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arrays of random variables in a wide scenario of dependence. In fact, as-
sumptions involving dependent random variables make statistical models be
more suitable (and realistic), which is a stimulus to develop further results
in this direction.

We begin by recovering the notion of extended negative dependence for
triangular arrays of random variables recently introduced in [11]. A tri-
angular array {Xn,k, 1 � k � n, n � 1} of random variables is said to be
row-wise upper extended negatively dependent (row-wise UEND) if for each
n � 1, there exists a positive finite number Mn such that

(1.1) P
(

Xn,1 > x1,Xn,2 > x2, . . . ,Xn,n > xn
)

� Mn

n
∏

k=1

P(Xn,k > xk)

holds for all real numbers x1, . . . , xn. A triangular array {Xn,k, 1 � k � n,
n � 1} of random variables is said to be row-wise lower extended negatively
dependent (row-wise LEND) if for each n � 1, there exists a positive finite
number Mn such that

(1.2) P
(

Xn,1 � x1,Xn,2 � x2, . . . ,Xn,n � xn
)

� Mn

n
∏

k=1

P(Xn,k � xk)

holds for all real numbers x1, . . . , xn (see [11]). A triangular array {Xn,k,
1 � k � n, n � 1} of random variables is said to be row-wise extended nega-
tively dependent (row-wise END) if it is both row-wise UEND and row-wise
LEND. The sequence {Mn, n � 1} in (1.1) and (1.2) is called a dominating
sequence of {Xn,k, 1 � k � n, n � 1}. We emphasize that the above defi-
nition covers, in particular, the concept of widely orthant dependent ran-
dom sequence (see, for instance, [4, p. 116]) taking, indeed Xn,k = ξk and
Mn := max{gU(n), gL(n)} in (1.1) and (1.2) with {ξk, k � 1}, gU(n) and
gL(n) as in [4, Definition 1.1]. Note also that the auxiliary lemmata used in
[17] are no more helpful for random arrays satisfying (1.1) and (1.2), thus
implying their complete reformulation.

Associated to a probability space (Ω,F ,P), we shall consider the space
Lp (p > 0) of all measurable functions X (necessarily random variables) for
which E |X|p < ∞. Throughout, the letter C will denote a positive constant,
which is not necessarily the same one in each appearance; the symbol C(p)
has identical meaning with the additional information that the constant de-
pends on p.

2. Main results

The first main result of this paper states the convergence in mean of or-
der p (1 � p < 2) for triangular arrays of random variables having dependent
structure and prescribed norming constants.
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Abstract. Some convergence results in mean of order p for arrays of row-
wise extended negatively dependent random variables are presented under asymp-
totic integrability conditions. A Rosenthal type inequality for these dependent
structures is also announced playing a central role in our approach to this is-
sue. As consequence, well-known results about convergence in p-mean for random
variables will be extended.

1. Introduction

The convergence in mean of order p has been studied in the last decades
by several authors. In the final sixties, Pyke and Root showed in the classical
paper [13] that, for each 0 < p < 2,

n−1/p
n
∑

k=1

Xk
Lp−→ 0

for every sequence {Xn, n � 1} of independent and identically distributed
random variables satisfying E |X1|p < ∞ (and EX1 = 0 when p � 1). Since
then, many extensions of this result have been performed either relaxing
the assumptions on the random variables or going towards to arrays and
weighted arrays of random variables (see [1,2,8,15–18], among others). Our
purpose in this sequel is to establish the convergence in mean of order p for
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in this direction.

We begin by recovering the notion of extended negative dependence for
triangular arrays of random variables recently introduced in [11]. A tri-
angular array {Xn,k, 1 � k � n, n � 1} of random variables is said to be
row-wise upper extended negatively dependent (row-wise UEND) if for each
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� Mn

n
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k=1

P(Xn,k > xk)
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Xn,1 � x1,Xn,2 � x2, . . . ,Xn,n � xn
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� Mn

n
∏

k=1

P(Xn,k � xk)

holds for all real numbers x1, . . . , xn (see [11]). A triangular array {Xn,k,
1 � k � n, n � 1} of random variables is said to be row-wise extended nega-
tively dependent (row-wise END) if it is both row-wise UEND and row-wise
LEND. The sequence {Mn, n � 1} in (1.1) and (1.2) is called a dominating
sequence of {Xn,k, 1 � k � n, n � 1}. We emphasize that the above defi-
nition covers, in particular, the concept of widely orthant dependent ran-
dom sequence (see, for instance, [4, p. 116]) taking, indeed Xn,k = ξk and
Mn := max{gU(n), gL(n)} in (1.1) and (1.2) with {ξk, k � 1}, gU(n) and
gL(n) as in [4, Definition 1.1]. Note also that the auxiliary lemmata used in
[17] are no more helpful for random arrays satisfying (1.1) and (1.2), thus
implying their complete reformulation.

Associated to a probability space (Ω,F ,P), we shall consider the space
Lp (p > 0) of all measurable functions X (necessarily random variables) for
which E |X|p < ∞. Throughout, the letter C will denote a positive constant,
which is not necessarily the same one in each appearance; the symbol C(p)
has identical meaning with the additional information that the constant de-
pends on p.

2. Main results

The first main result of this paper states the convergence in mean of or-
der p (1 � p < 2) for triangular arrays of random variables having dependent
structure and prescribed norming constants.
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Theorem 1. Let 1 � p < 2 and {Xn,k, 1 � k � n, n � 1} be a trian-
gular array of row-wise END random variables with dominating sequence
{Mn, n � 1}. If {bn} is a sequence of positive constants such that

(a)
n
∑

k=1

∫ εbpn

0
P{|Xn,k|p > t} dt = O

( bpn
1 +Mn

)

as n → ∞ for any ε > 0,

(b)
n
∑

k=1

∫ ∞

εbpn

P{|Xn,k|p > t} dt = o
( bpn
1 +Mn

)

as n → ∞ for any ε > 0

when 1 < p < 2, or
(b′)

n
∑

k=1

∫ ∞

εbn

P{|Xn,k| > t} dt = o
( bn
1 +Mn

)

as n → ∞

and
n
∑

k=1

P{|Xn,k| > εbn} = o(1) as n → ∞ for any ε > 0

whenever p = 1, then

1

bn

n
∑

k=1

(Xn,k − EXn,k)
Lp−→ 0.

The p-mean convergence holds true for 0 < p < 1 under no assumptions
of dependence (or independence) for the random variables.

Theorem 2. Let 0 < p < 1 and {Xn,k, 1 � k � n, n � 1} be a trian-
gular array of random variables. If {bn} is a sequence of positive constants
satisfying

(i)
n
∑

k=1

∫ bn

0
P{|Xn,k| > t} dt = o(bn) as n → ∞,

(ii)
n
∑

k=1

E |Xn,k|p I{|Xn,k|>bn} = o (bpn) as n → ∞,

then

1

bn

n
∑

k=1

Xn,k
Lp−→ 0.
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Considering {un} and {vn} any two (finite) sequences of integers such
that un < vn for all n � 1 and vn − un → ∞ as n → ∞, it can be stated that
Theorem 1 is valid for general arrays {Xn,k, un � k � vn, n � 1} of row-
wise END random variables with dominating sequence {Mn, n � 1}, i.e. for
1 � p < 2,

∑vn
k=un

(Xn,k −EXn,k)/bn
Lp−→ 0 provided that {bn} is a sequence

of positive constants such that
(A)

vn
∑

k=un

∫ εbpn

0
P{|Xn,k|p > t} dt = O

( bpn
1 +Mn

)

as n → ∞

for any ε > 0,
(B)

vn
∑

k=un

∫ ∞

εbpn

P{|Xn,k|p > t} dt = o
( bpn
1 +Mn

)

as n → ∞

for any ε > 0 when 1 < p < 2, or
(B′)

vn
∑

k=un

∫ ∞

εbn

P{|Xn,k| > t} dt = o
( bn
1 +Mn

)

as n → ∞

and
vn
∑

k=un

P{|Xn,k| > εbn} = o(1) as n → ∞

for any ε > 0 whenever p = 1.
Moreover, Theorem 2 still holds for {Xn,k, un � k � vn, n � 1}, that is,

if 0 < p < 1 and {bn} is a sequence of positive constants satisfying
(I)

vn
∑

k=un

∫ bn

0
P{|Xn,k| > t} dt = o(bn) as n → ∞,

(II)
vn
∑

k=un

E |Xn,k|p I{|Xn,k|>bn} = o(bpn) as n → ∞,

then
vn
∑

k=un

(Xn,k − EXn,k)/bn
Lp−→ 0.

The proofs can be performed mutatis mutandis the presented ones.
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Let us point out that for arrays of row-wise pairwise negative quadrant
dependent random variables the covariance of any two distinct elements in
the same row is nonpositive (see [9] or [15, Lemma 2.1]). In general, this im-
plication is not true for arrays of row-wise END random variables. Therefore,
the approach employed here is essentially different from [15]. Furthermore,
in cases where the arrays of random variables are both row-wise pairwise
negative quadrant dependent and row-wise END having constant dominat-
ing sequence Mn = M > 0 for every n, condition (b) in Theorem 1 improves
assumption (ii) of [15, Theorem 2.1] for 1 < p < 2. In fact, taking un = 1,
vn = n, an,k = 1/bn = o(1) as n → ∞ and the identical distributed array
{Xn,k, 1 � k � n, n � 1} such that the tail distribution of |X1,1|p is rapidly

varying with index −∞, i.e. F |X1,1|
p ∈ R−∞ (e.g. |X1,1|p having exponential

distribution), assumption (ii) in [15, Theorem 2.1] is

∫ ∞

εbpn

F |X1,1|
p(t) dt+ εbpnF |X1,1|

p(εbpn) = o(bpn/n), n → ∞

and, for each ε > 0,

∫∞
εbpn

F |X1,1|
p(t) dt

εbpnF |X1,1|
p(εbpn)

= o(1), n → ∞

(see [6, p. 570]), whence the numerator is of smaller order than the denomi-
nator.

The next result gives the convergence in p-mean for weighted sums of
random variables. To this purpose, we recuperate the notion of extended
negative dependence for a random sequence (see [3]), as well as the concept
of stochastic dominance (see, for instance, [10]).

Corollary 1. If {Xn, n � 1} is a sequence of END random variables

stochastically dominated by a random variable X ∈ Lp for some 1 � p < 2,
and {cn,k, 1 � k � n, n � 1} is an array of constants such that

max
1�k�n

|cn,k| = O(1), n → ∞

then

n−1/p
n
∑

k=1

cn,k(Xk − EXk)
Lp−→ 0.

Retrieving the definition of weakly mean domination for triangular ar-
rays due to Gut (see [7, p. 54]) and assuming it in previous Theorem 2, we
are lead to a much shorter result.
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Corollary 2. Let 0 < p < 1 and {Xn,k, 1 � k � n, n � 1} be a trian-
gular array of random variables weakly mean dominated by a random variable
X ∈ Lp. If {bn} is a sequence of positive constants satisfying n = O(bpn),
n → ∞ then

1

bn

n
∑

k=1

Xn,k
Lp−→ 0.

Remark 1. Let us observe that Pyke and Root’s classical result is now
a particular case of Corollaries 1 and 2. Furthermore, Theorem 1 and Corol-
lary 2 clearly extend [7, Lemma 2.2] to a general scenario of dependence. Ad-
ditionally, if the dominating sequence is a positive constant (i.e.Mn = M > 0
for all n) then assumptions (a) and (b) of Theorem 1 are less restrictive than
hypothesis [17, (14)] when Ψ(t) = |t|q, leading to convergence (15) of this pa-
per and, thereby, improving the corresponding statement.

3. Lemmas and proofs

The auxiliary result below shows that triangular arrays of row-wise ex-
tended negatively dependent random variables preserve their dependence
structure (and particularly, their dominating sequence) under nondecreasing
or nonincreasing transformations. Since all assertions can be demonstrated
in the same way, i.e. as in [11, Lemma 1], the proof will be omitted.

Lemma 1. Let {Xn,k, 1 � k � n, n � 1} be a triangular array of random
variables and {fn,k, 1 � k � n, n � 1} a triangular array of real functions.

(i) If {Xn,k, 1 � k � n, n � 1} is row-wise UEND, LEND, or END
with dominating sequence {Mn, n � 1} and the functions fn,k, 1 � k � n,
n � 1 are all nondecreasing then {fn,k(Xn,k), 1 � k � n, n � 1} is still row-
wise UEND, LEND, or END, respectively. Moreover, if the functions fn,k,
1 � k � n, n � 1 are also positive then for each n � 1,

E

[ n
∏

k=1

fn,k(Xn,k)

]

� Mn

n
∏

k=1

E fn,k(Xn,k).

(ii) If {Xn,k, 1 � k � n, n � 1} is row-wise UEND, LEND, or END with
dominating sequence {Mn, n � 1} and the functions fn,k, 1 � k � n, n � 1
are all nonincreasing then {fn,k(Xn,k), 1 � k � n, n � 1} is row-wise LEND,
UEND, or END, respectively.

For each case, the dominating sequence {Mn, n � 1} remains unchanged.

The next Lemma is a Rosenthal type inequality (see [12, p. 59]) for tri-
angular arrays of row-wise extended negatively dependent random variables
with dominating sequence {Mn, n � 1} and extends [14, Corollary 3.2] or
[17, Lemma 7].
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Lemma 2. If p � 2 and {Xn,k, 1 � k � n, n � 1} is an array of zero-

mean row-wise END random variables with dominating sequence {Mn, n � 1}
such that E |Xn,k|p < ∞, for all 1 � k � n, n � 1 then

E

∣

∣

∣

∣

n
∑

k=1

Xn,k

∣

∣

∣

∣

p

� C(p)(1 +Mn)

[ n
∑

k=1

E |Xn,k|p +
( n
∑

k=1

E |Xn,k|2
)p/2]

where C(p) is a positive constant depending only on p.

Proof. Let {δn} be a sequence of positive constants and consider the
random variables Tn,k := min(Xn,k, δn), 1 � k � n, n � 1. Hence,

{

ω :
n
∑

k=1

Xn,k > ε

}

⊂
{

ω :
n
∑

k=1

Tn,k �=
n
∑

k=1

Xn,k

}

∪
{

ω :
n
∑

k=1

Tn,k > ε

}

and for all tn > 0,

P

{ n
∑

k=1

Xn,k > ε

}

� P

{ n
∑

k=1

Tn,k �=
n
∑

k=1

Xn,k

}

+ P

{ n
∑

k=1

Tn,k > ε

}

(3.1)

�

n
∑

k=1

P{Xn,k > δn}+ exp(−εtn)E exp

(

tn

n
∑

k=1

Tn,k

)

�

n
∑

k=1

P{Xn,k > δn}+Mn exp(−εtn)
n
∏

k=1

E exp(tnTn,k)

provided that {Tn,k, 1 � k � n n � 1} is row-wise END (see Lemma 1).
Thus,

E exp(tnTn,k) � 1 + tnEXn,k +

∫ δn

−∞
(etnx − 1− tnx) dP{Tn,k � x}

+

∫ ∞

δn

(etnδn − 1− tnδn) dP{Tn,k � x}

� 1 +
etnδn − 1− tnδn

δ2n

∫ δn

−∞
x2 dP{Tn,k � x}

+
etnδn − 1− tnδn

δ2n

∫ ∞

δn

δ2n dP{Tn,k � x}

� 1 +
etnδn − 1− tnδn

δ2n
ET 2

n,k � exp
(etnδn − 1− tnδn

δ2n
EX2

n,k

)
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since, for each n � 1, the function x �→
(

etnx − 1− tnx
)

/x2 is nondecreasing.
From the previous inequality and (3.1), we obtain

P

{ n
∑

k=1

Xn,k > ε

}

�

n
∑

k=1

P{Xn,k > δn}(3.2)

+Mn exp

[

− εtn +
etnδn − 1− tnδn

δ2n

n
∑

k=1

EX2
n,k

]

.

Setting sn :=
∑n

k=1 EX
2
n,k and taking tn = log

(

1 + εδn/
∑n

k=1 EX
2
n,k

) 1/δn

in (3.2), we get

P

{ n
∑

k=1

Xn,k > ε

}

�

n
∑

k=1

P{Xn,k > δn}

+Mn exp
[ ε

δn
−
( ε

δn
+

sn
δ2n

)

log
(

1 +
εδn
sn

)]

�

n
∑

k=1

P{Xn,k > δn}+Mn exp
[ ε

δn
− ε

δn
log

(

1 +
εδn
sn

)]

.

Replacing Xn,k by −Xn,k and noting that {−Xn,k, 1 � k � n, n � 1} is still
an array of zero-mean row-wise END random variables with dominating se-
quence {Mn, n � 1} according to Lemma 1, satisfying E |Xn,k|p < ∞, for all
1 � k � n, n � 1, we have

P

{

−
n
∑

k=1

Xn,k > ε

}

�

n
∑

k=1

P{−Xn,k > δn}+Mn exp
[ ε

δn
− ε

δn
log

(

1+
εδn
sn

)]

and
(3.3)

P

{
∣

∣

∣

∣

n
∑

k=1

Xn,k

∣

∣

∣

∣

> ε

}

�

n
∑

k=1

P{|Xn,k| > δn}+2Mn exp
[ ε

δn
− ε

δn
log

(

1+
εδn
sn

)]

.

Considering δn = ε/p in (3.3), yields

P

{
∣

∣

∣

∣

n
∑

k=1

Xn,k

∣

∣

∣

∣

> ε

}

�

n
∑

k=1

P

{

|Xn,k| >
ε

p

}

+ 2Mne
p
(

1 +
ε2

psn

)−p
,
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since, for each n � 1, the function x �→
(

etnx − 1− tnx
)

/x2 is nondecreasing.
From the previous inequality and (3.1), we obtain

P

{ n
∑

k=1

Xn,k > ε

}

�

n
∑

k=1

P{Xn,k > δn}(3.2)

+Mn exp

[

− εtn +
etnδn − 1− tnδn

δ2n

n
∑

k=1

EX2
n,k

]

.

Setting sn :=
∑n

k=1 EX
2
n,k and taking tn = log

(

1 + εδn/
∑n

k=1 EX
2
n,k

) 1/δn
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P

{ n
∑

k=1

Xn,k > ε

}

�

n
∑

k=1

P{Xn,k > δn}

+Mn exp
[ ε

δn
−
( ε

δn
+

sn
δ2n

)

log
(

1 +
εδn
sn

)]

�

n
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P{Xn,k > δn}+Mn exp
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δn
− ε
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log
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sn

)]
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quence {Mn, n � 1} according to Lemma 1, satisfying E |Xn,k|p < ∞, for all
1 � k � n, n � 1, we have
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−
n
∑
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Xn,k > ε

}

�

n
∑

k=1

P{−Xn,k > δn}+Mn exp
[ ε

δn
− ε

δn
log

(

1+
εδn
sn

)]

and
(3.3)

P

{
∣

∣

∣

∣

n
∑

k=1

Xn,k

∣

∣

∣

∣

> ε

}

�

n
∑

k=1

P{|Xn,k| > δn}+2Mn exp
[ ε

δn
− ε

δn
log

(

1+
εδn
sn

)]

.

Considering δn = ε/p in (3.3), yields

P

{
∣

∣

∣

∣

n
∑

k=1

Xn,k

∣

∣

∣

∣

> ε

}

�

n
∑

k=1

P

{

|Xn,k| >
ε

p

}

+ 2Mne
p
(

1 +
ε2
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)−p
,
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which implies

E

∣

∣

∣

∣

n
∑

k=1

Xn,k

∣

∣

∣

∣

p

� pp
n
∑

k=1

E |Xn,k|p + 2Mnpe
p

∫ ∞

0
xp−1

(

1 +
x2

psn

)−p
dx.

Since
∫ ∞

0
xp−1

(

1 +
x2

psn

)−p
dx =

∫ ∞

0
xp−1

(

1− x2

psn + x2

)p
dx

=
pp/2s

p/2
n

2

∫ 1

0
y

p

2
−1(1− y)

p

2
−1 dy =

pp/2s
p/2
n

2
B
(p

2
,
p

2

)

,

where B(p, q) =
∫ 1
0 xp−1(1−x)q−1 dx, p, q > 0 is the Beta function, it follows

E

∣

∣

∣

∣

n
∑

k=1

Xn,k

∣

∣

∣

∣

p

�

[

pp + p(p+2)/2Mne
pB

(p

2
,
p

2

)]

( n
∑

k=1

E |Xn,k|p + sp/2n

)

and the thesis is established with C(p) = max
{

pp, p(p+2)/2epB(p2 ,
p
2)
}

. �

Remark 2. If {Xn,k, 1 � k � n, n � 1} is an array of row-wise END
random variables with dominating sequence {Mn, n � 1} then

n
∑

k=1

(Xn,k − EXn,k)

bn

L2−→ 0,

provided that {bn} is a sequence of positive constants such that

n
∑

k=1

EX2
n,k = o

( b2n
1 +Mn

)

, n → ∞.

Indeed, according to Lemma 2 we have

E

∣

∣

∣

∣

1

bn

n
∑

k=1

(Xn,k − EXn,k)

∣

∣

∣

∣

2

�
C(p)(1 +Mn)

b2n

n
∑

k=1

E |Xn,k − EXn,k|2

�
C(p)(1 +Mn)

b2n

n
∑

k=1

EX2
n,k

which leads to E |
∑n

k=1(Xn,k − EXn,k)/bn|2 −→ 0 as n → ∞. Recall that
Pyke and Root’s statement is no longer valid for p = 2. Indeed, the central
limit theorem imposes norming constants bn asymptotically equivalent to
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√
n as n → ∞ whence, assuming Xk i.i.d. such that 0 < V(X1) < ∞ and

bn =
√
n we obtain

n
∑

k=1

(Xk − EX1)/
√

nV(X1)
d−→ N(0, 1) as n → ∞.

Proof of Theorem 1. Fix ε > 0 and define

X ′
n,k := Xn,kI{|Xn,k|�t1/p} + t1/pI{Xn,k>t1/p} − t1/pI{Xn,k<−t1/p},

X ′′
n,k := Xn,kI{|Xn,k|>t1/p} + t1/pI{Xn,k<−t1/p} − t1/pI{Xn,k>t1/p}.

Thus, X ′
n,k +X ′′

n,k = Xn,k and

E

∣

∣

∣

∣

1

bn

n
∑

k=1

(Xn,k − EXn,k)

∣

∣

∣

∣

p

=
1

bpn

∫ ∞

0
P

{∣

∣

∣

∣

n
∑

k=1

(Xn,k − EXn,k)

∣

∣

∣

∣

p

> t

}

dt

� ε+
1

bpn

∫ ∞

εbpn

P

{
∣

∣

∣

∣

n
∑

k=1

(Xn,k − EXn,k)

∣

∣

∣

∣

> t1/p
}

dt

� ε+
1

bpn

∫ ∞

εbpn

P

{
∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt

+
1

bpn

∫ ∞

εbpn

P

{∣

∣

∣

∣

n
∑

k=1

(X ′′
n,k − EX ′′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt.

The triangular array {X ′
n,k, 1 � k � n, n � 1} is row-wise END with domi-

nating sequence {Mn, n � 1} since the function gℓ(u) = max(min(u, ℓ),−ℓ),
which describes the truncation at level ℓ, is nondecreasing (Lemma 1). More-
over, {X ′

n,k −EX ′
n,k, 1 � k � n, n � 1} is also row-wise END with dominat-

ing sequence {Mn, n � 1}. From Chebyshev inequality and Lemma 2, we
have for any 1 � p < 2,

∫ ∞

εbpn

P

{∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt(3.4)

� C

∫ ∞

εbpn

t−2/p
E

∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

2

dt

� C(p) (1 +Mn)

∫ ∞

εbpn

t−2/p
n
∑

k=1

E
∣

∣X ′
n,k − EX ′

n,k

∣

∣

2
dt
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√
n as n → ∞ whence, assuming Xk i.i.d. such that 0 < V(X1) < ∞ and

bn =
√
n we obtain

n
∑

k=1

(Xk − EX1)/
√

nV(X1)
d−→ N(0, 1) as n → ∞.

Proof of Theorem 1. Fix ε > 0 and define

X ′
n,k := Xn,kI{|Xn,k|�t1/p} + t1/pI{Xn,k>t1/p} − t1/pI{Xn,k<−t1/p},

X ′′
n,k := Xn,kI{|Xn,k|>t1/p} + t1/pI{Xn,k<−t1/p} − t1/pI{Xn,k>t1/p}.

Thus, X ′
n,k +X ′′

n,k = Xn,k and

E

∣

∣

∣

∣

1

bn

n
∑

k=1

(Xn,k − EXn,k)

∣

∣

∣

∣

p

=
1

bpn

∫ ∞

0
P

{∣

∣

∣

∣

n
∑

k=1

(Xn,k − EXn,k)

∣

∣

∣

∣

p

> t

}

dt

� ε+
1

bpn

∫ ∞

εbpn

P

{
∣

∣

∣

∣

n
∑

k=1

(Xn,k − EXn,k)

∣

∣

∣

∣

> t1/p
}

dt

� ε+
1

bpn

∫ ∞

εbpn

P

{
∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt

+
1

bpn

∫ ∞

εbpn

P

{∣

∣

∣

∣

n
∑

k=1

(X ′′
n,k − EX ′′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt.

The triangular array {X ′
n,k, 1 � k � n, n � 1} is row-wise END with domi-

nating sequence {Mn, n � 1} since the function gℓ(u) = max(min(u, ℓ),−ℓ),
which describes the truncation at level ℓ, is nondecreasing (Lemma 1). More-
over, {X ′

n,k −EX ′
n,k, 1 � k � n, n � 1} is also row-wise END with dominat-

ing sequence {Mn, n � 1}. From Chebyshev inequality and Lemma 2, we
have for any 1 � p < 2,

∫ ∞

εbpn

P

{∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt(3.4)

� C

∫ ∞

εbpn

t−2/p
E

∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

2

dt

� C(p) (1 +Mn)

∫ ∞

εbpn

t−2/p
n
∑

k=1

E
∣

∣X ′
n,k − EX ′

n,k

∣

∣

2
dt
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� C(p)(1 +Mn)

∫ ∞

εbpn

t−2/p
n
∑

k=1

[

EX2
n,kI{|Xn,k|�t1/p} + t2/pP

{

|Xn,k| > t1/p
}

]

dt

= C(p)(1 +Mn)
n
∑

k=1

∫ ∞

εbpn

t−2/p

∫ t1/p

0
sP{|Xn,k| > s} ds dt

= C(p)(1 +Mn)
n
∑

k=1

∫ ∞

0
sP{|Xn,k| > s}

∫ ∞

max(εbpn,sp)
t−2/p dt ds

= C(p)(1 +Mn)
n
∑

k=1

[

pε1−2/pbp−2
n

2− p

∫ ε1/pbn

0
sP{|Xn,k| > s} ds

+
p

2− p

∫ ∞

ε1/pbn

sp−1
P{|Xn,k| > s} ds

]

.

Setting

An,p(ε) :=

∫ ε1/pbn

0
sP{|Xn,k| > s} ds

it follows, for any 0 < ε < 1,

An,p(ε) =

∫ ε2/pbn

0
sP{|Xn,k| > s} ds+

∫ ε1/pbn

ε2/pbn

sP{|Xn,k| > s} ds

� ε4/p−2b2−p
n

∫ ε2/pbn

0
sp−1

P{|Xn,k| > s} ds

+ ε2/p−1b2−p
n

∫ ε1/pbn

ε2/pbn

sp−1
P{|Xn,k| > s} ds

and (3.4) yields

∫ ∞

εbpn

P

{
∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt(3.5a)

� C(p)(1 +Mn)
n
∑

k=1

[

pε(2−p)/p

2− p

∫ ε2/pbn

0
sp−1

P{|Xn,k| > s} ds

+
p

2− p

∫ ∞

ε2/pbn

sp−1
P{|Xn,k| > s} ds

]
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� C(p)(1 +Mn)
n
∑

k=1

[

ε(2−p)/p

2− p

∫ ε2bpn

0
P{|Xn,k| > t1/p} dt

+
1

2− p

∫ ∞

ε2bpn

P{|Xn,k| > t1/p} dt
]

.

On the other hand, if ε � 1 then

An,p(ε) �

∫ ε2/pbn

0
sP{|Xn,k| > s} ds

� ε4/p−2b2−p
n

∫ ε2/pbn

0
sp−1

P{|Xn,k| > s} ds,

and (3.4) gives

∫ ∞

εbpn

P

{
∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt(3.5b)

� C(p)(1 +Mn)
n
∑

k=1

[

pε(2−p)/p

2− p

∫ ε1/pbn

0
sP{|Xn,k| > s} ds

+
p

2− p

∫ ∞

ε1/pbn

sp−1
P{|Xn,k| > s} ds

]

= C(p)(1 +Mn)
n
∑

k=1

[

ε(2−p)/p

2− p

∫ ε2bpn

0
P{|Xn,k| > t1/p} dt

+
1

2− p

∫ ∞

εbpn

P{|Xn,k| > t1/p} dt
]

.

Since |X ′′
n,k| � |Xn,k| I{|Xn,k|>t1/p}, we obtain for every 1 < p < 2

∫ ∞

εbpn

P

{∣

∣

∣

∣

n
∑

k=1

(X ′′
n,k − EX ′′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt(3.6)

� C

∫ ∞

εbpn

t−1/p
n
∑

k=1

E
∣

∣X ′′
n,k

∣

∣ dt � C

n
∑

k=1

∫ ∞

εbpn

t−1/p
E |Xn,k| I{|Xn,k|>t1/p} dt

= C
n
∑

k=1

(
∫ ∞

εbpn

t−1/p

∫ ∞

t1/p
P{|Xn,k| > s} ds dt+

∫ ∞

εbpn

P
{

|Xn,k| > t1/p
}

dt

)
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� C(p)(1 +Mn)
n
∑

k=1

[

ε(2−p)/p
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0
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+
1

2− p

∫ ∞

ε2bpn
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]

.

On the other hand, if ε � 1 then

An,p(ε) �

∫ ε2/pbn

0
sP{|Xn,k| > s} ds

� ε4/p−2b2−p
n

∫ ε2/pbn

0
sp−1

P{|Xn,k| > s} ds,

and (3.4) gives

∫ ∞

εbpn

P

{
∣

∣

∣

∣

n
∑

k=1

(X ′
n,k − EX ′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt(3.5b)

� C(p)(1 +Mn)
n
∑

k=1

[

pε(2−p)/p

2− p

∫ ε1/pbn

0
sP{|Xn,k| > s} ds

+
p

2− p

∫ ∞

ε1/pbn

sp−1
P{|Xn,k| > s} ds

]

= C(p)(1 +Mn)
n
∑

k=1

[

ε(2−p)/p

2− p

∫ ε2bpn

0
P{|Xn,k| > t1/p} dt

+
1

2− p

∫ ∞

εbpn

P{|Xn,k| > t1/p} dt
]

.

Since |X ′′
n,k| � |Xn,k| I{|Xn,k|>t1/p}, we obtain for every 1 < p < 2

∫ ∞

εbpn

P

{∣

∣

∣

∣

n
∑

k=1

(X ′′
n,k − EX ′′

n,k)

∣

∣

∣

∣

>
t1/p

2

}

dt(3.6)

� C

∫ ∞

εbpn

t−1/p
n
∑

k=1

E
∣

∣X ′′
n,k

∣

∣ dt � C

n
∑

k=1

∫ ∞

εbpn

t−1/p
E |Xn,k| I{|Xn,k|>t1/p} dt

= C
n
∑

k=1

(
∫ ∞

εbpn

t−1/p

∫ ∞

t1/p
P{|Xn,k| > s} ds dt+

∫ ∞

εbpn

P
{

|Xn,k| > t1/p
}

dt

)
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= C
n
∑

k=1

(
∫ ∞

bnε1/p
P{|Xn,k| > s}

∫ sp

εbpn

t−1/p dt ds+

∫ ∞

εbpn

P
{

|Xn,k| > t1/p
}

dt

)

� C

n
∑

k=1

(

p

p− 1

∫ ∞

bnε1/p
sp−1

P{|Xn,k| > s} ds+
∫ ∞

εbpn

P
{

|Xn,k| > t1/p
}

dt

)

�
pC

p− 1

n
∑

k=1

∫ ∞

εbpn

P
{

|Xn,k| > t1/p
}

dt.

Hence, inequalities (3.5a), (3.5b), (3.6) and the arbitrariness of ε guarantee

E

∣

∣

∣

∣

1

bn

n
∑

k=1

(Xn,k − EXn,k)

∣

∣

∣

∣

p

−→ 0

as n → ∞ completing the proof for the case 1 < p < 2. It suffices to prove

n
∑

k=1

(Xn,k − EXn,k)/bn
L1−→ 0.

For each ε > 0, we have

sup
t�εbn

∣

∣

∣

∣

1

t

n
∑

k=1

EX ′′
n,k

∣

∣

∣

∣

� sup
t�εbn

1

t

n
∑

k=1

E|X ′′
n,k|

� sup
t�εbn

1

t

n
∑

k=1

E|Xn,k|I{|Xn,k|>t} �
1

εbn

n
∑

k=1

E|Xn,k|I{|Xn,k|>εbn} −→ 0

as n → ∞ from assumption (b′). Hence, for n large we obtain

∣

∣

∣

∣

n
∑

k=1

EX ′′
n,k

∣

∣

∣

∣

�
t

4
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∣

∣

∣
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∑

k=1

(X ′′
n,k − EX ′′
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∣
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>
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n,k

∣

∣

∣

∣

>
t

4

}

dt(3.7)

�

∫ ∞

εbn

P

{ n
∑

k=1

|X ′′
n,k| >

t

4

}

dt �

∫ ∞

εbn
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( n
⋃
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{|Xn,k| > t}
)

dt
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εbn

n
∑

k=1

P

{

|Xn,k| > t

}

dt �
n
∑

k=1

E|Xn,k|I{|Xn,k|>εbn}.
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According to inequalities (3.5a), (3.5b), (3.7) and the arbitrariness of ε, it
follows
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n
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∣

∣

∣

∣

−→ 0

as n → ∞ finishing the proof. �

Proof of Theorem 2. Putting

Y ′
n,k := Xn,kI{|Xn,k|�bn} + bnI{Xn,k>bn} − bnI{Xn,k<−bn},

Y ′′
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n,k + Y ′′

n,k and

E

∣

∣

∣

∣

n
∑

k=1

Xn,k

∣

∣
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∣

∣
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∣

∣
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∣

∣
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∣

∣

∣
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via Jensen’s inequality (see [5, p. 104]). Thus,
∣

∣Y ′′
n,k

∣

∣

p
� |Xn,k|p I{|Xn,k|>bn}
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∣

∣

∣
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∣

∣

∣
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∣
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∣

∣

p
]

(3.8)

=
1

bpn

n
∑

k=1

E |Xn,k|p I{|Xn,k|>bn} −→ 0

as n → ∞ from assumption (ii). Furthermore,

E
p

∣

∣

∣

∣

n
∑

k=1

Y ′
n,k

∣

∣

∣

∣

= E
p

∣

∣

∣

∣

n
∑

k=1

Xn,kI{|Xn,k|�bn} + bnI{Xn,k>bn} − bnI{Xn,k<−bn}

∣

∣

∣

∣

� E
p

n
∑

k=1

( |Xn,k| I{|Xn,k|�bn} + bnI{|Xn,k|>bn})

=

[ n
∑

k=1

(E |Xn,k| I{|Xn,k|�bn} + bnP{|Xn,k| > bn})
]p

=

( n
∑

k=1

∫ bn

0
P{|Xn,k| > t} dt

)p

,
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whence

(3.9)
1

bpn
E
p

∣

∣

∣

∣

n
∑

k=1

Y ′
n,k

∣

∣

∣

∣

−→ 0

as n →∞ according to (i). The thesis is now a consequence of (3.8) and (3.9).
�

Proof of Corollary 1. Without loss of generality, we shall assume
cn,k � 0 for all 1 � k � n, n � 1 since

n
∑

k=1

cn,kXk =
n
∑

k=1

c+n,kXk −
n
∑

k=1

c−n,kXk ,

where c+n,k = max{cn,k, 0} � 0 and c−n,k = max{−cn,k,0} � 0. The triangular

array {cn,kXk, 1 � k � n, n � 1} is row-wise END with constant dominating
sequence. From [10, Lemma 1] and the dominated convergence theorem, we
obtain

n
∑

k=1

E |cn,kXk|p I{|cn,kXk|
p>εn}

� Cp
n
∑

k=1

E |Xk|p I{Cp|Xk|
p>εn} � C(p)

n
∑

k=1

E |X|p I{Cp|X|p>εn}

= C(p)nE |X|p I{Cp|X|p>εn} = o(n), n → ∞

for each ε > 0. For any ε > 0, we still have

n
∑

k=1

∫ εn

0
P
{

|cn,kXk|p > t
}

dt �
n
∑

k=1

∫ ∞

0
P
{

Cp |Xk|p > t
}

dt � C(p)nE |X|p ,

so that assumptions (a), (b) and (b′) of Theorem 1 are fulfilled with bn = n1/p

and Xn,k = cn,kXk. Thus,
∑n

k=1 cn,k(Xk − EXk)/n
1/p Lp−→ 0 and the thesis

is established. �

Proof of Corollary 2. Since n = O(bpn), n → ∞ and E |X|p I{|X|>bn}

−→ 0 as n → ∞ (dominated convergence theorem), we obtain

1

bpn

n
∑

k=1

E |Xn,k|p I{|Xn,k|>bn} �
nC

bpn
E |X|p I{|X|>bn} −→ 0
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as n → ∞ using [7, Lemma 2.1]. Hence, condition (ii) in Theorem 2 is sat-
isfied. On the other hand,

n
∑

k=1

∫ bn

0
P{|Xn,k| > t} dt =

n
∑

k=1

(E |Xn,k| I{|Xn,k|�bn} + bn P{|Xn,k| > bn})

� CnE |X| I{|X|�bn} + Cnbn P{|X| > bn}

= Cnb1−p
n E |X|p |X/bn|1−p I{|X|�bn} + Cnbn P{|X| > bn}.

According to condition n = O(bpn), n → ∞ we have bn → ∞ as n → ∞ and

X/bn
a.s.−→ 0, which yields

nP {|X| > bn} � Cbpn P {|X| > bn} � C E |X|p I{|X|>bn} −→ 0

as n → ∞ and E |X|p |X/bn|1−p I{|X|�bn} −→ 0 as n → ∞ by the dominated
convergence theorem. Thus,

1

bn

n
∑

k=1

∫ bn

0
P {|Xn,k| > t} dt −→ 0

as n → ∞ and condition (i) in Theorem 2 is verified. �
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