) ⊂ kM ⊂ A

by monotony of k. Then also k0(M ∩X0) = k(M ∩X0)∩X0 ⊂ A∩X0 while
M ∩X0 ∈ µ0 by hypothesis. Hence A0 = A ∩X0 is κ(µ0, k0)-open.

About the converse inclusion we give the following counterexample.
LetX := {1/n | n ∈ N}∪{0} andX0 := {1/n | n ∈ N} its open subspace,

with the usual topologies. We define k : P (X) → P (X) as follows: k∅ = ∅,
and for ∅ �= M ⊂ X we define kM := M ∪ {0}. This is a topological closure.

Then for A ⊂ X we have A ∈ κ(µ, k) if and only if

(5.6) x ∈ A =⇒ ∃M ∈ µ such that x ∈ M and kM = M ∪ {0} ⊂ A.

Now we will determine κ(µ, k).
(1) If A = ∅ then A ∈ κ(µ, k).
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(2) If A �= ∅ and 0 �∈ A then supposing (5.6) we have ∃x ∈ A, and then
{0} ⊂ A, which is a contradiction. Hence such an A does not belong to
κ(µ, k).

(3) If A �= ∅ and 0 ∈ A, then x ∈ A can be either 1/n for some n
∈ N, or it can be 0. For x = 1/n (5.6) is satisfied for M := {1/n}, since
0 ∈ A. For x = 0 (5.6) means ∃m ∈ N such that 0 has a neighbour-
hood 0 ∈ {1/m, 1/(m+ 1), . . .} ∪ {0} in X , such that {1/m, 1/(m+ 1), . . .}
∪ {0} ⊂ A. This means that 0 ∈ A and A \ {0} is cofinite in X \ {0} = X0.
That is,
(5.7)
κ(µ, k) = {∅} ∪

{
A ⊂ X | 0 ∈ A and A \ {0} is cofinite in X \ {0} = X0

}
.

Hence

(5.8) κ(µ, k)|X0 is the cofinite topology on X0 .

Turning to X0, we have that µ0 is the discrete topology on X0, and, for
M0 ⊂ X0, we have for M0 = ∅ that k0∅ := k(∅) ∩X0 = ∅, and for M0 �= ∅
we have k0M0 := k(M0) ∩X0 = (M0 ∪ {0}) ∩X0 = M0. Therefore k0 is the
closure associated to the discrete topology on X0. Hence each A0 ⊂ X0

is κ(µ0, k0)-open, since for x0 ∈ A0 we can choose M0 := {x0} and then
x0 ∈ {x0} and k0{x0} = {x0} ⊂ A0. That is, we have

(5.9) κ(µ0, k0) = P (X0) .

By (5.8) and (5.9) we have

κ(µ0, k0) �⊂ κ(µ, k)|X0 . �

Remark 5.3. The construction of the counterexample is a special case
of the θ-modification of a bitopological space (which is itself a special case
of the θ-modification of a bi-GTS, cf. [31] and [16]).
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[7] Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1997), 65–87.

[8] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96

(2002), 351–357.
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