@ CrossMark

Acta Math. Hungar., 150 (1) (2016), 176-193
DOI: 10.1007/s10474-016-0640-z
First published online July 19, 2016

UNIQUE LOCAL DETERMINATION OF
CONVEX BODIES

E. MAKAI, JR.%* and H. MARTINI?

IMTA Alfréd Rényi Institute of Mathematics, 1364 Budapest, Pf. 127, Hungary
e-mail: makai.endre@renyi.mta.hu

2Fakultit fiir Mathematik, Technische Universitdt Chemnitz, 09107 Chemnitz, Germany
e-mail: martini@mathematik.tu-chemnitz.de

(Received February 17, 2016; revised May 23, 2016; accepted May 24, 2016)

Abstract. Barker and Larman asked the following. Let K’ C R be a con-
vex body, whose interior contains a given convex body K C R%, and let, for all
supporting hyperplanes H of K, the (d — 1)-volumes of the intersections K’ N H
be given. Is K’ then uniquely determined? Yaskin and Zhang asked the anal-
ogous Question when, for all supporting hyperplanes H of K, the d-volumes of
the “caps” cut off from K’ by H are given. We give local positive answers to
both of these questions, for small C2-perturbations of K, provided the bound-
ary of K is C7. In both cases, (d — 1)-volumes or d-volumes can be replaced by
k-dimensional quermassintegrals for 1 < k < d —1 or for 1 < k < d, respectively.
Moreover, in the first case we can admit, rather than hyperplane sections, sec-
tions by [-dimensional affine planes, where 1 < k <[ < d — 1. In fact, here not
all [-dimensional affine subspaces are needed, but only a small subset of them
(actually, a (d — 1)-manifold), for unique local determination of K'.

1. Introduction

Barker and Larman [2], p. 81, Conjecture 2, posed the following ques-
tion. Let K’ C R? be a convex body whose interior int K’ contains a given
convex body K C R%, and let, for all supporting hyperplanes H of K, the
areas, i.e., (d — 1)-volumes of the intersections K’ N H, be given. Is then K’
uniquely determined? The paper [2] investigated only the case when K was
the unit ball B¢ and obtained several partial results to this question, for
which we refer to their paper or, for some of them, cf. below. (There arises
the Question what happens if we replace hyperplane sections by sections by
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UNIQUE LOCAL DETERMINATION OF CONVEX BODIES 177

any affine I-planes Y C R, for fixed I € [1,d — 2], and we know the I-volumes
of the intersections K’ NY for all Y supporting K — i.e., Y intersects K but
not its interior. However, this would follow easily if we knew the result for
hyperplanes. In fact, knowledge of all these [-volumes would determine the
intersection of K’ with any translate Z + « of any linear (I + 1)-subspace Z
of R%, such that (Z +z) N (int K) # () — hence it would also determine K'.)

The recent paper of Ryabogin—Yaskin—Zvavitch [15] repeated this Ques-
tion in p. 332 as Question 8, and its special case where K = B? in p. 331
as Question 7. The same was done in [21], in Problem 1.2 and Problem 1.3.
Question 19 in [15], p. 335 (that is, as they observe, equivalent to their
Question 20, p. 33) is a special case of their Question 7. Namely, it asks
the followmg If B* C int K’ and the areas of the intersections of K’ with
any two parallel different tangent hyperplanes of B¢ are equal, is K’ then
O-symmetric? [15] and [21] also give good overviews about results concerning
questions of this type, as well as several new questions.

Yaskin-Zhang [21], Problem 1.4, posed the following question. Let
K’ C R? be a convex body whose interior contains a given convex body
K c R%, and let, for all supporting hyperplanes H of K, the d-volumes cut
off from K’ by the supporting hyperplanes H of K be given. Is then K’
uniquely determined?

Barker-Larman [2], Conjecture 1, which is repeated for the special case
K = B%in [15], p. 335, Question 18, is of similar type as those treated in this
paper, but our methods do not yield its local solution. This Question is: let
K Cint K', where K, K’ C R% are convex bodies with K C int K’, and let us
have for each hyperplane H supporting K that K’ N H is centrally symmet-
ric. Is then K’ centrally symmetric (for K = B¢ 0-symmetric), or even an
ellipsoid? Some considerations about this Question are in Section 2, Prob-
lem. If K is replaced by a point, e.g., K = {0}, and for some [ € [2,d — 1]
and for each affine l-plane P > 0 we have that K' 0 P is centrally symmet-
ric, then either K is 0-symmetric, or K is an ellipsoid. This is called the
“false centre theorem”, cf. [2], p. 80. (There only the case d — 1 =1 is men-
tioned, but then, fixing [, a trivial induction for d proves the above mentioned
general result. Some further references to this Problem are Aitchison—Petty—
Rogers [1], Larman [10], Montejano and Morales-Amaya [14], Larman and
Morales-Amaya [11], V. Soltan [18], J. Jerénimo-Castro and T. B. McAllister
[9].)

We cite only some theorems. The first one is due to Santalé [16], see also
[2], Theorem 1: for d =2 and K the unit disc with centre 0, a concentric
circle K" is uniquely determined. ILe., if all above sets K' N H (chords of K’
tangent to K) have constant lengths, then K' is a circle with centre 0. In
fact, [16] proved this also for convex curves on S?. This was reproved once
more by Gorkavyy—Kalinin [6], who also proved the analogous statement on
the hyperbolic plane, and gave some further planar situations in which their
proof works.
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The next theorem is due to V. Yaskin [20], Theorem: for K the unit
ball in R, among convex polytopes, K' is uniquely determined. For di-
mension 2, a more general result was earlier proved by G. Xiong, Y.-W. Ma,
W.-S. Cheung [19], for K 0-symmetric and bd K, the boundary of K, “nice”.
Le., if for two convex polytopes (polygons) K| K/ containing K in their in-
teriors all above sets K1 N H and K, N H (for H being tangent hyperplanes
of K) have equal areas (lengths), then K| = K&.

Next we cite [2], Theorem 4, which answers the above Question in the
positive sense for K = B¢, when instead of hyperplane sections one considers
sections with l-dimensional affine planes tangent to B* and their l-volumes,
for fized | € [1,d —2]. However, observe that the supporting affine [-planes to
any convex body K C R? form an ((I + 1)(d — [) — 1)-manifold (for l =d — 1
a (d — 1)-manifold), while

(1.1) for1<l1<d-—2wehave (I+1)(d—1)—1>d—1.

The unknowns (values of the radial function for all u € S9~1) form a (d — 1)-
manifold. That is, intuitively one has for [ € [1,d — 2] “much more equations,
namely (({ 4 1)(d — 1) — 1)-manifold many” (the values of the [-volumes of
all the sections of K’ by supporting affine [-planes of K) “than unknowns,
namely (d — 1)-manifold many” (values of the radial function of K’). This
“explains solvability” of this Problem for K = B¢ and | € [1,d — 2|, while the
original Problem with K = B? and [ = d — 1 is unsolved. In the statement
of our Theorem 1 we eliminate this discrepancy between the dimensions of
the respective manifolds.

The following theorem is due to [3] and [4]: if for two distinct inte-
rior points p1,p2 of K’ and any hyperplane H containing any one of these
points the area of the intersection K' N H is given, then K’ is uniquely de-
termined. Observe that here the hypothesis implies knowledge of the even
parts (0% ' (u) + of " '(—u))/2 of the functions of !(u), where g;(u) is the
radial function of K’ — p;, cf. [7], Theorem 5.6.3. That is, intuitively, we
have “half information” both for p; and po, which together uniquely deter-
mine K’. So here the heuristics works. As observed in [15], p. 332, this
statement is a variant of [2], p. 81, Conjecture 2 (cf. the first paragraph of
the Introduction), when we replace the convex body K by a non-degenerate
segment. What happens if we replace K by a non-empty compact convex set
of fixed dimension in [2,d — 1]7 In particular, what happens if K is replaced
by a ball of the respective dimension?

The questions of Barker—Larman and Yaskin—Zhang seem to be difficult
even for the plane with K = B2. Rotating the sections K’ N H by moving u
(the umit outer normal of H) in S! in the positive sense, and differentiating
with respect to u (for 9K being C%), we obtain some equations containing
the values and the first and second derivative values of some function at
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two different points, and unicity of the solution of the equation ought to be
proved. So this way does not seem to lead to a solution.

We remark that an analogous Question was settled by [12] locally about
the unit ball, under suitable smoothness hypotheses. That Question was the
following: if the (d — 2)-dimensional surface area — or some other quer-
massintegral (or intrinsic volume) of smaller positive dimension — of the
intersection of a conver body K C R% with hyperplanes u™ + \u, for any
fizred u € S, attains its mazimum, e.g., at A =0, is K then 0-symmetric?
Here u is the linear (d — 1)-subspace orthogonal to u € S4~1. [12], Theo-
rem, settled this question, under suitable smoothness hypotheses, “locally”,
in the positive sense, close to the unit ball. More generally, hyperplanes
can be substituted by sections with [-dimensional affine planes (and then
we consider quermassintegrals of dimension in [1,1]), and still the analo-
gous statement holds. The cases of l-volumes of sections with [-dimensional
affine planes, for =1 and 2 <1 <d—1, have been solved earlier in the
positive sense, not only locally, but in their original form, by Hammer [8],
Theorem 1, and Makai-Martini-Odor [13], Corollary 3.2, respectively. Even,
similarly to our Theorems 1 and 4, it suffices to consider some family £;11 of
linear (I + 1)-subspaces whose union is R?, and assume the maximality prop-
erty only among translates of linear [-subspaces lying in some L; 1 € L1
(cf. the first paragraph of the proof of our Theorem 1 and Remark 3). We
will give in this paper, in the same spirit, “local solutions” to the questions
of Barker—Larman and Yaskin—Zhang, cf. Theorems 1 and 4 below.

The questions of Barker—Larman and Yaskin—Zhang can be answered lo-
cally, close to any convex body of class C_%, not only to BY. Let K C R¢ be
a Ci convex body, with 0 € int K, and let K! > K° = K for ¢t € [0,1] be a
small C2-perturbation of K. Here we consider K* to be given by its radial
function o (u), for u € S4=1, and we investigate (9/0t)o"(u)|s=o, which is of
course everywhere non-negative. Suppose that, for all tangent hyperplanes
of K, either the “asymptotical behaviour” of the areas of their intersections
with K, or the “asymptotical behaviour” of the volumes of the “caps” cut
off from K by them, for t — 0, are given. Then “in first order” the approx-
imation K is uniquely determined.

Le., suppose that there is a C?-deformation K of K, with K* > K° = K,
for parameter values t € [0,1] — i.e., [0,1] x S¥1 > (t,u) — o (u) € (0,00)
is a C? function. Suppose that we know either the “asymptotical behaviour”
of the areas ((d — 1)-volumes) of the intersection of each tangent hyperplane
of K with K*, or the “asymptotical behaviour” of the d-volume of the “cap”
cut off from K'! by each tangent hyperplane of K, for t — 0. (The exact
meaning of “asymptotical behaviour” will be given in Theorems 1 and 4.)
Then the first partial derivative of the radial function of K? with respect
tot at t = 0, for each u € S%1, is uniquely determined, cf. our Theorems 1
and 4.
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In both cases we may replace (d — 1)-volumes and d-volumes by quer-
massintegrals (or intrinsic volumes) of any lower positive dimension k&, and
the analogous statements hold, cf. our Theorems 1 and 4.

Like in [12], Theorem, and [13], Corollary 3.2, in our Theorem 1 we may
allow, rather than sections by hyperplanes tangent to K, also sections with
affine planes of lower, but positive dimension [ (> k), tangent to K, and the
analogous statement holds, cf. our Theorem 1. This is a local positive an-
swer to Question 1 of [21]. Here, however, recall from above that all tangent
affine [-planes to K, which yield our equations about the “asymptotical be-
haviours”, form an ((I+ 1)(d — ) — 1)-manifold, while the unknowns (values
of the partial derivative of the radial function with respect to ¢, for ¢t = 0, and
all u € $%71) form a (d — 1)-manifold, so that we have “much more equations
than unknowns” (cf. (1.1) above). The particular case of our Theorem 1,
with £;,1 being the family of all linear (I + 1)-subspaces of R? which contain
some fixed linear [-subspace of R?, uses only “(d — 1)-manifold many” tan-
gent affine [-planes to K (cf. the paragraph before our Theorem 1), for the
“(d — 1)-manifold many” unknowns, and still has a positive answer. Thus
also here the heuristics works.

Concerning convex bodies, we will use the standard notations, cf. [17].
We denote the norm of a vector x € R? by ||z||. A convex body in R? is a
compact convex set in R? with non-empty interior. The boundary and inte-
rior of a set X C R? are denoted by bd X and int X, respectively. V(-) will
denote (d-dimensional) volume. We write conv X and lin X for the convex
hull and linear hull of a set X C RY, respectively. The unit ball and the unit
sphere of R? are denoted by B? and S9!, respectively. For the volume of
B? we write k4. The quermassintegrals of non-empty compact convex sets
K (cf. [17], Ch. 4) are denoted by Wi (K), for 0 < k < d. Following [17],
§4.2, we write Vi (K) = r ', (z) Wy_r(K), which is called the kth intrinsic
volume of K, for 0 < k < d. Then, by [17], §4.2, for r € [0, 00) we have

\%4 K—I—’I“Bd Zfid & Vi (K

(where rq_, is the (d — k)-volume of the unit ball in R?"%). The intrin-
sic volumes Vj(K') are monotonous, are positively homogeneous of degree k,
and are continuous in the Hausdorff metric ([17], §4.2, pp. 205, 210, 211,
in the first edition). Moreover, they remain unchanged if R? is embedded
in some higher dimensional Euclidean space, and we consider Vj(K) as the
kth intrinsic volume of K considered as a subset of the higher dimensional
Euclidean space ([17], §4.2, p. 210; in fact, they are characterized by this
property among constant multiples of Wy_y). By a star-shaped set, or star-
shaped hull of a set we mean a star-shaped set, or star-shaped hull of a set
with respect to 0. The radial function of a compact star-shaped set X ¢ R?

Acta Mathematica Hungarica 150, 2016



UNIQUE LOCAL DETERMINATION OF CONVEX BODIES 181

is 0(-) : S9! — [0,00), defined by o(u) := max{r € [0,00) | ru € X}. A con-
vex body K C R? is C_% if its boundary is a C? submanifold of R?, with
everywhere positive Gauss curvature. We write area for (d — 1)-volume. If
a convex body K C R is smooth and strictly convex, and Y is a tangent
affine plane of K of some dimension, then we will write {y} := K NY, and
the origin in Y is chosen to be y. The Dupin indicatrix of a C’JQr convex
body K C RY, at some p € bd K, lying in the tangent hyperplane H of K
at p, is obtained in the following way. Let in some fixed rectangular co-
ordinate system (x1,...,x4), with p the origin (0,...,0) and H being the
hyperplane given by z; =0, and with K lying above H, bd K have a lo-
cal representation x4 = f(x1,...,24-1). (Then f(0,...,0) = 0 and, for each
i€ [l,d—1], also fz,(0,...,0) =0. Moreover, the outer normal unit vector
of K at pis (0,...,0,—1).) Then the Dupin indicatriz of K at p, in the
chosen rectangular coordinate system (z1,...,xq), is

d—1

{(;vl,...,xd_l) €H|(1/2) Y faur,(0,...,0)ziz; = 1}.

ij=1
2. Theorems

Let d > 2, and 1 <k <[<d-—1 be any integers. Let K CcR% be a
C'JQr convex body, containing the origin in its interior, with radial func-
tion o(+): S9! — (0,00). Let, for ¢ € [0, 1], the convex body K be a one-
parameter deformation of K, with radial function o(-): 4! — (0, 00), with
K'> K°= K, and with [0,1] x S¥1 3 (t,u) + of(u) € (0,00) being a C?
function. Then (g (u)/0t)|i=o is, for each u € S?~1 non-negative. Let £y
denote a family of linear (I + 1)-subspaces of R¢, whose union is R%.

An example for £, is the family of all linear (I + 1)-subspaces of R?
which contain some fixed linear I-subspace of R?. Observe that this example
forms a (d — [ — 1)-manifold. Then all affine [-planes, tangent to K, of these
linear (I + 1)-subspaces form a manifold of dimension (d—1—1)+(I+1)—1=
d—1. For this example we have in the following Theorem 1 “(d —1)-
manifold many equations” (one for each Y in Theorem 1, namely for
lim. o Vi(K* N L)/e*?), for “(d — 1)-manifold many unknowns” (values of
(00" (u)/0t)|1=0, for all u € S%=1), which heuristically says that, according
to the dimension of the manifolds in question, we have “as many equations
as unknowns”.

THEOREM 1. Assume the hypotheses described before this theorem. Then
the kth intrinsic volume (e.g., the l-volume) of the intersection of K¢ with
each tangent affine l-plane Y of K, divided by /%, tends for e — 0 to a
finite, non-negative limit, depending on Y. This limit as a function of Y,
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taken only for those Y'’s which lie in some linear (I + 1)-subspace of RY
(namely in linY") belonging to L, 1, uniquely determines (do'(u)/0t)|i=o for
each u € S 1.

Thus in the hypothesis we have information about the “asymptotical be-
haviour” of the intrinsic volumes of the intersections, and we have a conclu-
sion about the “asymptotical behaviour” of the radial functions, for € — 0.
The same holds for the intrinsic volumes of the “caps” cut off from K¢ in
Theorem 4.

The statement for 1 <1< d — 2 is a relative of [2], Theorem 4. There
a global uniqueness was proved, but only for K = B? and with all tangent
affine [-planes of K.

Also in [2], Theorem 5, for d odd, only a countably infinite set of values
of £ are used (sections by hyperplanes intersecting B¢, with distances from 0
in a countably infinite set). In our Theorem 1 this would “approximately”
correspond to a series of €’s converging to 0 (actually, to different such se-
quences for different Y’s) — however, this does not substantially change the
statement of our Theorem 1. The same holds for our Theorem 4.

The following Corollary 2 is a local version of [15], p. 335, Question 19, in
the same sense, as Theorem 1 is the local version of the Question of Barker—
Larman [2], p. 81, Conjecture 2.

COROLLARY 2. Let all the hypotheses of Theorem 1 hold. Additionally,
let T: RY — RY be a linear isometry, such that TK = K. Let the kth intrin-
sic volume (e.g., the l-volume) of the intersection of K¢ with each tangent
I-plane Y of K, lying in some linear (14 1)-subspace of R? (namely in linY)
belonging to Li11, and with the tangent l-plane TY of K, lying in some linear
(I +1)-subspace of R (namely in T(linY')) belonging to T(L41), divided by
k2 tend for e — 0 to the same limit. Then (0o'(u)/0t)|i—o has equal val-
ues for w and Tu. In particular, for Tu = —u the function (0o'(u)/0t)|=o
is an even function of u € S

REMARK 3. Suppose the hypotheses of Theorem 1. Let, for Y a tangent
affine I-plane of K, EY denote the Dupin indicatrix of K NlinY at y with
{y} = K NY. For unicity of EY we suppose that the lengths of the vectors
in the rectangular coordinate system in lin Y are equal to their lengths in the
original polar coordinate system in R%. Then in Theorem 1 and Corollary 2
we can replace Vi(-) by any functions FY(-) (there being no compatibil-
ity conditions between the functions FY (-) for different Y’s) which have the
following properties.

1) They are defined on [0,00) x NY | where NY is some neighbourhood
of the set conv EY — considered in the set of convex bodies in Y with the
topology of the Hausdorff metric — and have values in [0,00), but are pos-
itive on (0,00) x NV .
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2) They are positively homogeneous of degree k.

3) They are monotonous.

In particular, FY() (even defined for all non-empty compact convex
subsets of Y') can be chosen as a mixed volume V' ((-),..., (), Kxt1,..., K)),
with (+) occurring k times, and Ky.1,...,K; C Y being any non-empty com-
pact convex sets. (For mixed volumes cf. [17], Ch. 5.) But there are many
other possibilities, e.g., the kth intrinsic volume of the minimum volume
circumscribed, or maximum volume inscribed ellipsoid, etc.

In the next theorem, a cap cut off from K by a tangent hyperplane H
of K is the intersection of K* and of the closed half-space Ht of R?, bounded
by H and not containing K. (Of course, here it makes no sense to consider
affine planes of lower dimension.)

THEOREM 4. Let all the hypotheses of Theorem 1 hold, with | :==d — 1,
but with 1 < k <d. Then the kth intrinsic volume (e.g., the d-volume) of
the cap cut off from K¢ by each tangent hyperplane H of K, divided by /2
for 1<k <d—1, or by '“9V/2 for k = d, respectively, tends for € — 0 to
a finite non-negative limit, depending on H. This limit, as a function of H,
uniquely determines (90" (u)/0t)|i=o-

Observe that for d =1 (with K, K’ then being segments with K C K')
the function mapping p € bd K to the volume (length) of the cap cut off
from K’ by {p} trivially uniquely determines K’. So we have not only a
local, but a global solution. Therefore d > 2 is assumed in the hypotheses
of Theorem 4. The same holds also for the following Corollary 5.

COROLLARY 5. Let all the hypotheses of Theorem 4 hold. Additionally,
let T: R4 — R be a linear isometry such that TK = K. Let the kth intrin-
sic volume (e.g., the d-volume) of the caps cut off from K¢ by each tangent
hyperplane H of K, and by the tangent hyperplane TH of K, divided by
b2 for 1 <k <d—1, or by £“@D/2 for k = d, respectively, tend for € — 0
to the same limit. Then (0o'(u)/0t)|i=o has equal values for u and Tu. In
particglcir, for Tu = —u, the function (9o'(u)/0t)|=o is an even function of
ue ST

REMARK 6. Suppose the hypotheses of Theorem 4, and let, for H a
tangent hyperplane of K, E¥ be as in Remark 3 (there EY is written).
Then in Theorem 4 and Corollary 5 we can replace Vi(-) by any functions
GH () (there being no compatibility conditions between the functions G (-)
for different H’s) which have the following properties.

1) They are defined on [0,00) x N where N is some neighbourhood
of the set conv E — considered in the set of non-empty compact convex
sets in R?, with the topology of the Hausdorff metric — and have values in

[0,00), but are positive on (0,00) X NH .
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2) They are positively homogeneous of degree k.

3) They are monotonous.

4) They are continuous, from the restriction to [0,00) x N of the topol-
ogy of the Hausdorff metric of non-empty compact convex sets in R to
[0,00).

5) If k =d, then still we have that GY is invariant under volume pre-
serving affinities.

In particular, G (-) (even defined for all non-empty compact convex sub-
sets of RY) can be chosen as a mixed volume V((-),..., (), Kxy1,---, Ka),
with (-) occurring k times, and Kj,1,..., Ky C R? being any non-empty
compact convex sets. But there are many other possibilities, e.g., the kth
intrinsic volume of the minimum volume circumscribed, or maximum volume
inscribed ellipsoid, etc.

PROBLEM. The Question of Barker—Larman [2], p. 80, Conjecture 1,
repeated in the special case K = B® in [15], p. 335, Question 18, is the fol-
lowing. Let K C int K', where K, K' C R? are convez bodies, and let us have
for each hyperplane H supporting K that K' N H s centrally symmetric. Is
then K' centrally symmetric (for K = B 0-symmetric), or even an ellip-
soid? (Of course, also here one could replace hyperplane sections by sections
by any affine I-planes supporting K, for fixed [ € [2,d — 2], and suppose their
central symmetry. However, a positive answer to [2], p. 80, Conjecture 1,
would easily imply the analogous statement for each [ € [2,d — 2]. In fact,
we can make an induction for d — . Observe that by the false centre the-
orem, by our hypothesis, also the section of K’ by each affine (I + 1)-plane
supporting K is centrally symmetric.)

In our proof of Theorem 1 (cf. Section 3), the considered sections are
in first approximation (that is, approximating bd K¢ in the second order,
up to terms of higher order) centrally symmetric with respect to the point
of tangency (unique point of K NY'). Therefore, for a local variant of this
Question we would need to consider third order approximations of bd K¢, of
course assuming C’f’r. We could suppose that for these intersections there are
some inner points (one can take, e.g., the barycentres) such that in opposite
directions the radial functions associated to these points have values equal
up to a factor 1+ O(g?). The conclusion would be that K¢ is O(c?)-close to
some ellipsoid (and then K would be exactly an ellipsoid). Is this true?

Returning to sections by all hyperplanes passing through some fixed
point, there arises a related question: is there a stability variant of the false
centre theorem?

3. Proofs

PROOFS OF THEOREM 1 AND REMARK 3. 1. It suffices to prove the
case | = d — 1. In fact, to calculate (Qo'/0t)(u)|i=o for u € St it suffices

Acta Mathematica Hungarica 150, 2016



UNIQUE LOCAL DETERMINATION OF CONVEX BODIES 185

to consider some linear (I + 1)-subspace in £;11 containing u. There we can
already calculate this quantity, using the case of R and affine [-planes
in it.

2. Hence from now on we suppose [ = d — 1.

We give the proof for Theorem 1, which concerns the kth intrinsic vol-
ume Vi (). However, we will always stress (with italics or in brackets) what
properties of Vj(-) are used, in order to see that the proof works also more
generally for the functions FY () from Remark 3.

In the whole proof, when the sign o(-) is applied, it is meant for £ — 0.
We suppose in the whole proof that € > 0 is sufficiently small.

Let p € bd K, and let us choose a rectangular coordinate system (x1, x2,
..., xq) in R? such that p becomes the origin (thus we will have the radial
function of K with respect to some point of int K') and the lengths of the
vectors in R? in the original polar coordinate system and this rectangular
coordinate system are identical. Further, the hyperplane of equation z4 = 0
should be a tangent hyperplane of K, with K lying above this hyperplane.

Then bd K can be given locally, close to p = 0, as

d—1
(3.1) ra=f(@1,. .. xa1) = £(0,...,0)+ > £, (0,...,0)z;
=1

d—1
+(1/2) Y foa, (0, 0)zim; + o(af + -+ + 2] y)

1,j=1

d—1
= (1/2) Z friz; (0., 0)wizy +o(@] + - +a3_;).
i,j=1
From now on we will frequently write € rather than ¢, to emphasize its small-

ness. Consider the outer normal of K at p =0, and the point p* € bd K¢

lying on this outer normal, below p (i.e., on the negative xg4-axis, with 0
included). Let

(3.2) c(p) = —(8/0t) f'(0,...,0)le=0 (>0).
This number ¢(p) can be expressed by the values of the function
[0,1] x S471 5 (t,u) — o' (u) € (0,00)

and its first partial derivatives at (0,p/||p||). We have to use the transition
map between two coordinate systems, one being the polar coordinate system
in R%, and the other one being the rectangular coordinate system introduced
above. However, the explicit formula is not needed. Then non-negativity of
D0 (u)/0t for t = 0, for each u € S?~1, is equivalent to non-negativity of ¢(p),
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for any boundary point p of K. Observe that all boundary points p° of K¢
(which contains K') can occur here. Namely, for p* € bd K¢ we can consider
its image p by the nearest point map R?\ int K — bd K: then p? lies on the
outer normal of K at p.

Close to p®, bd K¢ can be given in the coordinate system (x1,...,2q)
locally as

d—1
(33)  wa=f (w1, mg-1) = f5(0,...,0) + > f5(0
=1

+(1/2) Z fiz, ,0)ziz; + 0(33% +- Tt 373—1)
i,j=1

= —(e(p) + 0(1)e + 0(e)\f23 + -+ 2%,

+(1/2) Z Joiay (0, 0)agay + O(e) (2t + - +af_y) +o(al +...251).
4,j=1

In (3.3) we used that the values of the functions f and f° and their first
and second derivatives with respect to x1, ..., x4 differ by at most O(e)
(cf. (3.1)), and we used also (3.2).

We will need these expansions only for the case when

(3.4) x% + -+ 33?1—1 =0(e)

(the reason for this will be given later, just below (3.11)). So we suppose
validity of (3.4) in the following.
By (3.4), (3.3) becomes

(3.5) rqg = f(z1,...,Ta-1)

=—(c(p) +o(1)) e+ (1/2) Z faiw; (0., 0)asz; .

,j=1

We have to consider the intersection S¢ of K¢ with the hyperplane of
equation x4 = 0, and have to estimate its kth intrinsic volume, for 1 < k
<d—1 (8 for “section”). For some g9 > 0, for all € € [0, 9] we have that
K°* is C’i; we may suppose €9 = 1. Therefore either p € int K¢, and then
SN (int K¢) # 0, or p € bd K¢, and then S° is the one point set consisting
of the point of tangency of K¢ with its tangent hyperplane given by x4 = 0.
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Observe that in both these cases S¢ is the convex hull of the intersection of
bd K¢ with the hyperplane of equation x4 = 0. For x4 =0, (3.5) becomes

(3.6) (1/2) Z fria, ( 0)ziz; = (c(p) + o(1))e.

1,j=1

Thus we have to estimate the kth intrinsic volume of S¢, which set is the
convex hull of the set given by (3.6), that is also the star-shaped hull of the
set given by (3.6). This star-shaped hull is

(3.7)

S = {(:El,...,asd 1) | (1/2) Z Jia, 0)z;x; < (c(p) + 0(1))5}.
i,j=1
(3.8) If ¢(p) > 0, then let 0 < ¢1 < ¢(p) < c2 be arbitrary.
' If ¢(p) = 0, then let 0 < ¢y be arbitrary.

First we deal with the case 0 < ¢(p). Then, for € > 0 sufficiently small,
we have by (3.7)

d—1
(3.9) S5 = {<x1,...,a;d_1) | D (1/2)fr, (0, ., Oz < cle}

ij=1

CSaz{(xl,...,xd 1 1/2 foxj CBZ.’L‘J<( (p)+0(1))8}

1,j=1

C 55 = {(xl,...,xd 1) | (1/2) fo:cJ xlx]<02€}

i,7=1

We are going to give lower and upper estimates for Vi (5¢) (cf. (3.12)). For
0 = ¢(p) the same considerations yield only the upper estimate for Vj(S¢)
n (3.12): then we use the trivial lower estimate 0 < V}(S¢) rather than the

one in (3.12) (cf. (3.13)).
We write

(310) E = {(.Tl,... , Ld— 1 1/2 Z fmz] (L'Z(L'] < 1}
,j=1

Then E is the convex hull of the Dupin indicatrix of K at p € bd K, taken
in our chosen rectangular coordinate system. By positive definiteness of the
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quadratic form (1/2) ij_il f2:2,(0,...,0)z;x;, the set E is an 0-symmetric
ellipsoid. Then (3.9) can be rewritten as

(3.11) (c16)V2E = S5 € 5% C S5 = (c2¢)/?E.

Therefore even the third, i.e., largest set in (3.9) (and (3.11)) has a dis-
tance at most O(y/¢) from 0, so that we need to consider only such points
(w1,...,24_1), for which 2% +--- + xfl_l = O(e). This justifies the supposi-
tion of the validity of (3.4).

By kth degree positive homogeneity and monotonicity of Vi(-), (3.11)
implies

(3.12) 0 < (c18)*?Vi(E) = Vi((c1e)V2E) < Viu(S59)
< Vi((c26)Y2E) = (c20)**Vi(E) .
As mentioned just below (3.9), for ¢(p) = 0 we have, rather than (3.12),
(3.13) 0 < Vi(S%) < (c20)*?Vi(E) .
Hence for 0 < ¢(p) by (3.12), while for 0 = ¢(p) by (3.13), we have

(3.14) Vi(59) = ((c(p) + o(1))e) *Vi(B)

for ¢ — 0. Namely, for 0 < ¢(p) we may choose both ¢, co arbitrarily close
to ¢(p), and for 0 = ¢(p) we may choose c2 > 0 arbitrarily close to 0 = ¢(p)
(cf. (3.8)). We rewrite (3.14) as

(3.15) lim Vi (5°)/ [*2Vi(B)] = e(p)*/2.

By (3.15) K and lim._ (Vj(S%)/e¥/?), for each p € bd K, determine c(p)
uniquely. (Recall that & > 1.)

Last, taking into account (3.2), knowledge of this non-negative number
¢(p), for each boundary point p of K, determines the non-negative partial
derivative of o!(u) with respect to ¢, for t = 0 and each u € S4~!. For this we
have to use the values of the function [0,1] x S9=1 3 (t,u) + o' (u) € (0,00)
and its first partial derivatives at (0,p/|p||), and use the transition map
between two coordinate systems: one is the polar coordinate system in R?,
and the other one is the rectangular coordinate system used above in the
proof. [

PRrROOF OF COROLLARY 2. It follows immediately from Theorem 1. We
only note that invariance of the first partial derivative of the perturbation
with respect to t, for ¢t = 0, under the map T in the rectangular coordi-
nate systems at x, Tx € bd K used in the proof of Theorem 1, implies its
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invariance in the original polar coordinate system in R? under the map 7.
O

PROOFS OF THEOREM 4 AND REMARK 6. We give the proof for Theo-
rem 4, which concerns the kth intrinsic volume Vj(-). However, again we will
always stress (with italics or in brackets) what properties of Vj(-) are used,
in order to see that the proof works also more generally for the functions
GH(-) from Remark 6.

We use the notations of the proof of Theorem 1. In particular, in the
whole proof, when the sign o(-) is applied, it is meant for £ — 0. Again we
suppose in the whole proof that € > 0 is sufficiently small.

1. First we consider the case k = d, i.e., we consider the d-volume of the
“caps” cut off from K¢ by the tangent hyperplanes of K. We will write V (+)
rather than V().

Till (3.8) we just use the considerations from the proof of Theorem 1.

Again, first we deal with the case 0 < ¢(p).

In (3.9) we had inclusions of (“in general”) (d — 1)-dimensional compact
convex sets in the hyperplane of equation x4 = 0. This has to be replaced
by inclusions of (“in general”) d-dimensional compact convex sets in RY.

We have to investigate the “cap” cut off from K¢ by the tangent hyper-
plane of K with equation x4 = 0, i.e., the set

(3.16)

d—1
C*® .= {(ml,...,xd) ‘ fa(l‘l,---yxd—l) = fa(O,,O) +Zfrel(0
=1

+(1/2) Z fas acJ )xlx] + O(£E1 + -+ l’g_l) <zg < O}
i,j=1

(C for “cap”; observe that C¢ lies below the tangent hyperplane of K with
equation x4 = 0, but above the graph of the function f¢, which lies on bd K).
We are going to give lower and upper estimates for V(Ca) (cf. (3.22)). For
0 = ¢(p) the same considerations yield only (3.22) with omission of the mid-
dle expression, and replacing the equality sign by the < sign. Then we use
the trivial lower estimate 0 < V(C?) rather than the one derived from (3.20),
second inequality. However, this gives the same formula (3.22), but omitting
the second expression there, also for 0 = ¢(p).

For ¢(p) > 0 and e > 0 sufficiently small, taking into account (3.5), the
set C° in (3.16) contains
(3.17)

Ci = {(xl,..., ! —ci1e + (1/2) Z fria, ( ,0)zx; <3:d<0}

,j=1
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and is contained in

(3.18)
d—1
CS = {(171, R ,."L‘d) ‘ —C2€ + (1/2) Z frﬂj(o, R ,O)SL‘Z'."L‘]' <zg < O} .
i,j=1
That is, we have
(3.19) CicCccda;.

Hence, by monotonicity and non-negativity of V(-), we have
(3.20) 0 < V(C5) < V(C%) < V(CS).

For i = 1,2 the sets C¥ are bounded by the (d — 1)-ellipsoids
S¢ (cf. (3.9)) lying in the hyperplane given by z4 =0, and
by portions of the elliptic paraboloids given by x4 = —c;e +
(1/2) Zf;il fr:2,(0,...,0)z;x;, lying below S5 .

The volume of Cf can be calculated as 2/(d+ 1) times the volume of
its circumscribed right cylinder (C§)', with upper base the ellipsoid S5 and
height c;e. In fact, by applying an affinity we may suppose E = B%! and
cie = 1, and then we calculate V(C5)/V((C£)’) by using polar coordinates
in the hyperplane given by x4 = 0, finding that it is actually 2/(d + 1), as
asserted in the previous sentence. (For the case of GH(-) we observe that
this affinity can be factorized as the product of a magnification in a positive
ratio, and a volume-preserving affinity.) Then for ¢ > 0 sufficiently small,
analogously to (3.14) we have, both for 0 < ¢(p) and for 0 = ¢(p) (for 0 =
¢(p) omitting the middle term)

(3.21)

(3.22) V(CF) = [ -t / ] ((ep) +o(1))e) -
e (02551557 o
Kd— 2
_ {[det((l/z)fx; )] o gy (elp) + of1))e) 47

(For Remark 6 we do not have (3.22), since we do not know G (E). First
suppose 0 < ¢(p). Then we have the analogue of (3.20) with G, and by
(3.21) and (3.8) we get G ((C%)")/GH((C5)") = 1+ 0(1). Therefore, we have
the analogue of (3.22), namely GH(C?) = GH(E") - ((¢(p) + o(1))e)@+1)/2,
Here FE’ is the set bounded by FE (defined in (3.10)) and by the portion of

the elliptic paraboloid given by 4 = -1+ (1/2) - Zf;il friz; (0,...,0) 35,
lying below E. The case 0 = ¢(p) is treated like in the case of V(-), only

using G*7(-) rather than V().)
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Hence, analogously to (3.15), we have from (3.22)

' o [det((1/2)furm, (0,...,0))] 2
(3.23) 21_13% V(CF)- [ "id—l[dil} e(d+1)/2 } = C(p)(d+l)/2-

By (3.23) K and lim._o(V(C?)/(4T1)/2) for each p € bd K, determine c(p)
uniquely. (For Remark 6, we use here once more G (E’), like below (3.22).)
Then the repetition of the last paragraph of the proof of Theorem 1 finishes
the proof for the case k = d.

2. We turn to the case 1 < k < d — 1. Again, first we deal with the case
0 < c(p).

For 0 = ¢(p) the same considerations yield for Vj(C*) only (3.29). Then
we use the trivial lower estimate (3.25) rather than (3.24). However, this
gives the same formula (3.30), also for 0 = ¢(p).

By (3.11) we have (cie)'/2E =S¢ € S¢ € C°. Here for ¢ — 0 we may
choose 0 < ¢; = c(p) +o(1) (cf. (3.8)), hence C° D ((c¢(p)+ o(1))e)'/2E.
Thus, by kth degree positive homogeneity and monotonicity of Vi(), we
have

(3.24) Vi(C%)/Vi(E) - M%) = (e(p) + o(1))*/?.
For 0 = ¢(p) we use the trivial estimate
(3.25) Vi(CF)/[Vi(E) -] > 0.

We turn to the upper estimate. Recall that ¢ > 0 (cf. (3.8)). With (C5)’
as defined below (3.21) we have by (3.19) C¢ C C5 C (C5)’. By monotonicity
of Vi () this implies Vi(C?)/Vi((C5)') < 1. Equivalently, using kth degree
positive homogeneity of Vi(-), we have

(3.26) Vi(C/(c28)?) J Vi (C5)' [ (e26) ) < 1.

Now observe that (C5)'/(coe)'/? is a right cylinder with base S5/(coe)'/? = E
(cf. (3.11)) and height (c2¢)/(cog)'/? = (c2e)Y/2. Therefore (C5)’/(coe)/? is
in the (c2¢)Y/2-neighbourhood of E.

Therefore we have, by continuity of Vi(-), that

(3.27) Vi ((C5)'/(c26)V?) JVi(E) < 1+ 0(1).
Multiplying (3.26) and (3.27) we get
(3.28) Vi (CF/(c26)Y?) JVi(E) < 1+0(1).
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Since we may choose cg > 0 arbitrarily close to ¢(p) (cf. (3.8)), therefore once
more by kth degree positive homogeneity of Vi(-), (3.28) implies

(329)  Vi(C®)/ [Vi(E) - €"?] < &2 (1+ (1)) = (c(p) + o(1))*/2.

Then for 0 < ¢(p) (3.24), while for 0 = ¢(p) (3.25), together with (3.29)
give

(3.30) Vi(C9)/ [Va(E) - €] = (c(p) +o(1)"2.
We rewrite (3.30) as

(3.31) lim Vi,(C%) / [Vi(E) k2] = c(p)k/2.

By (3.31) K and lim._o(Vi(C®)/e¥/?), for each p € bd K, determine c(p)
uniquely. (Recall that k > 1.)

Then the repetition of the last paragraph of the proof of Theorem 1
finishes the proof for the case 1 < k<d—1. O

PRrROOF OF COROLLARY 5. It follows immediately from Theorem 4, also
taking into account the proof of Corollary 2. [
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