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minimal period 4z0. He proved that any such solution has to be the sine
function f(x) = sin ( π

2z0
x), x ∈ R. We refer also to [4].

In [6], Sahoo studied the generalization

(1.2) f(x− y + z0) + g(x+ y + z0) = 2f(x)f(y) x, y ∈ G

of the functional equation (1.1). He determined the general solutions of
this equation on an abelian group G. Stetkær [9, Exercise 9.18] found the
complex-valued solution of equation

(1.3) f(xy−1z0)− f(xyz0) = 2f(x)f(y), x, y ∈ G,

when G is a not necessarily abelian group and z0 is a fixed element in the
center of G. Recently, Perkins and Sahoo [5] replaced the group inversion
by an involution τ : G → G and they obtained the abelian, complex-valued
solutions of equation

(1.4) f
(
xτ(y)z0

)
− f(xyz0) = 2f(x)f(y), x, y ∈ G.

Stetkær [7] extended the results of Perkins and Sahoo [5] about equation
(1.4) to the more general case where G is a semigroup and the solutions are
not assumed to be abelian.

The first purpose of this paper is to extend the results of Stetkær [7] to
the following generalization of Van Vleck’s functional equation for the sine:

(1.5) µ(y)f
(
xτ(y)z0

)
− f(xyz0) = 2f(x)f(y), x, y ∈ G,

where µ is a multiplicative function of a semigroupG such that µ
(
xτ(x)

)
= 1

for all x ∈ G. As in the previous results the main idea is to relate the func-
tional equation (1.4) to the corresponding d’Alembert’s functional equation.
In our case we shall relate (1.5) to the following version of d’Alembert’s
functional equation

(1.6) g(xy) + µ(y)g
(
xτ(y)

)
= 2g(x)g(y), x, y ∈ G

and we apply the crucial propositions [9, Proposition 9.17(c)] and [9, Propo-
sition 8.14(a)].

Replacing f by −F in (1.5) we arrive at

F (xyz0)− µ(y)F
(
xτ(y)z0

)
= 2F (x)F (y), x, y ∈ G

which shows the similarity between (1.5) and (1.6).
The second purpose of this paper is to obtain the solutions of a variant

of Van Vleck’s functional equation

(1.7) µ(y)f
(
σ(y)xz0

)
− f(xyz0) = 2f(x)f(y), x, y ∈ G
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Abstract. In [7] H. Stetkær obtained the solutions of Van Vleck’s func-
tional equation

f(xτ(y)z0)− f(xyz0) = 2f(x)f(y), x, y ∈ S

for the sine where S is a semigroup, τ is an involution of S and z0 is a fixed element
in the center of S. The purpose of this paper is to determine the complex-valued
solutions of the following extension of Van Vleck’s functional equation for the sine

µ(y)f(xτ(y)z0)− f(xyz0) = 2f(x)f(y), x, y ∈ S

where µ : S → C is a multiplicative function such that µ(xτ(x)) = 1 for all x ∈ S.
Furthermore, we obtain the solutions of a variant of Van Vleck’s functional equa-
tion

µ(y)f(σ(y)xz0)− f(xyz0) = 2f(x)f(y), x, y ∈ M

for the sine on a monoid M , where σ is an involutive automorphism of M .

1. Introduction

Van Vleck [11,12] studied the continuous solutions f : R → R, f ̸= 0 of
the functional equation

(1.1) f(x− y + z0)− f(x+ y + z0) = 2f(x)f(y), x, y ∈ R,

where z0 > 0 is fixed. He showed first that all solutions are periodic with
period 4z0, and then he selected for his study any continuous solution with
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minimal period 4z0. He proved that any such solution has to be the sine
function f(x) = sin ( π

2z0
x), x ∈ R. We refer also to [4].

In [6], Sahoo studied the generalization

(1.2) f(x− y + z0) + g(x+ y + z0) = 2f(x)f(y) x, y ∈ G

of the functional equation (1.1). He determined the general solutions of
this equation on an abelian group G. Stetkær [9, Exercise 9.18] found the
complex-valued solution of equation

(1.3) f(xy−1z0)− f(xyz0) = 2f(x)f(y), x, y ∈ G,

when G is a not necessarily abelian group and z0 is a fixed element in the
center of G. Recently, Perkins and Sahoo [5] replaced the group inversion
by an involution τ : G → G and they obtained the abelian, complex-valued
solutions of equation

(1.4) f
(
xτ(y)z0

)
− f(xyz0) = 2f(x)f(y), x, y ∈ G.

Stetkær [7] extended the results of Perkins and Sahoo [5] about equation
(1.4) to the more general case where G is a semigroup and the solutions are
not assumed to be abelian.

The first purpose of this paper is to extend the results of Stetkær [7] to
the following generalization of Van Vleck’s functional equation for the sine:

(1.5) µ(y)f
(
xτ(y)z0

)
− f(xyz0) = 2f(x)f(y), x, y ∈ G,

where µ is a multiplicative function of a semigroupG such that µ
(
xτ(x)

)
= 1

for all x ∈ G. As in the previous results the main idea is to relate the func-
tional equation (1.4) to the corresponding d’Alembert’s functional equation.
In our case we shall relate (1.5) to the following version of d’Alembert’s
functional equation

(1.6) g(xy) + µ(y)g
(
xτ(y)

)
= 2g(x)g(y), x, y ∈ G

and we apply the crucial propositions [9, Proposition 9.17(c)] and [9, Propo-
sition 8.14(a)].

Replacing f by −F in (1.5) we arrive at

F (xyz0)− µ(y)F
(
xτ(y)z0

)
= 2F (x)F (y), x, y ∈ G

which shows the similarity between (1.5) and (1.6).
The second purpose of this paper is to obtain the solutions of a variant

of Van Vleck’s functional equation

(1.7) µ(y)f
(
σ(y)xz0

)
− f(xyz0) = 2f(x)f(y), x, y ∈ G
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for the sine where G is a monoid (semigroup with identity element e), and σ
is an involutive automorphism: That is σ(xy) = σ(x)σ(y) and σ

(
σ(x)

)
= x

for all x, y. In this case the main idea is to relate the functional equation
(1.7) to the following variant of d’Alembert’s functional equation

(1.8) g(xy) + µ(y)g
(
σ(y)x

)
= 2g(x)g(y), x, y ∈ G

and apply the result obtained by Elqorachi and Redouani in [2, Lemma 3.2].
We refer also to [10] in which the solutions of equation (1.8) with µ = 1 are
obtained on semigroups.

The new feature of our paper is the introduction of the multiplicative
function µ in (1.5) and (1.7).

2. Solutions of equation (1.5) on semigroups

Throughout this section S denotes a semigroup and τ : S → S is an in-
volution of S. That is τ(xy) = τ(y)τ(x) and τ

(
τ(x)

)
= x for all x, y ∈ S.

The element z0 denotes a fixed element in the center of S. Finally µ : S → C
is a multiplicative function such that µ

(
xτ(x)

)
= 1 for all x ∈ S.

We first prove the following lemmas which are generalizations of the use-
ful lemmas obtained by Stetkær [7].

Lemma 2.1. Let f ̸= 0 be a solution of (1.5). Then for all x ∈ S we
have

f(x) = −µ(x)f
(
τ(x)

)
,(2.1)

f(z0) ̸= 0,(2.2)

f
(
z20
)
= 0,(2.3)

f
(
xτ(z0)z0

)
= µ

(
τ(z0)

)
f(x)f(z0),(2.4)

f
(
xz20

)
= −f(z0)f(x),(2.5)

µ(x)f
(
τ(x)z0

)
= f(xz0).(2.6)

Let G be a group and τ(x) = x−1 for all x ∈ G. Then f(z0) = µ(z0) for any

solution f ̸= 0 of (1.5) and f(xz40) = µ(z0)
2f(x) for all x ∈ G.

Proof. If we replace y by τ(y) in (1.5) we obtain

(2.7) µ
(
τ(y)

)
f(xyz0)− f

(
xτ(y)z0

)
= 2f(x)f

(
τ(y)

)
.
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By multiplying (2.7) by µ(y) and using the assumption that µ
(
yτ(y)

)
= 1

we get

(2.8) µ(y)f
(
xτ(y)z0

)
− f(xyz0) = −2f(x)µ(y)f

(
τ(y)

)
.

By comparing (1.5) with (2.8) we get −f(x)µ(y)f
(
τ(y)

)
= f(x)f(y) for all

x, y ∈ S. Since f ̸= 0, then we have (2.1).
Setting x = τ(z0) in (1.5) and using (2.1) we see that

µ(y)f
(
τ(z0)τ(y)z0

)
− f

(
τ(z0)yz0

)
(2.9)

= 2f
(
τ(z0)

)
f(y) = −2µ

(
τ(z0)

)
f(z0)f(y).

On the other hand by using (2.1) and µ
(
xτ(x)

)
= 1 for all x ∈ G we get

µ(y)f
(
τ(z0)τ(y)z0

)
= −µ(y)µ

(
τ(z0)τ(y)z0

)
f
(
τ(z0)yz0

)
= −f

(
τ(z0)yz0

)
.

So, equation (2.9) implies that

(2.10) f
(
τ(z0)yz0

)
= µ

(
τ(z0)

)
f(z0)f(y)

for all y ∈ S. Since z0, τ(z0) are in the center of S then we obtain (2.4).
Putting y = z0 in (1.5) and using (2.4) and µ

(
z0τ(z0)

)
= 1 we get

µ(z0)f
(
xτ(z0)z0

)
− f

(
xz20

)

= µ(z0)µ
(
τ(z0)

)
f(z0)f(x)− f

(
xz20

)
= 2f(x)f(z0).

So, we have f
(
xz20

)
= −f(x)f(z0) for all x ∈ S, which proves (2.5).

By replacing x by xz0 in the functional equation (1.5) and using (2.5)
we obtain

2f(xz0)f(y) = µ(y)f(xτ(y)z0
2)− f

(
xyz20

)

= −µ(y)f(z0)f
(
xτ(y)

)
+ f(z0)f(xy).

If f(z0) = 0, then f(y)f(xz0) = 0 for all x, y ∈ S. Since f ̸= 0 then f(xz0)
= 0 for all x ∈ S, so we have µ(y)f

(
xτ(y)z0

)
− f(xyz0) = 0 = 2f(x)f(y) for

all x, y ∈ S from which we deduce that f(x) = 0 for all x ∈ S. This contra-
dicts the assumption that f ̸= 0 and it follows that f(z0) ̸= 0.

By replacing x by zτ(z) in (2.1) and using µ
(
zτ(z)

)
= 1 we get

f
(
zτ(z)

)
= 0 for all z ∈ S.

From (2.5) and (2.1) we have

0 = f(τ
(
z20
)
z20) = −f(z0)f(τ

(
z20
)
) = µ(τ

(
z20
)
)f

(
z20
)
f(z0).
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By multiplying (2.7) by µ(y) and using the assumption that µ
(
yτ(y)

)
= 1

we get

(2.8) µ(y)f
(
xτ(y)z0

)
− f(xyz0) = −2f(x)µ(y)f

(
τ(y)

)
.

By comparing (1.5) with (2.8) we get −f(x)µ(y)f
(
τ(y)

)
= f(x)f(y) for all

x, y ∈ S. Since f ̸= 0, then we have (2.1).
Setting x = τ(z0) in (1.5) and using (2.1) we see that

µ(y)f
(
τ(z0)τ(y)z0

)
− f

(
τ(z0)yz0

)
(2.9)

= 2f
(
τ(z0)

)
f(y) = −2µ

(
τ(z0)

)
f(z0)f(y).

On the other hand by using (2.1) and µ
(
xτ(x)

)
= 1 for all x ∈ G we get

µ(y)f
(
τ(z0)τ(y)z0

)
= −µ(y)µ

(
τ(z0)τ(y)z0

)
f
(
τ(z0)yz0

)
= −f

(
τ(z0)yz0

)
.

So, equation (2.9) implies that

(2.10) f
(
τ(z0)yz0

)
= µ

(
τ(z0)

)
f(z0)f(y)

for all y ∈ S. Since z0, τ(z0) are in the center of S then we obtain (2.4).
Putting y = z0 in (1.5) and using (2.4) and µ

(
z0τ(z0)

)
= 1 we get

µ(z0)f
(
xτ(z0)z0

)
− f

(
xz20

)

= µ(z0)µ
(
τ(z0)

)
f(z0)f(x)− f

(
xz20

)
= 2f(x)f(z0).

So, we have f
(
xz20

)
= −f(x)f(z0) for all x ∈ S, which proves (2.5).

By replacing x by xz0 in the functional equation (1.5) and using (2.5)
we obtain

2f(xz0)f(y) = µ(y)f(xτ(y)z0
2)− f

(
xyz20

)

= −µ(y)f(z0)f
(
xτ(y)

)
+ f(z0)f(xy).

If f(z0) = 0, then f(y)f(xz0) = 0 for all x, y ∈ S. Since f ̸= 0 then f(xz0)
= 0 for all x ∈ S, so we have µ(y)f

(
xτ(y)z0

)
− f(xyz0) = 0 = 2f(x)f(y) for

all x, y ∈ S from which we deduce that f(x) = 0 for all x ∈ S. This contra-
dicts the assumption that f ̸= 0 and it follows that f(z0) ̸= 0.

By replacing x by zτ(z) in (2.1) and using µ
(
zτ(z)

)
= 1 we get

f
(
zτ(z)

)
= 0 for all z ∈ S.

From (2.5) and (2.1) we have

0 = f(τ
(
z20
)
z20) = −f(z0)f(τ

(
z20
)
) = µ(τ

(
z20
)
)f

(
z20
)
f(z0).
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Since f(z0) ̸= 0 we get µ(τ
(
z20
)
)f

(
z20
)
= 0. It follows from 1 = µ

(
xτ(x)

)
=

µ(x)µ
(
τ(x)

)
, that µ(x) ̸= 0 for all x ∈ S. It is thus immediate that

f
(
z20
)
= 0. Putting x = z20 in (1.5) and using (2.3) to get µ(y)f

(
z20τ(y)z0

)
= f(z20yz0) and from (2.5) we obtain −µ(y)f(z0)f

(
τ(y)z0

)
= −f(z0)f(yz0).

Since f(z0) ̸= 0 then we get µ(y)f
(
τ(y)z0

)
= f(yz0) for all y ∈ S.

The statements for the group case are consequences of the formulas (2.4)
and (2.5). �

Lemma 2.2. Let f ̸= 0 be a solution of equation (1.5). Then
(a) the function

g(x) :=
f(xz0)

f(z0)
for x ∈ S

is a non-zero abelian solution of d’Alembert’s functional equation (1.6).
(b) We have g = χ+µχ◦τ

2 , where χ : S → C, χ ̸= 0, is a multiplicative
function.

Proof. By using (2.4) and (2.5) we get

f(z0)
2[g(xy) + µ(y)g

(
xτ(y)

)
] = µ(y)f(z0)f

(
xτ(y)z0

)
+ f(z0)f(xyz0)

= µ(y)µ(z0)f
(
xτ(y)z0τ(z0)z0

)
− f

(
xyz0z

2
0

)

= µ(yz0)f
(
(xz0)τ(yz0)z0

)
− f

(
(xz0)(yz0)z0

)
= 2f(xz0)f(yz0),

which implies that g satisfies (1.6). Furthermore, g
(
z20
)
= f(z20z0)/f(z0) =

−f(z0)f(z0)/f(z0) = −f(z0) ̸= 0, so g ̸= 0.
As g is a solution of equation (1.6) then by [8, Proposition 9.17(c)] g is

a pre-d’Alembert function.
Note that g(z0) = f

(
z20
)
/f(z0) = 0,

d(z0) = 2g(z0)
2 − g

(
z20
)
= 0−

(
− f(z0)

)
= f(z0) ̸= 0.

So, we have g(z0)
2 ̸= d(z0) and according to [9, Proposition 8.14(a)] g is

abelian.
(b) is immediate from [9, Proposition 9.31]. �
Now, we are ready to prove the first main result of the present paper.

Theorem 2.3. The non-zero solutions f : S → C of the functional equa-
tion (1.5) are the functions of the form

(2.11) f = µ(z0)χ
(
τ(z0)

) χ− µχ ◦ τ
2

= χ(z0)
µχ ◦ τ − χ

2
,
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where χ : S → C is a multiplicative function such that χ(z0) ̸= 0 and
µ(z0)χ

(
τ(z0)

)
= −χ(z0). Furthermore, f(z0) = µ(z0)χ

(
z0τ(z0)

)
.

If S is a group and τ is the group inversion, then χ
(
z20
)
= −µ(z0) and

f(z0) = µ(z0) for any non-zero solution of equation (1.5).
If S is a topological semigroup and τ : S → S, µ : S → C are continuous,

then the non-zero solution f of equation (1.5) is continuous, if and only if
χ is continuous.

Proof. Let f : S → C be a non-zero solution of equation (1.5). Then
we get

f(x) =
µ(z0)f

(
xτ(z0)z0

)
− f(xz0z0)

2f(z0)
=

µ(z0)g
(
xτ(z0)

)
− g(xz0)

2

for all x ∈ S and where g is the function defined in Lemma 2.2. So, from
Lemma 2.2 we have g = χ+µχ◦τ

2 and then after an easy computation we ob-
tain

(2.12) f =
χ(z0)− µ(z0)χ

(
τ(z0)

)
2

µχ ◦ τ − χ

2
.

From (2.6) we have µ(x)f
(
τ(x)z0

)
= f(xz0) for all x ∈ S. Substituting

(2.12) into (2.6) we get after an elementary computation that

[µ(z0)χ
(
τ(z0)

)
+ χ(z0)][χ− µχ ◦ τ ] = 0.

The rest of the proof is similar to the one by Stetkær [7]. �
Under the hypotheses of Theorem 2.3 any solution f of (1.5) is abelian.

3. Solutions of equation (1.7) on monoids

Throughout this section M denotes a monoid and σ : M → M is an in-
volutive automorphism of M . The element z0 denotes a fixed element in
the center of M . Finally µ : M → C is a multiplicative function such that
µ
(
xσ(x)

)
= 1 for all x ∈ M . The following useful lemma will be used later.

Lemma 3.1. Let f ̸= 0 be a solution of (1.7). Then
(a) For all x ∈ M we have

f(x) = −µ(x)f
(
σ(x)

)
,(3.1)

f(z0) ̸= 0,(3.2)

f(xσ(z0)z0) = µ
(
σ(z0)

)
f(x)f(z0),(3.3)

Acta Mathematica Hungarica

B. BELAID and E. ELHOUCIEN262



Acta Mathematica Hungarica 150, 2016

6 B. BELAID and E. ELHOUCIEN

where χ : S → C is a multiplicative function such that χ(z0) ̸= 0 and
µ(z0)χ

(
τ(z0)

)
= −χ(z0). Furthermore, f(z0) = µ(z0)χ

(
z0τ(z0)

)
.

If S is a group and τ is the group inversion, then χ
(
z20
)
= −µ(z0) and

f(z0) = µ(z0) for any non-zero solution of equation (1.5).
If S is a topological semigroup and τ : S → S, µ : S → C are continuous,

then the non-zero solution f of equation (1.5) is continuous, if and only if
χ is continuous.

Proof. Let f : S → C be a non-zero solution of equation (1.5). Then
we get

f(x) =
µ(z0)f

(
xτ(z0)z0

)
− f(xz0z0)

2f(z0)
=

µ(z0)g
(
xτ(z0)

)
− g(xz0)

2

for all x ∈ S and where g is the function defined in Lemma 2.2. So, from
Lemma 2.2 we have g = χ+µχ◦τ

2 and then after an easy computation we ob-
tain

(2.12) f =
χ(z0)− µ(z0)χ

(
τ(z0)

)
2

µχ ◦ τ − χ

2
.

From (2.6) we have µ(x)f
(
τ(x)z0

)
= f(xz0) for all x ∈ S. Substituting

(2.12) into (2.6) we get after an elementary computation that

[µ(z0)χ
(
τ(z0)

)
+ χ(z0)][χ− µχ ◦ τ ] = 0.

The rest of the proof is similar to the one by Stetkær [7]. �
Under the hypotheses of Theorem 2.3 any solution f of (1.5) is abelian.

3. Solutions of equation (1.7) on monoids

Throughout this section M denotes a monoid and σ : M → M is an in-
volutive automorphism of M . The element z0 denotes a fixed element in
the center of M . Finally µ : M → C is a multiplicative function such that
µ
(
xσ(x)

)
= 1 for all x ∈ M . The following useful lemma will be used later.

Lemma 3.1. Let f ̸= 0 be a solution of (1.7). Then
(a) For all x ∈ M we have

f(x) = −µ(x)f
(
σ(x)

)
,(3.1)

f(z0) ̸= 0,(3.2)

f(xσ(z0)z0) = µ
(
σ(z0)

)
f(x)f(z0),(3.3)
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f
(
xz20

)
= −f(z0)f(x),(3.4)

µ(x)f
(
σ(x)z0

)
= f(xz0).(3.5)

(b) the function

g(x) :=
f(xz0)

f(z0)
for x ∈ M

is a non-zero solution of a variant of d’Alembert’s functional equation

(3.6) g(xy) + µ(y)g
(
σ(y)x

)
= 2g(x)g(y), x, y ∈ M.

(c) We have g = χ+µχ◦σ
2 , where χ : M → C, χ ̸= 0, is a multiplicative

function.

Proof. (a) Putting y = e in (1.7) we get f(xz0)− f(xz0) = 2f(x)f(e)
= 0. Since f ̸= 0 then we have f(e) = 0.

Taking x = e in (1.7) and using f(e) = 0 we get (3.5).
By replacing x by σ(x) in (1.7) we obtain

µ(y)f
(
σ(y)σ(x)z0

)
− f

(
σ(x)yz0

)
= 2f

(
σ(x)

)
f(y).

Since from (3.5) we have

µ(y)f
(
σ(y)σ(x)z0

)
= µ(y)f

(
σ(yx)z0

)

= µ(y)µ
(
σ(yx)

)
f(yxz0) = µ

(
σ(x)

)
f(yxz0),

it follows that

µ(x)[µ
(
σ(x)

)
f(yxz0)− f

(
σ(x)yz0

)
] = µ(x)2f

(
σ(x)

)
f(y)

= f(yxz0)− µ(x)f
(
σ(x)yz0

)
.

Since

f(yxz0)− µ(x)f
(
σ(x)yz0

)
= −[µ(x)f

(
σ(x)yz0

)
− f(yxz0)] = −2f(y)f(x),

we conclude that

−2f(x)f(y) = 2µ(x)f
(
σ(x)

)
f(y)

for all x, y ∈ M . Since f ̸= 0 then we get (3.1).
Putting x = σ(z0) in (1.7) and using (3.1) we get

µ(y)f
(
σ(y)σ(z0)z0

)
− f

(
σ(z0)yz0

)
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= 2f
(
σ(z0)

)
f(y) = −2µ

(
σ(z0)

)
f(z0)f(y).

On the other hand we have

µ(y)f
(
σ(y)σ(z0)z0

)
= −µ(y)µ

(
σ(y)σ(z0)z0

)
f
(
yz0σ(z0)

)
= −f

(
yz0σ(z0)

)
.

Then, since z0, σ(z0) are in the center of M we get (3.3).
By replacing y by z0 in (1.7) and using (3.3) we get

µ(z0)f
(
σ(z0)xz0

)
− f

(
xz20

)

= 2f(x)f(z0) = µ(z0)µ
(
σ(z0)

)
f(x)f(z0)− f

(
xz20

)
= f(x)f(z0)− f

(
xz20

)
.

So, we deduce equation (3.4).
By replacing x by xz0 in (1.7) and using (3.4) we get

µ(y)f
(
σ(y)xz20

)
− f(xz0yz0) = 2f(xz0)f(y)

= −µ(y)f
(
σ(y)x

)
f(z0) + f(xy)f(z0).

If f(z0) = 0, then f(xz0)f(y) = 0 for all x, y ∈ M , since f ̸= 0 then f(xz0)
= 0 for all x ∈ M and from (1.7) we obtain 2f(x)f(y) = 0 for all x, y ∈ M .
This contradict the assumption that f ̸= 0 and this proves (3.2).

(b) For all x, y ∈ M we have

f(z0)
2[g(xy) + µ(y)g

(
σ(y)x

)
] = f(z0)µ(y)f

(
σ(y)xz0

)
+ f(z0)f(xyz0)

= µ(z0)µ(y)f
(
σ(y)xz0σ(z0)z0

)
− f

(
xyz0z

2
0

)

= µ(yz0)f
(
σ(yz0)xz0z0

)
− f

(
(xz0)(yz0)z0

)
= 2f(xz0)f(yz0).

Dividing by f(z0)
2 we get (3.6). Furthermore, g(e) = 1 so g ̸= 0.

(c) Now, from [2, Lemma 3.2] we get (c) and this completes the proof.
�

The second main result of this paper is:

Theorem 3.2. The non-zero solutions f : M → C of the functional
equation (1.7) are the functions of the form

(3.7) f = µ(z0)χ
(
σ(z0)

) χ− µχ ◦ σ
2

= χ(z0)
µχ ◦ σ − χ

2
,

where χ : M → C is a multiplicative function such that χ(z0) ̸= 0 and
µ(z0)χ

(
σ(z0)

)
= −χ(z0). Furthermore, f(z0) = µ(z0)χ

(
z0σ(z0)

)
.

If M is a topological monoid and that σ : M → M , µ : M → C are con-
tinuous, then the non-zero solution f of equation (1.7) is continuous, if and
only if χ is continuous.
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= 2f
(
σ(z0)

)
f(y) = −2µ

(
σ(z0)

)
f(z0)f(y).

On the other hand we have

µ(y)f
(
σ(y)σ(z0)z0

)
= −µ(y)µ

(
σ(y)σ(z0)z0

)
f
(
yz0σ(z0)

)
= −f

(
yz0σ(z0)

)
.

Then, since z0, σ(z0) are in the center of M we get (3.3).
By replacing y by z0 in (1.7) and using (3.3) we get

µ(z0)f
(
σ(z0)xz0

)
− f

(
xz20

)

= 2f(x)f(z0) = µ(z0)µ
(
σ(z0)

)
f(x)f(z0)− f

(
xz20

)
= f(x)f(z0)− f

(
xz20

)
.

So, we deduce equation (3.4).
By replacing x by xz0 in (1.7) and using (3.4) we get

µ(y)f
(
σ(y)xz20

)
− f(xz0yz0) = 2f(xz0)f(y)

= −µ(y)f
(
σ(y)x

)
f(z0) + f(xy)f(z0).

If f(z0) = 0, then f(xz0)f(y) = 0 for all x, y ∈ M , since f ̸= 0 then f(xz0)
= 0 for all x ∈ M and from (1.7) we obtain 2f(x)f(y) = 0 for all x, y ∈ M .
This contradict the assumption that f ̸= 0 and this proves (3.2).

(b) For all x, y ∈ M we have

f(z0)
2[g(xy) + µ(y)g

(
σ(y)x

)
] = f(z0)µ(y)f

(
σ(y)xz0

)
+ f(z0)f(xyz0)

= µ(z0)µ(y)f
(
σ(y)xz0σ(z0)z0

)
− f

(
xyz0z

2
0

)

= µ(yz0)f
(
σ(yz0)xz0z0

)
− f

(
(xz0)(yz0)z0

)
= 2f(xz0)f(yz0).

Dividing by f(z0)
2 we get (3.6). Furthermore, g(e) = 1 so g ̸= 0.

(c) Now, from [2, Lemma 3.2] we get (c) and this completes the proof.
�

The second main result of this paper is:

Theorem 3.2. The non-zero solutions f : M → C of the functional
equation (1.7) are the functions of the form

(3.7) f = µ(z0)χ
(
σ(z0)

) χ− µχ ◦ σ
2

= χ(z0)
µχ ◦ σ − χ

2
,

where χ : M → C is a multiplicative function such that χ(z0) ̸= 0 and
µ(z0)χ

(
σ(z0)

)
= −χ(z0). Furthermore, f(z0) = µ(z0)χ

(
z0σ(z0)

)
.

If M is a topological monoid and that σ : M → M , µ : M → C are con-
tinuous, then the non-zero solution f of equation (1.7) is continuous, if and
only if χ is continuous.
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Proof. Simple computations show that f defined by (3.7) is a solution
of (1.7). To see the converse, let f : M → C be a non-zero solution of the
functional equation (1.7). Putting y = z0 in (1.7) we get

f(x) =
µ(z0)f

(
σ(z0)xz0

)
− f(xz0z0)

2f(z0)
=

1

2
(µ(z0)g

(
σ(z0)x

)
− g(xz0))

(3.8)

for all x ∈ M and where g is the function defined in Lemma 3.1. So, from
Lemma 3.1 we have g = χ+µχ◦σ

2 , where χ : M → C, χ ̸= 0, is a multiplicative
function. Substituting this into (3.8) we find that f has the form

(3.9) f =
χ(z0)− µ(z0)χ

(
σ(z0)

)
2

µχ ◦ σ − χ

2
.

We have from (3.5) that f satisfies µ(x)f
(
σ(x)z0

)
= f(xz0) for all x ∈ M .

Applying the last expression of f in (3.5) gives after elementary computa-
tions that

[µ(z0)χ
(
σ(z0)

)
+ χ(z0)][χ− µχ ◦ σ] = 0.

Since χ ̸= µχ ◦ σ, we deduce that µ(z0)χ
(
σ(z0)

)
+ χ(z0) = 0. So, (3.9) can

be written as follows

f = µ(z0)χ
(
σ(z0)

) χ− µχ ◦ σ
2

= χ(z0)
µχ ◦ σ − χ

2
.

For the topological statement we use [9, Theorem 3.18(d)]. �
If µ = 1 and z0 = e the identity element of M , we get the following ele-

mentary result obtained by Ebanks and Stetkær [3].

Corollary 3.3 [3]. The only solution f : M → C of the functional
equation

(3.10) f
(
σ(y)x

)
− f(xy) = 2f(x)f(y), x, y ∈ M

is f = 0.

Remark 3.4. On groups the solutions of the functional equation

µ(y)f
(
σ(y)xz0

)
+ g(xyz0) = h(x)h(y), x, y ∈ G,

where z0 is an arbitrary element of G (not necessarily in the center of G)
can be found by putting f1(x) = f(xz0); f2(x) = g(xz0), so f1, f2 satisfy the
functional equation

µ(y)f1
(
σ(y)x

)
+ f2(xy) = h(x)h(y), x, y ∈ G

which was solved by the authors in [1].
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