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any affine l-planes Y ⊂ R
d, for fixed l ∈ [1, d− 2], and we know the l-volumes

of the intersections K ′∩Y for all Y supporting K — i.e., Y intersects K but
not its interior. However, this would follow easily if we knew the result for
hyperplanes. In fact, knowledge of all these l-volumes would determine the
intersection of K ′ with any translate Z + x of any linear (l+ 1)-subspace Z
of Rd, such that (Z + x)∩ (intK) �= ∅ — hence it would also determine K ′.)

The recent paper of Ryabogin–Yaskin–Zvavitch [15] repeated this Ques-
tion in p. 332 as Question 8, and its special case where K = Bd in p. 331
as Question 7. The same was done in [21], in Problem 1.2 and Problem 1.3.
Question 19 in [15], p. 335 (that is, as they observe, equivalent to their
Question 20, p. 336) is a special case of their Question 7. Namely, it asks
the following. If Bd ⊂ intK ′ and the areas of the intersections of K ′ with
any two parallel different tangent hyperplanes of Bd are equal, is K ′ then
0-symmetric? [15] and [21] also give good overviews about results concerning
questions of this type, as well as several new questions.

Yaskin–Zhang [21], Problem 1.4, posed the following question. Let
K ′ ⊂ R

d be a convex body whose interior contains a given convex body
K ⊂ R

d, and let, for all supporting hyperplanes H of K, the d-volumes cut
off from K ′ by the supporting hyperplanes H of K be given. Is then K ′

uniquely determined?
Barker–Larman [2], Conjecture 1, which is repeated for the special case

K = Bd in [15], p. 335, Question 18, is of similar type as those treated in this
paper, but our methods do not yield its local solution. This Question is: let
K ⊂ intK ′, where K,K ′ ⊂ R

d are convex bodies with K ⊂ intK ′, and let us
have for each hyperplane H supporting K that K ′ ∩H is centrally symmet-
ric. Is then K ′ centrally symmetric (for K = Bd 0-symmetric), or even an
ellipsoid? Some considerations about this Question are in Section 2, Prob-
lem. If K is replaced by a point, e.g., K = {0}, and for some l ∈ [2, d − 1]
and for each affine l-plane P ∋ 0 we have that K ′ ∩ P is centrally symmet-
ric, then either K is 0-symmetric, or K is an ellipsoid. This is called the
“false centre theorem”, cf. [2], p. 80. (There only the case d− l = 1 is men-
tioned, but then, fixing l, a trivial induction for d proves the above mentioned
general result. Some further references to this Problem are Aitchison–Petty–
Rogers [1], Larman [10], Montejano and Morales-Amaya [14], Larman and
Morales-Amaya [11], V. Soltan [18], J. Jerónimo-Castro and T. B. McAllister
[9].)

We cite only some theorems. The first one is due to Santaló [16], see also
[2], Theorem 1: for d = 2 and K the unit disc with centre 0, a concentric
circle K ′ is uniquely determined. I.e., if all above sets K ′ ∩H (chords of K ′

tangent to K) have constant lengths, then K ′ is a circle with centre 0. In
fact, [16] proved this also for convex curves on S2. This was reproved once
more by Gorkavyy–Kalinin [6], who also proved the analogous statement on
the hyperbolic plane, and gave some further planar situations in which their
proof works.
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Abstract. Barker and Larman asked the following. Let K′
⊂ R

d be a con-
vex body, whose interior contains a given convex body K ⊂ R

d, and let, for all
supporting hyperplanes H of K, the (d− 1)-volumes of the intersections K

′
∩H

be given. Is K
′ then uniquely determined? Yaskin and Zhang asked the anal-

ogous Question when, for all supporting hyperplanes H of K, the d-volumes of
the “caps” cut off from K

′ by H are given. We give local positive answers to
both of these questions, for small C2-perturbations of K, provided the bound-
ary of K is C

2
+. In both cases, (d− 1)-volumes or d-volumes can be replaced by

k-dimensional quermassintegrals for 1 ≤ k ≤ d− 1 or for 1 ≤ k ≤ d, respectively.
Moreover, in the first case we can admit, rather than hyperplane sections, sec-
tions by l-dimensional affine planes, where 1 ≤ k ≤ l ≤ d− 1. In fact, here not
all l-dimensional affine subspaces are needed, but only a small subset of them
(actually, a (d− 1)-manifold), for unique local determination of K′.

1. Introduction

Barker and Larman [2], p. 81, Conjecture 2, posed the following ques-
tion. Let K ′ ⊂ R

d be a convex body whose interior intK ′ contains a given
convex body K ⊂ R

d, and let, for all supporting hyperplanes H of K, the
areas, i.e., (d− 1)-volumes of the intersections K ′ ∩H , be given. Is then K ′

uniquely determined? The paper [2] investigated only the case when K was
the unit ball Bd and obtained several partial results to this question, for
which we refer to their paper or, for some of them, cf. below. (There arises
the Question what happens if we replace hyperplane sections by sections by
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any affine l-planes Y ⊂ R
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Barker–Larman [2], Conjecture 1, which is repeated for the special case

K = Bd in [15], p. 335, Question 18, is of similar type as those treated in this
paper, but our methods do not yield its local solution. This Question is: let
K ⊂ intK ′, where K,K ′ ⊂ R

d are convex bodies with K ⊂ intK ′, and let us
have for each hyperplane H supporting K that K ′ ∩H is centrally symmet-
ric. Is then K ′ centrally symmetric (for K = Bd 0-symmetric), or even an
ellipsoid? Some considerations about this Question are in Section 2, Prob-
lem. If K is replaced by a point, e.g., K = {0}, and for some l ∈ [2, d − 1]
and for each affine l-plane P ∋ 0 we have that K ′ ∩ P is centrally symmet-
ric, then either K is 0-symmetric, or K is an ellipsoid. This is called the
“false centre theorem”, cf. [2], p. 80. (There only the case d− l = 1 is men-
tioned, but then, fixing l, a trivial induction for d proves the above mentioned
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Rogers [1], Larman [10], Montejano and Morales-Amaya [14], Larman and
Morales-Amaya [11], V. Soltan [18], J. Jerónimo-Castro and T. B. McAllister
[9].)

We cite only some theorems. The first one is due to Santaló [16], see also
[2], Theorem 1: for d = 2 and K the unit disc with centre 0, a concentric
circle K ′ is uniquely determined. I.e., if all above sets K ′ ∩H (chords of K ′

tangent to K) have constant lengths, then K ′ is a circle with centre 0. In
fact, [16] proved this also for convex curves on S2. This was reproved once
more by Gorkavyy–Kalinin [6], who also proved the analogous statement on
the hyperbolic plane, and gave some further planar situations in which their
proof works.
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The next theorem is due to V. Yaskin [20], Theorem: for K the unit
ball in R

d, among convex polytopes, K ′ is uniquely determined. For di-
mension 2, a more general result was earlier proved by G. Xiong, Y.-W. Ma,
W.-S. Cheung [19], for K 0-symmetric and bdK, the boundary of K, “nice”.
I.e., if for two convex polytopes (polygons) K ′

1 ,K ′
2 containing K in their in-

teriors all above sets K ′
1 ∩H and K ′

2 ∩H (for H being tangent hyperplanes
of K) have equal areas (lengths), then K ′

1 = K ′
2.

Next we cite [2], Theorem 4, which answers the above Question in the
positive sense for K = Bd, when instead of hyperplane sections one considers
sections with l-dimensional affine planes tangent to Bd and their l-volumes,
for fixed l ∈ [1, d−2]. However, observe that the supporting affine l-planes to
any convex body K ⊂ R

d form an ((l + 1)(d− l)− 1)-manifold (for l = d− 1
a (d− 1)-manifold), while

(1.1) for 1 ≤ l ≤ d− 2 we have (l + 1)(d− l)− 1 > d− 1 .

The unknowns (values of the radial function for all u ∈ Sd−1) form a (d− 1)-
manifold. That is, intuitively one has for l ∈ [1, d−2] “much more equations,
namely ((l + 1)(d− l)− 1)-manifold many” (the values of the l-volumes of
all the sections of K ′ by supporting affine l-planes of K) “than unknowns,
namely (d− 1)-manifold many” (values of the radial function of K ′). This
“explains solvability” of this Problem for K = Bd and l ∈ [1, d−2], while the
original Problem with K = Bd and l = d− 1 is unsolved. In the statement
of our Theorem 1 we eliminate this discrepancy between the dimensions of
the respective manifolds.

The following theorem is due to [3] and [4]: if for two distinct inte-
rior points p1, p2 of K ′ and any hyperplane H containing any one of these
points the area of the intersection K ′ ∩H is given, then K ′ is uniquely de-
termined. Observe that here the hypothesis implies knowledge of the even
parts (̺d−1

i (u) + ̺d−1
i (−u))/2 of the functions ̺d−1

i (u), where ̺i(u) is the
radial function of K ′ − pi, cf. [7], Theorem 5.6.3. That is, intuitively, we
have “half information” both for p1 and p2, which together uniquely deter-
mine K ′. So here the heuristics works. As observed in [15], p. 332, this
statement is a variant of [2], p. 81, Conjecture 2 (cf. the first paragraph of
the Introduction), when we replace the convex body K by a non-degenerate
segment. What happens if we replace K by a non-empty compact convex set
of fixed dimension in [2, d− 1]? In particular, what happens if K is replaced
by a ball of the respective dimension?

The questions of Barker–Larman and Yaskin–Zhang seem to be difficult
even for the plane with K = B2. Rotating the sections K ′ ∩H by moving u
(the unit outer normal of H) in S1 in the positive sense, and differentiating
with respect to u (for ∂K being C2

+), we obtain some equations containing
the values and the first and second derivative values of some function at
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two different points, and unicity of the solution of the equation ought to be
proved. So this way does not seem to lead to a solution.

We remark that an analogous Question was settled by [12] locally about
the unit ball, under suitable smoothness hypotheses. That Question was the
following: if the (d− 2)-dimensional surface area — or some other quer-
massintegral (or intrinsic volume) of smaller positive dimension — of the
intersection of a convex body K ⊂ R

d with hyperplanes u⊥ + λu, for any
fixed u ∈ Sd−1, attains its maximum, e.g., at λ = 0, is K then 0-symmetric?
Here u⊥ is the linear (d− 1)-subspace orthogonal to u ∈ Sd−1. [12], Theo-
rem, settled this question, under suitable smoothness hypotheses, “locally”,
in the positive sense, close to the unit ball . More generally, hyperplanes
can be substituted by sections with l-dimensional affine planes (and then
we consider quermassintegrals of dimension in [1, l]), and still the analo-
gous statement holds. The cases of l-volumes of sections with l-dimensional
affine planes, for l = 1 and 2 ≤ l ≤ d− 1, have been solved earlier in the
positive sense, not only locally, but in their original form, by Hammer [8],

Theorem 1, and Makai–Martini–Ódor [13], Corollary 3.2, respectively. Even,
similarly to our Theorems 1 and 4, it suffices to consider some family Ll+1 of
linear (l+1)-subspaces whose union is Rd, and assume the maximality prop-
erty only among translates of linear l-subspaces lying in some Ll+1 ∈ Ll+1

(cf. the first paragraph of the proof of our Theorem 1 and Remark 3). We
will give in this paper, in the same spirit, “local solutions” to the questions
of Barker–Larman and Yaskin–Zhang, cf. Theorems 1 and 4 below.

The questions of Barker–Larman and Yaskin–Zhang can be answered lo-
cally, close to any convex body of class C2

+, not only to Bd. Let K ⊂ R
d be

a C2
+ convex body, with 0 ∈ intK, and let Kt ⊃ K0 = K for t ∈ [0, 1] be a

small C2-perturbation of K. Here we consider Kt to be given by its radial
function ̺t(u), for u ∈ Sd−1, and we investigate (∂/∂t)̺t(u)|t=0, which is of
course everywhere non-negative. Suppose that, for all tangent hyperplanes
of K, either the “asymptotical behaviour” of the areas of their intersections
with Kt, or the “asymptotical behaviour” of the volumes of the “caps” cut
off from Kt by them, for t → 0, are given. Then “in first order” the approx-
imation Kt is uniquely determined.

I.e., suppose that there is a C2-deformationKt ofK, withKt ⊃ K0 = K,
for parameter values t ∈ [0, 1] — i.e., [0, 1]× Sd−1 ∋ (t, u) �→ ̺t(u) ∈ (0,∞)
is a C2 function. Suppose that we know either the “asymptotical behaviour”
of the areas ((d− 1)-volumes) of the intersection of each tangent hyperplane
of K with Kt, or the “asymptotical behaviour” of the d-volume of the “cap”
cut off from Kt by each tangent hyperplane of K, for t → 0. (The exact
meaning of “asymptotical behaviour” will be given in Theorems 1 and 4.)
Then the first partial derivative of the radial function of Kt with respect
to t at t = 0, for each u ∈ Sd−1, is uniquely determined, cf. our Theorems 1
and 4.
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In both cases we may replace (d− 1)-volumes and d-volumes by quer-
massintegrals (or intrinsic volumes) of any lower positive dimension k, and
the analogous statements hold, cf. our Theorems 1 and 4.

Like in [12], Theorem, and [13], Corollary 3.2, in our Theorem 1 we may
allow, rather than sections by hyperplanes tangent to K, also sections with
affine planes of lower, but positive dimension l (≥ k), tangent to K, and the
analogous statement holds, cf. our Theorem 1. This is a local positive an-
swer to Question 1 of [21]. Here, however, recall from above that all tangent
affine l-planes to K, which yield our equations about the “asymptotical be-
haviours”, form an ((l+1)(d− l)− 1)-manifold, while the unknowns (values
of the partial derivative of the radial function with respect to t, for t = 0, and
all u ∈ Sd−1) form a (d−1)-manifold, so that we have “much more equations
than unknowns” (cf. (1.1) above). The particular case of our Theorem 1,
with Ll+1 being the family of all linear (l+1)-subspaces of Rd which contain
some fixed linear l-subspace of Rd, uses only “(d− 1)-manifold many” tan-
gent affine l-planes to K (cf. the paragraph before our Theorem 1), for the
“(d− 1)-manifold many” unknowns, and still has a positive answer. Thus
also here the heuristics works.

Concerning convex bodies, we will use the standard notations, cf. [17].
We denote the norm of a vector x ∈ R

d by �x�. A convex body in R
d is a

compact convex set in R
d with non-empty interior. The boundary and inte-

rior of a set X ⊂ R
d are denoted by bdX and intX , respectively. V (·) will

denote (d-dimensional) volume. We write convX and linX for the convex
hull and linear hull of a set X ⊂ R

d, respectively. The unit ball and the unit
sphere of R

d are denoted by Bd and Sd−1, respectively. For the volume of
Bd we write κd. The quermassintegrals of non-empty compact convex sets
K (cf. [17], Ch. 4) are denoted by Wk(K), for 0 ≤ k ≤ d. Following [17],

§4.2, we write Vk(K) := κ−1
d−k

(d
k

)
Wd−k(K), which is called the kth intrinsic

volume of K, for 0 ≤ k ≤ d. Then, by [17], §4.2, for r ∈ [0,∞) we have

V (K + rBd) =
d∑

i=0

κd−kVk(K)rd−k

(where κd−k is the (d− k)-volume of the unit ball in R
d−k). The intrin-

sic volumes Vk(K) are monotonous, are positively homogeneous of degree k,
and are continuous in the Hausdorff metric ([17], §4.2, pp. 205, 210, 211,
in the first edition). Moreover, they remain unchanged if Rd is embedded
in some higher dimensional Euclidean space, and we consider Vk(K) as the
kth intrinsic volume of K considered as a subset of the higher dimensional
Euclidean space ([17], §4.2, p. 210; in fact, they are characterized by this
property among constant multiples of Wd−k). By a star-shaped set , or star-
shaped hull of a set we mean a star-shaped set, or star-shaped hull of a set
with respect to 0. The radial function of a compact star-shaped set X ⊂ R

d
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is ̺(·) : Sd−1 → [0,∞), defined by ̺(u) := max{r ∈ [0,∞) | ru ∈ X}. A con-
vex body K ⊂ R

d is C2
+ if its boundary is a C2 submanifold of Rd, with

everywhere positive Gauss curvature. We write area for (d− 1)-volume. If
a convex body K ⊂ R

d is smooth and strictly convex, and Y is a tangent
affine plane of K of some dimension, then we will write {y} := K ∩ Y , and
the origin in Y is chosen to be y. The Dupin indicatrix of a C2

+ convex

body K ⊂ R
d, at some p ∈ bdK, lying in the tangent hyperplane H of K

at p, is obtained in the following way. Let in some fixed rectangular co-
ordinate system (x1, . . . , xd), with p the origin (0, . . . , 0) and H being the
hyperplane given by xd = 0, and with K lying above H , bdK have a lo-
cal representation xd = f(x1, . . . , xd−1). (Then f(0, . . . , 0) = 0 and, for each
i ∈ [1, d− 1], also fxi

(0, . . . , 0) = 0. Moreover, the outer normal unit vector
of K at p is (0, . . . , 0,−1).) Then the Dupin indicatrix of K at p, in the
chosen rectangular coordinate system (x1, . . . , xd), is

{
(x1, . . . , xd−1) ∈ H | (1/2)

d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj = 1

}
.

2. Theorems

Let d ≥ 2, and 1 ≤ k ≤ l ≤ d− 1 be any integers. Let K ⊂ R
d be a

C2
+ convex body, containing the origin in its interior, with radial func-

tion ̺(·) : Sd−1 → (0,∞). Let, for t ∈ [0, 1], the convex body Kt be a one-
parameter deformation of K, with radial function ̺t(·): Sd−1 → (0,∞), with
Kt ⊃ K0 = K, and with [0, 1]× Sd−1 ∋ (t, u) �→ ̺t(u) ∈ (0,∞) being a C2

function. Then (∂̺t(u)/∂t)|t=0 is, for each u ∈ Sd−1, non-negative. Let Ll+1

denote a family of linear (l + 1)-subspaces of Rd, whose union is Rd.
An example for Ll+1 is the family of all linear (l + 1)-subspaces of Rd

which contain some fixed linear l-subspace of Rd. Observe that this example
forms a (d− l− 1)-manifold. Then all affine l-planes, tangent to K, of these
linear (l+1)-subspaces form a manifold of dimension (d− l−1)+(l+1)−1 =
d− 1. For this example we have in the following Theorem 1 “(d− 1)-
manifold many equations” (one for each Y in Theorem 1, namely for

limε→0 Vk(K
ε ∩ L)/εk/2), for “(d− 1)-manifold many unknowns” (values of

(∂̺t(u)/∂t)|t=0, for all u ∈ Sd−1), which heuristically says that, according
to the dimension of the manifolds in question, we have “as many equations
as unknowns”.

Theorem 1. Assume the hypotheses described before this theorem. Then
the kth intrinsic volume (e.g., the l-volume) of the intersection of Kε with

each tangent affine l-plane Y of K, divided by εk/2, tends for ε → 0 to a
finite, non-negative limit, depending on Y . This limit as a function of Y ,
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is ̺(·) : Sd−1 → [0,∞), defined by ̺(u) := max{r ∈ [0,∞) | ru ∈ X}. A con-
vex body K ⊂ R

d is C2
+ if its boundary is a C2 submanifold of Rd, with

everywhere positive Gauss curvature. We write area for (d− 1)-volume. If
a convex body K ⊂ R

d is smooth and strictly convex, and Y is a tangent
affine plane of K of some dimension, then we will write {y} := K ∩ Y , and
the origin in Y is chosen to be y. The Dupin indicatrix of a C2

+ convex

body K ⊂ R
d, at some p ∈ bdK, lying in the tangent hyperplane H of K

at p, is obtained in the following way. Let in some fixed rectangular co-
ordinate system (x1, . . . , xd), with p the origin (0, . . . , 0) and H being the
hyperplane given by xd = 0, and with K lying above H , bdK have a lo-
cal representation xd = f(x1, . . . , xd−1). (Then f(0, . . . , 0) = 0 and, for each
i ∈ [1, d− 1], also fxi

(0, . . . , 0) = 0. Moreover, the outer normal unit vector
of K at p is (0, . . . , 0,−1).) Then the Dupin indicatrix of K at p, in the
chosen rectangular coordinate system (x1, . . . , xd), is

{
(x1, . . . , xd−1) ∈ H | (1/2)

d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj = 1

}
.

2. Theorems

Let d ≥ 2, and 1 ≤ k ≤ l ≤ d− 1 be any integers. Let K ⊂ R
d be a

C2
+ convex body, containing the origin in its interior, with radial func-

tion ̺(·) : Sd−1 → (0,∞). Let, for t ∈ [0, 1], the convex body Kt be a one-
parameter deformation of K, with radial function ̺t(·): Sd−1 → (0,∞), with
Kt ⊃ K0 = K, and with [0, 1]× Sd−1 ∋ (t, u) �→ ̺t(u) ∈ (0,∞) being a C2

function. Then (∂̺t(u)/∂t)|t=0 is, for each u ∈ Sd−1, non-negative. Let Ll+1

denote a family of linear (l + 1)-subspaces of Rd, whose union is Rd.
An example for Ll+1 is the family of all linear (l + 1)-subspaces of Rd

which contain some fixed linear l-subspace of Rd. Observe that this example
forms a (d− l− 1)-manifold. Then all affine l-planes, tangent to K, of these
linear (l+1)-subspaces form a manifold of dimension (d− l−1)+(l+1)−1 =
d− 1. For this example we have in the following Theorem 1 “(d− 1)-
manifold many equations” (one for each Y in Theorem 1, namely for

limε→0 Vk(K
ε ∩ L)/εk/2), for “(d− 1)-manifold many unknowns” (values of

(∂̺t(u)/∂t)|t=0, for all u ∈ Sd−1), which heuristically says that, according
to the dimension of the manifolds in question, we have “as many equations
as unknowns”.

Theorem 1. Assume the hypotheses described before this theorem. Then
the kth intrinsic volume (e.g., the l-volume) of the intersection of Kε with

each tangent affine l-plane Y of K, divided by εk/2, tends for ε → 0 to a
finite, non-negative limit, depending on Y . This limit as a function of Y ,
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taken only for those Y ’s which lie in some linear (l + 1)-subspace of R
d

(namely in linY ) belonging to Ll+1, uniquely determines (∂̺t(u)/∂t)|t=0 for
each u ∈ Sd−1.

Thus in the hypothesis we have information about the “asymptotical be-
haviour” of the intrinsic volumes of the intersections, and we have a conclu-
sion about the “asymptotical behaviour” of the radial functions, for ε → 0.
The same holds for the intrinsic volumes of the “caps” cut off from Kε in
Theorem 4.

The statement for 1 ≤ l ≤ d− 2 is a relative of [2], Theorem 4. There
a global uniqueness was proved, but only for K = Bd, and with all tangent
affine l-planes of K.

Also in [2], Theorem 5, for d odd, only a countably infinite set of values
of ε are used (sections by hyperplanes intersecting Bd, with distances from 0
in a countably infinite set). In our Theorem 1 this would “approximately”
correspond to a series of ε’s converging to 0 (actually, to different such se-
quences for different Y ’s) — however, this does not substantially change the
statement of our Theorem 1. The same holds for our Theorem 4.

The following Corollary 2 is a local version of [15], p. 335, Question 19, in
the same sense, as Theorem 1 is the local version of the Question of Barker–
Larman [2], p. 81, Conjecture 2.

Corollary 2. Let all the hypotheses of Theorem 1 hold. Additionally,
let T : Rd → R

d be a linear isometry, such that TK = K. Let the kth intrin-
sic volume (e.g., the l-volume) of the intersection of Kε with each tangent
l-plane Y of K, lying in some linear (l+1)-subspace of R

d (namely in linY )
belonging to Ll+1, and with the tangent l-plane TY of K, lying in some linear
(l+1)-subspace of R

d (namely in T (linY )) belonging to T (Ll+1), divided by

εk/2, tend for ε → 0 to the same limit. Then (∂̺t(u)/∂t)|t=0 has equal val-
ues for u and Tu. In particular, for Tu = −u the function (∂̺t(u)/∂t)|t=0

is an even function of u ∈ Sd−1.

Remark 3. Suppose the hypotheses of Theorem 1. Let, for Y a tangent
affine l-plane of K, EY denote the Dupin indicatrix of K ∩ lin Y at y with
{y} = K ∩ Y . For unicity of EY we suppose that the lengths of the vectors
in the rectangular coordinate system in linY are equal to their lengths in the
original polar coordinate system in R

d. Then in Theorem 1 and Corollary 2
we can replace Vk(·) by any functions F Y (·) (there being no compatibil-
ity conditions between the functions F Y (·) for different Y ’s) which have the
following properties.

1) They are defined on [0,∞)×NY , where NY is some neighbourhood
of the set convEY — considered in the set of convex bodies in Y with the
topology of the Hausdorff metric — and have values in [0,∞), but are pos-
itive on (0,∞)×NY .
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2) They are positively homogeneous of degree k.
3) They are monotonous.
In particular, F Y (·) (even defined for all non-empty compact convex

subsets of Y ) can be chosen as a mixed volume V ((·), . . . , (·),Kk+1, . . . ,Kl),
with (·) occurring k times, and Kk+1, . . . ,Kl ⊂ Y being any non-empty com-
pact convex sets. (For mixed volumes cf. [17], Ch. 5.) But there are many
other possibilities, e.g., the kth intrinsic volume of the minimum volume
circumscribed, or maximum volume inscribed ellipsoid, etc.

In the next theorem, a cap cut off from Kt by a tangent hyperplane H
of K is the intersection ofKt and of the closed half-spaceH+ of Rd, bounded
by H and not containing K. (Of course, here it makes no sense to consider
affine planes of lower dimension.)

Theorem 4. Let all the hypotheses of Theorem 1 hold, with l := d− 1,
but with 1 ≤ k ≤ d. Then the kth intrinsic volume (e.g., the d-volume) of

the cap cut off from Kε by each tangent hyperplane H of K, divided by εk/2

for 1 ≤ k ≤ d− 1, or by ε(d+1)/2 for k = d, respectively, tends for ε → 0 to
a finite non-negative limit, depending on H . This limit, as a function of H ,
uniquely determines (∂̺t(u)/∂t)|t=0.

Observe that for d = 1 (with K,K ′ then being segments with K ⊂ K ′)
the function mapping p ∈ bdK to the volume (length) of the cap cut off
from K ′ by {p} trivially uniquely determines K ′. So we have not only a
local, but a global solution. Therefore d ≥ 2 is assumed in the hypotheses
of Theorem 4. The same holds also for the following Corollary 5.

Corollary 5. Let all the hypotheses of Theorem 4 hold. Additionally,
let T : Rd → R

d be a linear isometry such that TK = K. Let the kth intrin-
sic volume (e.g., the d-volume) of the caps cut off from Kε by each tangent
hyperplane H of K, and by the tangent hyperplane TH of K, divided by
εk/2 for 1 ≤ k ≤ d− 1, or by ε(d+1)/2 for k = d, respectively, tend for ε → 0
to the same limit. Then (∂̺t(u)/∂t)|t=0 has equal values for u and Tu. In
particular, for Tu = −u, the function (∂̺t(u)/∂t)|t=0 is an even function of
u ∈ Sd−1.

Remark 6. Suppose the hypotheses of Theorem 4, and let, for H a
tangent hyperplane of K, EH be as in Remark 3 (there EY is written).
Then in Theorem 4 and Corollary 5 we can replace Vk(·) by any functions
GH(·) (there being no compatibility conditions between the functions GH(·)
for different H ’s) which have the following properties.

1) They are defined on [0,∞) × ÑH , where ÑH is some neighbourhood
of the set convEH — considered in the set of non-empty compact convex
sets in R

d, with the topology of the Hausdorff metric — and have values in

[0,∞), but are positive on (0,∞)× ÑH .
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2) They are positively homogeneous of degree k.
3) They are monotonous.
In particular, F Y (·) (even defined for all non-empty compact convex

subsets of Y ) can be chosen as a mixed volume V ((·), . . . , (·),Kk+1, . . . ,Kl),
with (·) occurring k times, and Kk+1, . . . ,Kl ⊂ Y being any non-empty com-
pact convex sets. (For mixed volumes cf. [17], Ch. 5.) But there are many
other possibilities, e.g., the kth intrinsic volume of the minimum volume
circumscribed, or maximum volume inscribed ellipsoid, etc.

In the next theorem, a cap cut off from Kt by a tangent hyperplane H
of K is the intersection ofKt and of the closed half-spaceH+ of Rd, bounded
by H and not containing K. (Of course, here it makes no sense to consider
affine planes of lower dimension.)

Theorem 4. Let all the hypotheses of Theorem 1 hold, with l := d− 1,
but with 1 ≤ k ≤ d. Then the kth intrinsic volume (e.g., the d-volume) of

the cap cut off from Kε by each tangent hyperplane H of K, divided by εk/2

for 1 ≤ k ≤ d− 1, or by ε(d+1)/2 for k = d, respectively, tends for ε → 0 to
a finite non-negative limit, depending on H . This limit, as a function of H ,
uniquely determines (∂̺t(u)/∂t)|t=0.

Observe that for d = 1 (with K,K ′ then being segments with K ⊂ K ′)
the function mapping p ∈ bdK to the volume (length) of the cap cut off
from K ′ by {p} trivially uniquely determines K ′. So we have not only a
local, but a global solution. Therefore d ≥ 2 is assumed in the hypotheses
of Theorem 4. The same holds also for the following Corollary 5.

Corollary 5. Let all the hypotheses of Theorem 4 hold. Additionally,
let T : Rd → R

d be a linear isometry such that TK = K. Let the kth intrin-
sic volume (e.g., the d-volume) of the caps cut off from Kε by each tangent
hyperplane H of K, and by the tangent hyperplane TH of K, divided by
εk/2 for 1 ≤ k ≤ d− 1, or by ε(d+1)/2 for k = d, respectively, tend for ε → 0
to the same limit. Then (∂̺t(u)/∂t)|t=0 has equal values for u and Tu. In
particular, for Tu = −u, the function (∂̺t(u)/∂t)|t=0 is an even function of
u ∈ Sd−1.

Remark 6. Suppose the hypotheses of Theorem 4, and let, for H a
tangent hyperplane of K, EH be as in Remark 3 (there EY is written).
Then in Theorem 4 and Corollary 5 we can replace Vk(·) by any functions
GH(·) (there being no compatibility conditions between the functions GH(·)
for different H ’s) which have the following properties.

1) They are defined on [0,∞) × ÑH , where ÑH is some neighbourhood
of the set convEH — considered in the set of non-empty compact convex
sets in R

d, with the topology of the Hausdorff metric — and have values in

[0,∞), but are positive on (0,∞)× ÑH .
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2) They are positively homogeneous of degree k.
3) They are monotonous.

4) They are continuous, from the restriction to [0,∞)× ÑH of the topol-
ogy of the Hausdorff metric of non-empty compact convex sets in R

d to
[0,∞).

5) If k = d, then still we have that GH is invariant under volume pre-
serving affinities.

In particular, GH(·) (even defined for all non-empty compact convex sub-
sets of Rd) can be chosen as a mixed volume V ((·), . . . , (·),Kk+1, . . . ,Kd),
with (·) occurring k times, and Kk+1, . . . ,Kd ⊂ R

d being any non-empty
compact convex sets. But there are many other possibilities, e.g., the kth
intrinsic volume of the minimum volume circumscribed, or maximum volume
inscribed ellipsoid, etc.

Problem. The Question of Barker–Larman [2], p. 80, Conjecture 1,
repeated in the special case K = Bd in [15], p. 335, Question 18, is the fol-
lowing. Let K ⊂ intK ′, where K,K ′ ⊂ R

d are convex bodies, and let us have
for each hyperplane H supporting K that K ′ ∩H is centrally symmetric. Is
then K ′ centrally symmetric (for K = Bd 0-symmetric), or even an ellip-
soid? (Of course, also here one could replace hyperplane sections by sections
by any affine l-planes supportingK, for fixed l ∈ [2, d− 2], and suppose their
central symmetry. However, a positive answer to [2], p. 80, Conjecture 1,
would easily imply the analogous statement for each l ∈ [2, d− 2]. In fact,
we can make an induction for d− l. Observe that by the false centre the-
orem, by our hypothesis, also the section of K ′ by each affine (l + 1)-plane
supporting K is centrally symmetric.)

In our proof of Theorem 1 (cf. Section 3), the considered sections are
in first approximation (that is, approximating bdKε in the second order,
up to terms of higher order) centrally symmetric with respect to the point
of tangency (unique point of K ∩ Y ). Therefore, for a local variant of this
Question we would need to consider third order approximations of bdKε, of
course assuming C3

+. We could suppose that for these intersections there are
some inner points (one can take, e.g., the barycentres) such that in opposite
directions the radial functions associated to these points have values equal
up to a factor 1+O(ε2). The conclusion would be that Kε is O(ε2)-close to
some ellipsoid (and then K would be exactly an ellipsoid). Is this true?

Returning to sections by all hyperplanes passing through some fixed
point, there arises a related question: is there a stability variant of the false
centre theorem?

3. Proofs

Proofs of Theorem 1 and Remark 3. 1. It suffices to prove the
case l = d− 1. In fact, to calculate (∂̺t/∂t)(u)|t=0 for u ∈ Sd−1, it suffices
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to consider some linear (l+ 1)-subspace in Ll+1 containing u. There we can
already calculate this quantity, using the case of R

l+1 and affine l-planes
in it.

2. Hence from now on we suppose l = d− 1.
We give the proof for Theorem 1, which concerns the kth intrinsic vol-

ume Vk(·). However, we will always stress (with italics or in brackets) what
properties of Vk(·) are used, in order to see that the proof works also more
generally for the functions F Y (·) from Remark 3.

In the whole proof, when the sign o(·) is applied, it is meant for ε → 0.
We suppose in the whole proof that ε > 0 is sufficiently small.

Let p ∈ bdK, and let us choose a rectangular coordinate system (x1, x2,
. . . , xd) in R

d such that p becomes the origin (thus we will have the radial
function of K with respect to some point of intK) and the lengths of the
vectors in R

d in the original polar coordinate system and this rectangular
coordinate system are identical. Further, the hyperplane of equation xd = 0
should be a tangent hyperplane of K, with K lying above this hyperplane.

Then bdK can be given locally, close to p = 0, as

xd = f(x1, . . . , xd−1) = f(0, . . . , 0) +
d−1∑

i=1

fxi
(0, . . . , 0)xi(3.1)

+ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj + o(x21 + · · ·+ x2d−1)

= (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj + o(x21 + · · · + x2d−1) .

From now on we will frequently write ε rather than t, to emphasize its small-
ness. Consider the outer normal of K at p = 0, and the point pε ∈ bdKε

lying on this outer normal, below p (i.e., on the negative xd-axis, with 0
included). Let

(3.2) c(p) := −(∂/∂t)f t(0, . . . , 0)|t=0 (≥ 0) .

This number c(p) can be expressed by the values of the function

[0, 1]× Sd−1 ∋ (t, u) �→ ̺t(u) ∈ (0,∞)

and its first partial derivatives at (0, p/�p�). We have to use the transition
map between two coordinate systems, one being the polar coordinate system
in R

d, and the other one being the rectangular coordinate system introduced
above. However, the explicit formula is not needed. Then non-negativity of
∂̺t(u)/∂t for t = 0, for each u ∈ Sd−1, is equivalent to non-negativity of c(p),
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to consider some linear (l+ 1)-subspace in Ll+1 containing u. There we can
already calculate this quantity, using the case of R

l+1 and affine l-planes
in it.

2. Hence from now on we suppose l = d− 1.
We give the proof for Theorem 1, which concerns the kth intrinsic vol-

ume Vk(·). However, we will always stress (with italics or in brackets) what
properties of Vk(·) are used, in order to see that the proof works also more
generally for the functions F Y (·) from Remark 3.

In the whole proof, when the sign o(·) is applied, it is meant for ε → 0.
We suppose in the whole proof that ε > 0 is sufficiently small.

Let p ∈ bdK, and let us choose a rectangular coordinate system (x1, x2,
. . . , xd) in R

d such that p becomes the origin (thus we will have the radial
function of K with respect to some point of intK) and the lengths of the
vectors in R

d in the original polar coordinate system and this rectangular
coordinate system are identical. Further, the hyperplane of equation xd = 0
should be a tangent hyperplane of K, with K lying above this hyperplane.

Then bdK can be given locally, close to p = 0, as

xd = f(x1, . . . , xd−1) = f(0, . . . , 0) +
d−1∑

i=1

fxi
(0, . . . , 0)xi(3.1)

+ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj + o(x21 + · · ·+ x2d−1)

= (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj + o(x21 + · · · + x2d−1) .

From now on we will frequently write ε rather than t, to emphasize its small-
ness. Consider the outer normal of K at p = 0, and the point pε ∈ bdKε

lying on this outer normal, below p (i.e., on the negative xd-axis, with 0
included). Let

(3.2) c(p) := −(∂/∂t)f t(0, . . . , 0)|t=0 (≥ 0) .

This number c(p) can be expressed by the values of the function

[0, 1]× Sd−1 ∋ (t, u) �→ ̺t(u) ∈ (0,∞)

and its first partial derivatives at (0, p/�p�). We have to use the transition
map between two coordinate systems, one being the polar coordinate system
in R

d, and the other one being the rectangular coordinate system introduced
above. However, the explicit formula is not needed. Then non-negativity of
∂̺t(u)/∂t for t = 0, for each u ∈ Sd−1, is equivalent to non-negativity of c(p),
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for any boundary point p of K. Observe that all boundary points pε of Kε

(which contains K) can occur here. Namely, for pε ∈ bdKε we can consider
its image p by the nearest point map R

d \ intK → bdK: then pε lies on the
outer normal of K at p.

Close to pε, bdKε can be given in the coordinate system (x1, . . . , xd)
locally as

xd = f ε(x1, . . . , xd−1) = f ε(0, . . . , 0) +
d−1∑

i=1

f ε
xi
(0, . . . , 0)xi(3.3)

+(1/2)
d−1∑

i,j=1

f ε
xixj

(0, . . . , 0)xixj + o(x21 + · · · + x2d−1)

= −(c(p) + o(1))ε+O(ε)
√
x21 + · · ·+ x2d−1

+(1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj + O(ε)(x21 + · · · + x2d−1) + o(x21 + . . . x2d−1) .

In (3.3) we used that the values of the functions f and f ε and their first
and second derivatives with respect to x1, . . . , xd−1 differ by at most O(ε)
(cf. (3.1)), and we used also (3.2).

We will need these expansions only for the case when

(3.4) x21 + · · · + x2d−1 = O(ε)

(the reason for this will be given later, just below (3.11)). So we suppose
validity of (3.4) in the following.

By (3.4), (3.3) becomes

xd = f ε(x1, . . . , xd−1)(3.5)

= − (c(p) + o(1)) ε+ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj .

We have to consider the intersection Sε of Kε with the hyperplane of
equation xd = 0, and have to estimate its kth intrinsic volume, for 1 ≤ k
≤ d− 1 (S for “section”). For some ε0 > 0, for all ε ∈ [0, ε0] we have that
Kε is C2

+; we may suppose ε0 = 1. Therefore either p ∈ intKε, and then
Sε ∩ (intKε) �= ∅, or p ∈ bdKε, and then Sε is the one point set consisting
of the point of tangency of Kε with its tangent hyperplane given by xd = 0.
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Observe that in both these cases Sε is the convex hull of the intersection of
bdKε with the hyperplane of equation xd = 0. For xd = 0, (3.5) becomes

(3.6) (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj = (c(p) + o(1))ε .

Thus we have to estimate the kth intrinsic volume of Sε, which set is the
convex hull of the set given by (3.6), that is also the star-shaped hull of the
set given by (3.6). This star-shaped hull is

Sε =

{
(x1, . . . , xd−1)

∣∣ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ (c(p) + o(1))ε

}
.

(3.7)

{
If c(p) > 0, then let 0 < c1 < c(p) < c2 be arbitrary.
If c(p) = 0, then let 0 < c2 be arbitrary.

(3.8)

First we deal with the case 0 < c(p). Then, for ε > 0 sufficiently small,
we have by (3.7)

Sε
1 :=

{
(x1, . . . , xd−1)

∣∣
d−1∑

i,j=1

(1/2)fxixj
(0, . . . , 0)xixj ≤ c1ε

}
(3.9)

⊂ Sε =

{
(x1, . . . , xd−1)

∣∣ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ (c(p) + o(1))ε

}

⊂ Sε
2 :=

{
(x1, . . . , xd−1)

∣∣ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ c2ε

}
.

We are going to give lower and upper estimates for Vk(S
ε) (cf. (3.12)). For

0 = c(p) the same considerations yield only the upper estimate for Vk(S
ε)

in (3.12): then we use the trivial lower estimate 0 ≤ Vk(S
ε) rather than the

one in (3.12) (cf. (3.13)).
We write

(3.10) E :=

{
(x1, . . . , xd−1)

∣∣ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ 1

}
.

Then E is the convex hull of the Dupin indicatrix of K at p ∈ bdK, taken
in our chosen rectangular coordinate system. By positive definiteness of the
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Observe that in both these cases Sε is the convex hull of the intersection of
bdKε with the hyperplane of equation xd = 0. For xd = 0, (3.5) becomes

(3.6) (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj = (c(p) + o(1))ε .

Thus we have to estimate the kth intrinsic volume of Sε, which set is the
convex hull of the set given by (3.6), that is also the star-shaped hull of the
set given by (3.6). This star-shaped hull is

Sε =

{
(x1, . . . , xd−1)

∣∣ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ (c(p) + o(1))ε

}
.

(3.7)

{
If c(p) > 0, then let 0 < c1 < c(p) < c2 be arbitrary.
If c(p) = 0, then let 0 < c2 be arbitrary.

(3.8)

First we deal with the case 0 < c(p). Then, for ε > 0 sufficiently small,
we have by (3.7)

Sε
1 :=

{
(x1, . . . , xd−1)

∣∣
d−1∑

i,j=1

(1/2)fxixj
(0, . . . , 0)xixj ≤ c1ε

}
(3.9)

⊂ Sε =

{
(x1, . . . , xd−1)

∣∣ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ (c(p) + o(1))ε

}

⊂ Sε
2 :=

{
(x1, . . . , xd−1)

∣∣ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ c2ε

}
.

We are going to give lower and upper estimates for Vk(S
ε) (cf. (3.12)). For

0 = c(p) the same considerations yield only the upper estimate for Vk(S
ε)

in (3.12): then we use the trivial lower estimate 0 ≤ Vk(S
ε) rather than the

one in (3.12) (cf. (3.13)).
We write

(3.10) E :=

{
(x1, . . . , xd−1)

∣∣ (1/2)
d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ 1

}
.

Then E is the convex hull of the Dupin indicatrix of K at p ∈ bdK, taken
in our chosen rectangular coordinate system. By positive definiteness of the
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quadratic form (1/2)
∑d−1

i,j=1 fxixj
(0, . . . , 0)xixj , the set E is an 0-symmetric

ellipsoid. Then (3.9) can be rewritten as

(3.11) (c1ε)
1/2E = Sε

1 ⊂ Sε ⊂ Sε
2 = (c2ε)

1/2E .

Therefore even the third, i.e., largest set in (3.9) (and (3.11)) has a dis-
tance at most O(

√
ε) from 0, so that we need to consider only such points

(x1, . . . , xd−1), for which x21 + · · · + x2d−1 = O(ε). This justifies the supposi-
tion of the validity of (3.4).

By kth degree positive homogeneity and monotonicity of Vk(·), (3.11)
implies

0 ≤ (c1ε)
k/2Vk(E) = Vk((c1ε)

1/2E) ≤ Vk(S
ε)(3.12)

≤ Vk((c2ε)
1/2E) = (c2ε)

k/2Vk(E) .

As mentioned just below (3.9), for c(p) = 0 we have, rather than (3.12),

(3.13) 0 ≤ Vk(S
ε) ≤ (c2ε)

k/2Vk(E) .

Hence for 0 < c(p) by (3.12), while for 0 = c(p) by (3.13), we have

(3.14) Vk(S
ε) =

(
(c(p) + o(1))ε

)k/2
Vk(E)

for ε → 0. Namely, for 0 < c(p) we may choose both c1, c2 arbitrarily close
to c(p), and for 0 = c(p) we may choose c2 > 0 arbitrarily close to 0 = c(p)
(cf. (3.8)). We rewrite (3.14) as

(3.15) lim
ε→0

Vk(S
ε)/

[
εk/2Vk(E)

]
= c(p)k/2 .

By (3.15) K and limε→0

(
Vk(S

ε)/εk/2
)
, for each p ∈ bdK, determine c(p)

uniquely. (Recall that k ≥ 1.)
Last, taking into account (3.2), knowledge of this non-negative number

c(p), for each boundary point p of K, determines the non-negative partial
derivative of ̺t(u) with respect to t, for t = 0 and each u ∈ Sd−1. For this we
have to use the values of the function [0, 1]× Sd−1 ∋ (t, u) �→ ̺t(u) ∈ (0,∞)
and its first partial derivatives at (0, p/�p�), and use the transition map
between two coordinate systems: one is the polar coordinate system in R

d,
and the other one is the rectangular coordinate system used above in the
proof. �

Proof of Corollary 2. It follows immediately from Theorem 1. We
only note that invariance of the first partial derivative of the perturbation
with respect to t, for t = 0, under the map T in the rectangular coordi-
nate systems at x, Tx ∈ bdK used in the proof of Theorem 1, implies its
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invariance in the original polar coordinate system in R
d under the map T .

�

Proofs of Theorem 4 and Remark 6. We give the proof for Theo-
rem 4, which concerns the kth intrinsic volume Vk(·). However, again we will
always stress (with italics or in brackets) what properties of Vk(·) are used,
in order to see that the proof works also more generally for the functions
GH(·) from Remark 6.

We use the notations of the proof of Theorem 1. In particular, in the
whole proof, when the sign o(·) is applied, it is meant for ε → 0. Again we
suppose in the whole proof that ε > 0 is sufficiently small.

1. First we consider the case k = d, i.e., we consider the d-volume of the
“caps” cut off from Kε by the tangent hyperplanes of K. We will write V (·)
rather than Vd(·).

Till (3.8) we just use the considerations from the proof of Theorem 1.
Again, first we deal with the case 0 < c(p).
In (3.9) we had inclusions of (“in general”) (d− 1)-dimensional compact

convex sets in the hyperplane of equation xd = 0. This has to be replaced
by inclusions of (“in general”) d-dimensional compact convex sets in R

d.
We have to investigate the “cap” cut off from Kε by the tangent hyper-

plane of K with equation xd = 0, i.e., the set

Cε :=

{
(x1, . . . , xd)

∣∣ f ε(x1, . . . , xd−1) = f ε(0, . . . , 0) +

d−1∑

i=1

f ε
xi
(0, . . . , 0)xi

(3.16)

+ (1/2)

d−1∑

i,j=1

f ε
xixj

(0, . . . , 0)xixj + o(x21 + · · · + x2d−1) ≤ xd ≤ 0

}

(C for “cap”; observe that Cε lies below the tangent hyperplane of K with
equation xd = 0, but above the graph of the function f ε, which lies on bdK).
We are going to give lower and upper estimates for V (Cε) (cf. (3.22)). For
0 = c(p) the same considerations yield only (3.22) with omission of the mid-
dle expression, and replacing the equality sign by the ≤ sign. Then we use
the trivial lower estimate 0 ≤ V (Cε) rather than the one derived from (3.20),
second inequality. However, this gives the same formula (3.22), but omitting
the second expression there, also for 0 = c(p).

For c(p) > 0 and ε > 0 sufficiently small, taking into account (3.5), the
set Cε in (3.16) contains
(3.17)

Cε
1 :=

{
(x1, . . . , xd)

∣∣ −c1ε+ (1/2)

d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ xd ≤ 0

}
,
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�
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convex sets in the hyperplane of equation xd = 0. This has to be replaced
by inclusions of (“in general”) d-dimensional compact convex sets in R

d.
We have to investigate the “cap” cut off from Kε by the tangent hyper-

plane of K with equation xd = 0, i.e., the set

Cε :=

{
(x1, . . . , xd)

∣∣ f ε(x1, . . . , xd−1) = f ε(0, . . . , 0) +

d−1∑

i=1

f ε
xi
(0, . . . , 0)xi

(3.16)

+ (1/2)

d−1∑

i,j=1

f ε
xixj

(0, . . . , 0)xixj + o(x21 + · · · + x2d−1) ≤ xd ≤ 0

}

(C for “cap”; observe that Cε lies below the tangent hyperplane of K with
equation xd = 0, but above the graph of the function f ε, which lies on bdK).
We are going to give lower and upper estimates for V (Cε) (cf. (3.22)). For
0 = c(p) the same considerations yield only (3.22) with omission of the mid-
dle expression, and replacing the equality sign by the ≤ sign. Then we use
the trivial lower estimate 0 ≤ V (Cε) rather than the one derived from (3.20),
second inequality. However, this gives the same formula (3.22), but omitting
the second expression there, also for 0 = c(p).

For c(p) > 0 and ε > 0 sufficiently small, taking into account (3.5), the
set Cε in (3.16) contains
(3.17)

Cε
1 :=

{
(x1, . . . , xd)

∣∣ −c1ε+ (1/2)

d−1∑

i,j=1

fxixj
(0, . . . , 0)xixj ≤ xd ≤ 0

}
,
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and is contained in
(3.18)

Cε
2 :=

�
(x1, . . . , xd)

�� −c2ε+ (1/2)
d−1�

i,j=1

fxixj
(0, . . . , 0)xixj ≤ xd ≤ 0

�
.

That is, we have

(3.19) Cε
1 ⊂ Cε ⊂ Cε

2 .

Hence, by monotonicity and non-negativity of V (·), we have

0 ≤ V (Cε
1) ≤ V (Cε) ≤ V (Cε

2) .(3.20)





For i = 1, 2 the sets Cε
i are bounded by the (d− 1)-ellipsoids

Sε
i (cf. (3.9)) lying in the hyperplane given by xd = 0, and

by portions of the elliptic paraboloids given by xd = −ciε+

(1/2)
�d−1

i,j=1 fxixj
(0, . . . , 0)xixj , lying below Sε

i .

(3.21)

The volume of Cε
i can be calculated as 2/(d+ 1) times the volume of

its circumscribed right cylinder (Cε
i )

′, with upper base the ellipsoid Sε
i and

height ciε. In fact, by applying an affinity we may suppose E = Bd−1 and
ciε = 1, and then we calculate V (Cε

i )/V ((Cε
i )

′) by using polar coordinates
in the hyperplane given by xd = 0, finding that it is actually 2/(d+ 1), as
asserted in the previous sentence. (For the case of GH(·) we observe that
this affinity can be factorized as the product of a magnification in a positive
ratio, and a volume-preserving affinity.) Then for ε > 0 sufficiently small,
analogously to (3.14) we have, both for 0 < c(p) and for 0 = c(p) (for 0 =
c(p) omitting the middle term)

V (Cε) =

�
κd−1�

det
�
(1/2)

fxixj
(0,...,0)

(c(p)+o(1))ε

��1/2

�
·
�
(c(p) + o(1))ε

�
· 2

d+ 1
(3.22)

=

�
κd−1�

det
�
(1/2)fxixj

(0, . . . , 0)
��1/2

�
· 2

d+ 1
·
�
(c(p) + o(1))ε

�(d+1)/2
.

(For Remark 6 we do not have (3.22), since we do not know GH(E). First
suppose 0 < c(p). Then we have the analogue of (3.20) with GH , and by
(3.21) and (3.8) we get GH((Cε

1)
′)/GH((Cε

2)
′) = 1+o(1). Therefore, we have

the analogue of (3.22), namely GH(Cε) = GH(E′) · ((c(p) + o(1))ε)(d+1)/2.
Here E′ is the set bounded by E (defined in (3.10)) and by the portion of

the elliptic paraboloid given by xd = −1 + (1/2) ·�d−1
i,j=1 fxixj

(0, . . . , 0)xixj ,

lying below E. The case 0 = c(p) is treated like in the case of V (·), only
using GH(·) rather than V (·).)
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Hence, analogously to (3.15), we have from (3.22)

(3.23) lim
ε→0

V (Cε) ·
[
det

(
(1/2)fxixj

(0, . . . , 0)
)] 1/2

κd−1

[
2

d+1

]
ε(d+1)/2

= c(p)(d+1)/2 .

By (3.23) K and limε→0(V (Cε)/ε(d+1)/2), for each p ∈ bdK, determine c(p)
uniquely. (For Remark 6, we use here once more GH(E′), like below (3.22).)
Then the repetition of the last paragraph of the proof of Theorem 1 finishes
the proof for the case k = d.

2. We turn to the case 1 ≤ k ≤ d− 1. Again, first we deal with the case
0 < c(p).

For 0 = c(p) the same considerations yield for Vk(C
ε) only (3.29). Then

we use the trivial lower estimate (3.25) rather than (3.24). However, this
gives the same formula (3.30), also for 0 = c(p).

By (3.11) we have (c1ε)
1/2E = Sε

1 ⊂ Sε ⊂ Cε. Here for ε → 0 we may

choose 0 < c1 = c(p) + o(1) (cf. (3.8)), hence Cε ⊃ ((c(p) + o(1))ε)1/2E.
Thus, by kth degree positive homogeneity and monotonicity of Vk(·), we
have

(3.24) Vk(C
ε)/[Vk(E) · εk/2] ≥ (c(p) + o(1))k/2 .

For 0 = c(p) we use the trivial estimate

(3.25) Vk(C
ε)/[Vk(E) · εk/2] ≥ 0 .

We turn to the upper estimate. Recall that c2 > 0 (cf. (3.8)). With (Cε
2)

′

as defined below (3.21) we have by (3.19) Cε ⊂ Cε
2 ⊂ (Cε

2)
′. By monotonicity

of Vk(·) this implies Vk(C
ε)/Vk((C

ε
2)

′) ≤ 1. Equivalently, using kth degree
positive homogeneity of Vk(·), we have

(3.26) Vk

(
Cε/(c2ε)

1/2
)/

Vk

(
(Cε

2)
′/(c2ε)

1/2
)
≤ 1 .

Now observe that (Cε
2)

′/(c2ε)
1/2 is a right cylinder with base Sε

2/(c2ε)
1/2 = E

(cf. (3.11)) and height (c2ε)/(c2ε)
1/2 = (c2ε)

1/2. Therefore (Cε
2)

′/(c2ε)
1/2 is

in the (c2ε)
1/2-neighbourhood of E.

Therefore we have, by continuity of Vk(·), that

(3.27) Vk

(
(Cε

2)
′/(c2ε)

1/2
)/

Vk(E) ≤ 1 + o(1) .

Multiplying (3.26) and (3.27) we get

(3.28) Vk

(
Cε/(c2ε)

1/2
)/

Vk(E) ≤ 1 + o(1) .
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Hence, analogously to (3.15), we have from (3.22)

(3.23) lim
ε→0

V (Cε) ·
[
det

(
(1/2)fxixj

(0, . . . , 0)
)] 1/2

κd−1

[
2

d+1

]
ε(d+1)/2

= c(p)(d+1)/2 .

By (3.23) K and limε→0(V (Cε)/ε(d+1)/2), for each p ∈ bdK, determine c(p)
uniquely. (For Remark 6, we use here once more GH(E′), like below (3.22).)
Then the repetition of the last paragraph of the proof of Theorem 1 finishes
the proof for the case k = d.

2. We turn to the case 1 ≤ k ≤ d− 1. Again, first we deal with the case
0 < c(p).

For 0 = c(p) the same considerations yield for Vk(C
ε) only (3.29). Then

we use the trivial lower estimate (3.25) rather than (3.24). However, this
gives the same formula (3.30), also for 0 = c(p).

By (3.11) we have (c1ε)
1/2E = Sε

1 ⊂ Sε ⊂ Cε. Here for ε → 0 we may

choose 0 < c1 = c(p) + o(1) (cf. (3.8)), hence Cε ⊃ ((c(p) + o(1))ε)1/2E.
Thus, by kth degree positive homogeneity and monotonicity of Vk(·), we
have

(3.24) Vk(C
ε)/[Vk(E) · εk/2] ≥ (c(p) + o(1))k/2 .

For 0 = c(p) we use the trivial estimate

(3.25) Vk(C
ε)/[Vk(E) · εk/2] ≥ 0 .

We turn to the upper estimate. Recall that c2 > 0 (cf. (3.8)). With (Cε
2)

′

as defined below (3.21) we have by (3.19) Cε ⊂ Cε
2 ⊂ (Cε

2)
′. By monotonicity

of Vk(·) this implies Vk(C
ε)/Vk((C

ε
2)

′) ≤ 1. Equivalently, using kth degree
positive homogeneity of Vk(·), we have

(3.26) Vk

(
Cε/(c2ε)

1/2
)/

Vk

(
(Cε

2)
′/(c2ε)

1/2
)
≤ 1 .

Now observe that (Cε
2)

′/(c2ε)
1/2 is a right cylinder with base Sε

2/(c2ε)
1/2 = E

(cf. (3.11)) and height (c2ε)/(c2ε)
1/2 = (c2ε)

1/2. Therefore (Cε
2)

′/(c2ε)
1/2 is

in the (c2ε)
1/2-neighbourhood of E.

Therefore we have, by continuity of Vk(·), that

(3.27) Vk

(
(Cε

2)
′/(c2ε)

1/2
)/

Vk(E) ≤ 1 + o(1) .

Multiplying (3.26) and (3.27) we get

(3.28) Vk

(
Cε/(c2ε)

1/2
)/

Vk(E) ≤ 1 + o(1) .
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Since we may choose c2 > 0 arbitrarily close to c(p) (cf. (3.8)), therefore once
more by kth degree positive homogeneity of Vk(·), (3.28) implies

(3.29) Vk(C
ε)
/[

Vk(E) · εk/2
]
≤ c

k/2
2 (1 + o(1)) = (c(p) + o(1))k/2 .

Then for 0 < c(p) (3.24), while for 0 = c(p) (3.25), together with (3.29)
give

(3.30) Vk(C
ε)
/[

Vk(E) · εk/2
]
= (c(p) + o(1))k/2 .

We rewrite (3.30) as

(3.31) lim
ε→0

Vk(C
ε)
/[

Vk(E) · εk/2
]
= c(p)k/2 .

By (3.31) K and limε→0(Vk(C
ε)/εk/2), for each p ∈ bdK, determine c(p)

uniquely. (Recall that k ≥ 1.)
Then the repetition of the last paragraph of the proof of Theorem 1

finishes the proof for the case 1 ≤ k ≤ d− 1. �

Proof of Corollary 5. It follows immediately from Theorem 4, also
taking into account the proof of Corollary 2. �
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