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Similarly for irreducible multi-variable polynomials f(t1, . . . , tr) of de-
gree d, which do not have a fixed k-th power prime divisor, we conjecture
that the quantity

(1.2) #
{
t1, . . . , tr ≤ H : f(t1, . . . , tr) is k-free

}

has a positive density. Recent results in this direction are due to Tolev [20]
and Le Boudec [15] who investigate carefully asymptotic formulas for specific
polynomials. Earlier result of Poonen [16], which lays on the abc conjecture,
shows that the number of square-free values of any f(t1, . . . , tr) has a positive
density, which, however, is differently defined than the traditional density
which arises when we evaluate asymptotically (1.2).

Naturally the most extensively studied multi-variate polynomials are the
bivariate polynomials, where the situation differs in the homogeneous and
inhomogeneous case. While the power-free values of binary forms were inves-
tigated already by Greaves [5], it is only recently that results were obtained
for inhomogeneous bivariate polynomials by Hooley [13]. Later Browning [1]
achieved the smallest k > 39d/64 up to date. Note that the latter papers de-
rive not an asymptotic formula but a positive lower bound of the expected
true order of magnitude for the quantity (1.2). Nevertheless, in the case
k = d− 1 for bivariate polynomials, as in Hooley’s papers [11] and [12] for
univariate polynomials, it is expected that we can derive an asymptotic for-
mula.

In this paper we consider the inhomogeneous polynomial f(x, y) =
xyk + C for k ≥ 2 and any nonzero integer constant C. We derive an asymp-
totic formula for its k-free values when x, y ≤ H .

Theorem 1. Let f(x, y) = xyk + C ∈ Z[x, y] for k ≥ 2 and C �= 0. Let
S(H) count the k-free values of f(x, y) when 1 ≤ x, y ≤ H . Then, for some

real δ = δ(k, f) > 0, we have

S(H) = cfH
2 +O

(
H2−δ

)
,

where

cf =
∏

p

(
1−

ρ(pk)

p2k

)

and

ρ(m) = #
{
(µ, ν) ∈ (Z/mZ)2 : f(µ, ν) ≡ 0 (mod m)

}
.

Remark 1. We will show that the infinite product defining cf is con-
vergent and is not zero. For k ≥ 3 we can take δ = 1/(7k) and for k = 2 we
can take δ = 2− ε−G2, where Gk is the expression (4.8) and ε > 0 is arbi-
trary small. This way for k = 2 we can get an error term O(H1.979). We do
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Abstract. Consider the polynomial f(x, y) = xyk + C for k ≥ 2 and any
nonzero integer constant C. We derive an asymptotic formula for the k-free val-
ues of f(x, y) when x, y ≤ H . We also prove a similar result for the k-free values
of f(p, q) when p, q ≤ H are primes, thus extending Erdős’ conjecture for our
specific polynomial. The strongest tool we use is a recent generalization of the
determinant method due to Reuss.

1. Introduction

Let k and n be integers and k ≥ 2. We say that n is k-free if there is no
prime p such that pk | n. Consider the irreducible polynomial f(n) ∈ Z [x]
of degree d. Let also f(n) have no fixed k-th power prime divisor, i.e. there
is no prime p for which pk | f(n) for every n ∈ Z. Then we expect that the
set f(Z) = {f(n), n ∈ Z} contains infinitely many k-free values. The first
one who obtained a result in this direction was Ricci [19], who derived an
asymptotic formula for the quantity

(1.1) # {n ≤ H : f(n) is k-free}

when k ≥ d. Later, Erdős [3] proved the conjecture in the case k = d− 1
and d ≥ 3, and Hooley [11] obtained an asymptotic formula for each such k.
Some of the recent results on this conjecture are asymptotic formulas for
the k-free values due to Browning [1] when k ≥ (3d+ 1)/4 and d ≥ 3, and
to Heath-Brown [9] for the polynomial f(x) = xd + C when k ≥ (5d+ 3)/9
for d ≥ 3. In general the problem is harder with d increasing, but easier the
closer k is to d.
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not guarantee that this way δ is the best possible, but it is close to optimal
by the choices made during the proof.

The determinant method of Heath-Brown [7] has been already success-
fully used for counting power-free values of univariate polynomials by Heath-
Brown himself in [9] and [8], by Browning [1] and Reuss [18]. In this paper
we apply a major result of Reuss [17] which generalizes the approximate
determinant method developed by Heath-Brown in [8]. As we reduce our
problem of counting k-free values of the polynomial f(x, y) = xyk + C to
the problem of counting solutions of a Diophantine equation inside a certain
box, we can directly use a result of Reuss [17, Theorem 1], supplying one
more application of his powerful result. Note that for our particular polyno-
mial it would suffice to use Lemma 5 from Dietmann and Marmon [4], where
again by determinant method they give upper bound of the solutions of the
equation axk − byk = 1 with restricted sizes of the variables. Reuss however
resolves the more general equation alxk − blyk = C for any integers k, l, C
with 1 ≤ l < k and C �= 0.

In [3] Erdős conjectured that similarly the set f(P) = {f(p), p prime} for
a polynomial of degree d with no fixed (d− 1)-th power prime divisor con-
tains infinitely many (d− 1)-free values. Heath-Brown’s strategy for finding
an asymptotic formula for the quantity (1.1) was successfully used for this
problem as well, e.g. in [1], [9]. Finally Reuss [18] settled the conjecture for
all d ≥ 3, demonstrating the strength of this (mostly) analytic method over
other approaches, e.g. of Helfgott [10].

We extend Erdős’ conjecture for the set

f(P,P) = {f(p, q), p and q primes}

for our specific bivariate polynomial.

Theorem 2. Let f(x, y) = xyk + C ∈ Z[x, y] for k ≥ 2 and C �= 0. Let
S′(H) count the k-free values of f(p, q) for prime numbers 1 < p, q ≤ H .
Then, for any real K > 2, we have the asymptotic formula

S′(H) = c′fπ(H)2 +O

(
H2

(logH)K

)
,

where

c′f =
∏

p

(
1−

ρ′(pk)

ϕ(pk)2

)

and

ρ′(m) = #
{
(µ, ν) ∈ (Z/mZ)2 :

(µ,m) = (ν,m) = 1 and f(µ, ν) ≡ 0 (mod m)
}
.
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Remark 2. We will show that the constant c′f makes sense, i.e. the

infinite product is convergent, and c′f �= 0.

The motivation for considering power-free values of the polynomial f(x, y) =
xyk + C comes from our previous works [2] and [14]. There we resolve
the class number one problem for real quadratic fields with discriminant
(an)2+4a. It is natural to ask if the polynomial (an)2+4a takes square-free
values with positive density. We answer affirmatively this question for the
irreducible factor f(x, y) = xy2 + 4. Actually with Theorem 2 we give an
asymptotic formula for the square-free values of (xy)2+4x when both x and
y are primes, presumably a harder problem than the one when both factors
x and xy2 + 4 are square-free.

2. Notations

We reserve the letters p and q for primes and ε, ε for arbitrary small
positive numbers, not necessarily the same in different occasions. By [t] we
denote the integer part of the real number t, and (a, b) denotes the greatest
common divisor of the integers a and b. By ȳ we denote the multiplicative
inverse of y modulo some integer which should be clear by the context. The
dependences in the Landau symbol O and the Vinogradov symbol ≪ usu-
ally will be omitted. Sometimes in the summation sign we write only the
variables which we sum, but again the intervals they lie in should be clear
by the context.

By π(H) as usual we denote the prime-counting function, and by
π(H; q, a) the prime-counting function in the arithmetic progression {a+ nq,
n ≥ 0}. The Euler function is denoted by ϕ(n). By τ(n) we denote the num-
ber of divisors function. We write x ∼ X to say that X < x < 2X and we
write x ≍ X to say that there exist positive constants A,B, independent
of X such that AX ≤ |x| ≤ BX .

In the next two sections we prove Theorem 1, where the methods used
in Section 3 are elementary and in Section 4 we formulate and apply Reuss’
theorem. We prove Theorem 2 in Section 5 .

3. Proof of Theorem 1: elementary tools

Let

µk(n) =

{
1, if n is k-free

0, otherwise
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be the characteristic function of the k-free numbers. Just like with the
Möbius function we have the identity

(3.1) µk(n) =
∑

dk|n
µ(d) .

In order to count the k-free values of the polynomial f(x, y) = xyk + C,
where k ≥ 2 is an integer and C is a non-zero integer, and 1 ≤ x, y ≤ H , we
can consider the sum

(3.2) S := S(H) =
∑

1≤x,y≤H

µk(xy
k + C) .

Using the equation (3.1) and changing the order of summation we transform
the sum S.

S =
∑

1≤x,y≤H

∑

dk|f(x,y)
µ(d) =

∑

1≤d≤f(H,H)1/k

µ(d)
∑

1≤x,y≤H
f(x,y)≡0 (mod dk)

1

=
∑

1≤d≪H(k+1)/k

µ(d)S(dk,H),

where we denote

(3.3) S(m,H) :=
∑

1≤x,y≤H
f(x,y)≡0 (mod m)

1 .

We split the sum S into four parts:

(3.4) S = S1 + S2 + S3 + S4,

where

S1 :=
∑

1≤d≤z1

µ(d)S(dk,H)

for a parameter z1, and the summation is correspondingly over z1 < d ≤ z2
for S2, z2 < d ≤ z3 for S3 and z3 < d ≪ H(k+1)/k for S4. The parameters z1,
z2, z3 are to be chosen soon in a convenient way. Essentially the estimates
of S1, S2 and S4 will be trivial, and for S3 we will apply [17, Theorem 1].

3.1. Estimation of S1. The sum S1 will contribute to the main term
in our asymptotic formula. Introduce the notation

(3.5) M(α,m,H) :=
∑

1≤x≤H
x≡α (mod m)

1 .
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Then

S(m,H) =
∑

1≤µ,ν≤m
f(µ,ν)≡0 (mod m)

M(µ,m,H)M(ν,m,H) .

Clearly

M(α,m,H) =
H

m
+O(1) ,

therefore

(3.6) S(m,H) = H2ρ(m)

m2
+O

(
H

ρ(m)

m

)
+O(ρ(m)) ,

where ρ(m) was defined in Theorem 1. Then

S1 =
∑

1≤d≤z1

µ(d)

[
H2 ρ(d

k)

d2k
+O

(
H

ρ(dk)

dk

)
+O

(
ρ(dk)

)]
(3.7)

= H2
∑

1≤d≤z1

µ(d)
ρ(dk)

d2k
+O

(
H

∑

d≤z1

ρ(dk)

dk

)
+O

( ∑

d≤z1

ρ(dk)

)

= H2
∞∑

d=1

µ(d)
ρ(dk)

d2k
−H2

∑

d>z1

µ(d)
ρ(dk)

d2k

+O

(
H

∑

d≤z1

ρ(dk)

dk

)
+O

( ∑

d≤z1

ρ(dk)

)
.

Hooley’s lemma [13, Lemma 1] claims that the function ρ(m) is multiplica-
tive and ρ(pk) = O(p2k−2) for k ≥ 2. Therefore for square-free d we have
ρ(dk) = O(d2k−2+ε) for ε > 0 arbitrary small. Then the infinite sum

(3.8) cf :=
∞∑

d=1

µ(d)
ρ(dk)

d2k
=

∏

p

(
1−

ρ(pk)

p2k

)

is convergent because its common term

µ(d)ρ(dk)/d2k = O(d2k−2+ε)/d2k = O(d−2+ε).

Furthermore, cf �= 0. Indeed, cf = 0 only if it has a zero factor, i.e.

ρ(pk) = p2k for some p. Take some σ ∈ Z/pkZ such that σ �≡ −C (mod pk).
Then f(σ, 1) = σ · 1k + C �≡ 0 (mod pk), so surely ρ(pk) < p2k.
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Further, using that in all summands in (3.7) the variable d is square-free,
thus again ρ(dk) = O(d2k−2+ε), we get

(3.9)






�

d>z1

µ(d)
ρ(dk)

d2k
≪

�

d>z1

d−2+ε ≪ z−1+ε
1 ,

�

d≤z1

ρ(dk)

dk
≪

�

d≤z1

dk−2+ε ≪ zk−1+ε
1 ,

�

d≤z1

ρ(dk) ≪
�

d≤z1

d2k−2+ε ≪ z2k−1+ε
1 .

Putting all these into (3.7) we get

(3.10) S1 = cfH
2 +O

�
H2z−1+ε

1

�
+O

�
Hzk−1+ε

1

�
+O

�
z2k−1+ε
1

�
.

Let us choose an appropriate value for z1. Write z1 = Hα for some real
number 0 < α < 1. For the first error term in (3.10) we always have

2− α+ ε < 2

as long as ε > 0 is small enough. In the second error term we want to have
1 + α(k − 1 + ε) < 2, i.e. α < 1/(k − 1 + ε) < 1/(k − 1). In the third error
term we require α(2k− 1+ ε) < 2, i.e. α < 2/(2k− 1+ ε) < 1/(k− 1). Then
α = 1/k is a good choice and we get

S1 = cfH
2 +O

�
H2−1/k+ε

�
+O

�
H1+(k−1)/k+ε

�
+O

�
H(2k−1)/k+ε

�
,

or finally

(3.11) S1 =
�

1≤d≤H1/k

µ(d)S(dk,H) = cfH
2 +O

�
H2−1/k+ε

�
.

3.2. Estimation of S2. It turns out that for the estimation of the
second sum trivial arguments yield better results than more elaborate tools
like exponential sums and their Weil-type estimates, e.g. like the ones used in
[15] and [20]. The gain comes if we straight choose the parameter z2 = H1−δ

for a small δ > 0, to be specified later. Then

S2 =
�

H1/k<d≤H1−δ

µ(d)
�

x,y≤H
xyk+C≡0 (mod dk)

1 ≪
�

H1/k<d≤H1−δ

�

x,y≤H
xyk≡−C (mod dk)

1 .

If we fix d and y, the innermost sum counts those x ≤ H < dk which
satisfy the congruence xyk ≡ −C (mod dk). This congruence is solvable in x
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if and only if (yk, dk) | C, and in this case in a full residue system modulo dk

there are exactly (yk, dk) solutions. If (y, d)k | C, we have (y, d)k ≪ 1. Then

(3.12) S2 ≪
∑

H1/k<d≤H1−δ

∑

y≤H
(y,d)k |C

(y, d)k ≪ H1−δ ·H ≪ H2−δ .

3.3. Estimation of S4. To estimate the tail of the sum S we will use
a well-known upper bound for the number of divisors function, i.e. for any
positive ε > 0 we have τ(n) ≪ nε ([6, Theorem 315]). Then

S(dk,H) =
∑

x,y≤H
xyk≡−C (mod dk)

1 ≤
∑

n≪Hk+1

n≡−C (mod dk)

∑

n=xyk

1 ≪
∑

n≪Hk+1

n≡−C (mod dk)

τ(n)

≪ H(k+1)ε
∑

n≪Hk+1

n≡−C (mod dk)

1 ≪ Hε H
k+1

dk
=

1

dk
Hk+1+ε .

Then for S4 we get

S4 =
∑

z3<d≪H1+1/k

µ(d)S(dk,H) ≪
∑

z3<d≪H1+1/k

S(dk,H)

≪
∑

z3<d≪H1+1/k

1

dk
Hk+1+ε ≪ Hk+1+ε

∑

z3<d

1

dk
≪ Hk+1+εz−k+1

3 .

We set z3 = H1+δ , and for simplicity take this δ < 1/k the same as in
the definition of z2 = H1−δ , also choose ε = δ(k − 1)/2. Then we have the
upper bound

(3.13) S4 ≪ H2−(k−1)δ/2 .

3.4. Estimation of S3. We will narrow the intervals of summation
in S3 by extracting more trivial estimates. This would make possible the
application of [17, Theorem 1], which still does not apply directly to the sum

(3.14) S3 =
∑

H1−δ<d≤H1+δ

µ(d)S(dk,H) =
∑

H1−δ<d≤H1+δ

µ(d)
∑

1≤x,y≤H
xyk+C≡0 (mod dk)

1 .

Introduce the notation

(3.15) S3(K1,K2;L1, L2) :=
∑

H1−δ<d≤H1+δ

∑

K1≤x≤K2

∑

L1≤y≤L2

xyk+C≡0 (mod dk)

1 .

Clearly S3 ≪ S3(1,H; 1,H).
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if and only if (yk, dk) | C, and in this case in a full residue system modulo dk
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τ(n)

≪ H(k+1)ε
∑

n≪Hk+1

n≡−C (mod dk)

1 ≪ Hε H
k+1

dk
=

1
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1
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3 .
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3.4.1. The sum S3(1,H; 1,H1−θ). Let us first estimate the contri-
bution to S3 when the variable y lies in the interval

[
1,H1−θ

)
for some θ > 0.

We fix d and y and want to solve the congruence xyk ≡ −C (mod dk), in x,
for 1 ≤ x ≤ H . Note that dk > Hk−kδ > H if δ < 1− 1/k. The latter holds
as we already want δ < 1/k and for k ≥ 2 we have 1/k ≤ 1− 1/k. So, just
like in §3.2, we will have O

(
(y, d)k

)
= O(1) solutions in x. Then

(3.16) S3(1,H; 1,H1−θ) ≪
∑

H1−δ<d≤H1+δ

∑

1≤y<H1−θ

1 ≪ H2−(θ−δ),

where clearly we must choose 1 > θ > δ .

3.4.2. The sum S3(1,H
η;H1−θ,H). Let 0 < η < 1 be a parameter

which we will choose later. We are looking closely at the contribution to
the sum S3 when 1 ≤ x ≤ Hη . We can write the congruence xyk + C ≡ 0
(mod dk) in the equation form

(3.17) xyk + C = adk

for a positive integer a. As adk = xyk + C ≪ HηHk and dk > Hk(1−δ), we
should have a ≪ Hη+k/Hk(1−δ) = Hη+kδ .

Let us now fix x and d. Observe that the solutions in a of the congruence
adk ≡ C (mod x) are more than the solutions of the original equation (3.17).
Also the number of solutions is (dk, x) ≪ 1 in case (dk, x) | C. Then we can
bound from above in the following way.

S3(1,H
η;H1−θ,H) =

∑

H1−δ<d≤H1+δ

∑

1≤x≤Hη

∑

y,a
adk=xyk+C

1 ≪(3.18)

∑

d,x

∑

1≤a≪Hη+kδ

adk≡C(x)

1 ≪
∑

d≤H1+δ

∑

x≤Hη

∑

a≪Hη+kδ

(dk,x)|C

(dk, x) ≪
∑

d≤H1+δ

∑

x≤Hη

∑

a≪Hη+kδ

1 .

We get

(3.19) S3(1,H
η;H1−θ,H) ≪ H1+2η+(k+1)δ ,

as long as η > 0 is chosen in such a way that 2η + (k + 1)δ < 1. From this
condition we also need to have δ < 1/(k + 1).

4. Finishing the proof of Theorem 1: application of Reuss’
theorem

In this section we apply [17, Theorem 1] which generalizes the approx-
imate determinant method developed by Heath-Brown in [8]. For sake of
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completeness, and for sake of scrutinizing the conditions of the theorem, we
formulate it here.

Theorem 3 (Reuss [17]). Let D,E, z > 1 and ε > 0. Let k, l, h be inte-

gers such that 1 ≤ l < k and h �= 0. Let

N (z;D,E)

:= #{(d, e, u, v) ∈ N4 : d ∼ D, e ∼ E, u ∼ U, v ∼ V, vlek − uldk = h},

where

U =
z1/l

Dk/l
, and V =

z1/l

Ek/l
.

Let M > 1 be defined by

logM =
9

8

log(DE) log(UV )

log z
,

and suppose the following conditions are satisfied :
(1) log(DE) ≍ log(UV ) ≍ log z;

(2) l ≥ 2, or DE ≫k,l,h z1/k .
Then, if z is large enough in terms of ε,

N (z;D,E) ≪ε,k,l,h zεmin{(DEM)1/2 +D +E, (UVM)1/2 + U + V } .

We write S̃3 := S3(H
η,H;H1−θ ,H). Putting together the estimates

(3.11), (3.12), (3.13), (3.16), (3.19) we get

S(H) = cfH
2 +O

(
S̃3

)
+O

(
H2−1/k+ε

)
+O

(
H2−δ

)
(4.1)

+O
(
H2−(k−1)δ/2

)
+O

(
H2−(θ−δ)

)
+O

(
H1+2η+(k+1)δ

)
,

and now we examine the last sum S̃3.
Note that by dyadic subdivision of the intervals of the variables d, x and

y we can write

S̃3 ≪
∑

H1−δ<d≤H1+δ

∑

Hη<x≤H

∑

H1−θ<y≤H

∑

xyk+C=adk

1

≪ (logH)3 max
D,X,Y

∑

d∼D
x∼X

∑

y∼Y

∑

xyk−adk=−C

1 .
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Let Z := XY k. It is easy to see that a ≍ Z/Dk and there are O(1) dyadic

subintervals Ã < a < 2Ã with Ã ≍ Z/Dk. Hence

S̃3 ≪ (logH)3 max
D,X,Y,Ã

∑

d∼D
x∼X

∑

y∼Y

a∼Ã

∑

xyk−adk=−C

1 .

It would be enough to apply Theorem 3 with Z = XY k and A := Z/Dk, so

that Ã ≍ A. Then, using an even finer subdivision in d, x, y we get

(4.2) S̃3 ≪ (logH)3 max
D,X,Y

N (Z;D,Y ) ,

whereN (Z;D,Y ) is the number of solutions of the equation xyk−adk = −C
in the box x ∼ X, y ∼ Y, a ∼ A, d ∼ D, as defined in Theorem 3.

Note that we have the following inequalities

(4.3)

{
H1−δ < D ≤ H1+δ, Hη < X ≤ H,

H1−θ < Y ≤ H, 1 ≤ A ≤ Hk+1/Dk ≤ H1+kδ .

Now we assure that the conditions of Theorem 3 indeed hold. First, we
should see whether the first condition log(DY ) ≍ log(AX) ≍ logZ holds.
Using (4.3) we consecutively obtain Hη+k(1−θ) ≤ XY k = Z ≤ Hk+1, there-
fore

(η + k(1− θ)) logH ≤ logZ ≤ (k + 1) logH .

Then H1−δ+1−θ ≤ DY ≤ H1+δ+1, so

(2− (δ + θ)) logH ≤ log(DY ) ≤ (2 + δ) logH .

Further from Hη ≤ AX ≤ H1+kδ+1 we get

η logH ≤ log(AX) ≤ (2 + kδ) logH .

We finally get

η

k + 1
logZ ≤ log(AX) ≤

2 + kδ

η + k(1− θ)
logZ

and

(4.4)
2− (δ + θ)

k + 1
logZ ≤ log(DY ) ≤

2 + δ

η + k(1− θ)
logZ ,

so indeed condition (1) holds. Observe that we changed earlier the interval
of definition for x from x ≥ 1 to x ≥ Hη namely because of this condition. In
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case η = 0 we have log(AX) ≥ 0 and we cannot assure existence of a positive
constant C1 such that C1 logZ ≤ log(AX).

Condition (2) of Theorem 3 requires l ≥ 2, orDY ≫ Z1/k. Our Diophan-
tine equation is xyk−adk = −C with l = 1, so we need to verify DY ≫ Z1/k.
Let us again impose a condition on the parameter δ: δ + θ < 1− 1/k. Then
from (4.3) it follows

DY ≥ H2−(δ+θ) > H1+1/k ≥ (XY k)1/k = Z1/k

and in this case the second condition is also fulfilled. Therefore Theorem 3
does apply.

In such case we obtain

N (Z;D,Y ) ≪ Zεmin{(DYM)1/2 +D + Y, (AXM)1/2 +X +A},

where

logM =
9

8

log(DY ) log(AX)

logZ
.

Since Z = XY k = ADk, we have

Z2 = AX(DY )k and 2 logZ = log(AX) + k log(DY ).

Then we can transform

logM =
9

8

log(DY )

logZ

(
2 logZ − k log(DY )

)
=

9

8
log(DY )

(
2− k

log(DY )

logZ

)
.

From (4.4) we see that

2− (δ + θ)

k + 1
≤

log(DY )

logZ
,

so we can bound from above

logM ≤
9

8
log(DY )

(
2− k

2− (δ + θ)

k + 1

)
≤

9

8

(
2− k

2− (δ + θ)

k + 1

)
(2+δ) logH.

We denote

(4.5) g = g(k, δ, θ) :=
9

8

(
2− k

2− (δ + θ)

k + 1

)
(2 + δ) .

Then M ≤ Hg and

N (Z;D,Y ) ≪ H(k+1)ε
(
(DYM)1/2 +D + Y

)
(4.6)
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≪ H(k+1)ε(H1+δ/2Hg/2 +H1+δ)≪ Hε(H1+δ/2+g/2 +H1+δ) .

Here ε > 0 from Theorem 3 is arbitrary small and is present in the Vino-
gradov symbol dependence.

First we will assure that 1 + δ/2 + g/2 < 2 with a suitable choice of δ
and θ > δ. Take θ = 2δ . Then

G(k, δ) := 1 +
δ

2
+

g

2
= 1 +

δ

2
+

9

8

(
2− k

2− 3δ

k + 1

)(
1 +

δ

2

)

=
(
1 +

δ

2

)[
1 +

9

8

( 2

k + 1
+

3k

k + 1
δ
)]

From the form of the error terms in (4.1) it is clear that we would be
happy with a δ as big as possible. Let us write δ = 1/(αk) for some inte-
ger α. From the conditions on δ and θ, which we want to hold for any k ≥ 2,
e.g. δ+ θ = 3δ < 1− 1/k and δ < 1/(k+ 1), we should have α ≥ 4. We look
at G(k, 1/(αk)).

G
(
k,

1

αk

)
=

(
1 +

1

2αk

)[
1 +

9

8

( 2

k + 1
+

3k

k + 1

1

αk

)]

=
2αk + 1

2αk

1

8α(k + 1)

(
8α(k + 1) + 18α+ 27

)

We want to choose α so that 2 > G(k, 1/(αk)), i.e. 2(2αk)(8α(k+ 1)) >
(2αk + 1)(8αk + 26α+ 27). After performing the operations in the expres-
sion we get

32α2k2 + 32α2k > 16α2k2 + 52α2k + 62αk + 26α+ 27 .

We regroup the summands and arrive at the problem of finding parameter
α for which the following quadratic form is positive for any k ≥ 2:

(4.7) Q(k, α) := 16α2k2 − (20α2 + 62α)k − (26α+ 27) .

We calculate the zeros of Q(k, α) for a fixed α ∈ {4, 5, 6, 7} and we see that
the first value for which the larger zero of the quadratic equation is smaller
than 2 is α = 7. That is why we choose δ = 1/(7k), in which case Q(k,7) > 0
for any k ≥ 2, i.e. G(k, 1/(7k)) < 2.

More precisely we consider

(4.8) Gk := G
(
k,

1

7k

)
=

(
1 +

1

14k

)(
1 +

9 · 17

7 · 8

1

k + 1

)
.
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Then from (4.2) and (4.6), and 1 + 1/(7k) < Gk, it follows that

(4.9) S̃3 = O
(
Hε+Gk

)
.

Now in (4.1) we choose η = 1/5. From (4.1) and (4.9) we conclude that

S(H) = cfH
2 +O(H2−1/(7k)) +O(H2−1/14+1/(14k)) +O

(
Hε+Gk

)
.

Note that for k ≥ 3 we can write

S(H) = cfH
2 +O

(
H2−1/(7k)

)

because the dominating error term is the latter one. For k = 2 we have
G2 > 2− 1/14 + 1/(14 · 2) > 2− 1/(7 · 2), so we content ourselves to write
down

S(H) = cfH
2 +O

(
H2−δ

)
,

for some real δ = δ(k, f) > 0. This proves Theorem 1. �

5. Proof of Theorem 2

The method used to attack Erdős’ conjecture from [1], [9] and [18] can
be extended to the analogous conjecture for our bivariate polynomial. In a
similar way like in (3.4) we split the sum S′(H) into few parts. Define

S′(m,H) :=
∑

p,q≤H
f(p,q)≡0 (mod m)

1 .

We can write

(5.1) S′(H) = S′
1 + S′

2 + S′
3 ,

where

S′
1 :=

∑

d≤w

µ(d)S′(dk,H)

for a positive parameter w < H1/k which we will choose very soon. Further

S′
2 :=

∑

w<d≤H1/k

µ(d)S′(dk,H) .

We can directly estimate the last sum S′
3 using (3.12), (3.13), (3.16), (3.19)

and (4.9):

(5.2) S′
3 :=

∑

H1/k<d≪H1+1/k

µ(d)S′(dk,H) ≪
∑

H1/k<d

S(dk,H) ≪ H2−δ ,
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where δ > 0 is the constant from Theorem 1.

5.1. Estimation of S′

1
. We will derive the main term in the desired

asymptotic formula from S′
1. Recall the definition of the function ρ(m) from

Theorem 1 and let (µ1, ν1), . . . , (µr, νr) be the solutions of the congruence
f(µ, ν) ≡ 0 (mod dk), where r = ρ(dk). Then

S′(dk,H) =
∑

i≤r

#{(p, q) ∈ [1,H]2 : p ≡ µi (mod dk), q ≡ νi (mod dk)}

=
∑

i≤r

#
{
p ≤ H : p ≡ µi (mod dk)

}
·#

{
q ≤ H : q ≡ νi (mod dk)

}

=
∑

i≤r
(µi,d)=1
(νi,d)=1

π(H; dk, µi)π(H; dk, νi) +O
(
ρ(dk)

)

+
∑

i≤r
(µi,d)=1
(νi,d)>1

π(H; dk, µi) · O(1) +
∑

i≤r
(νi,d)=1
(µi,d)>1

π(H; dk, νi) · O(1) .

If d ≤ (logH)N for arbitrary large N , then by Siegel–Walfisz theorem
there exists a positive constant cN depending only on N such that

S′(dk,H) =
∑

i≤r
(µi,d)=1
(νi,d)=1

[
π(H)

ϕ(dk)
+O(He−cN

√
logH)

]2

+O
(
ρ(dk)

)
+O

(
ρ(dk)

(π(H)

ϕ(dk)
+O(He−cN

√
logH)

))
.

By Hooley [13, Lemma 1] we get ρ′(dk) ≤ ρ(dk) ≪ d2k−2+ε for k ≥ 2, and
ϕ(n) ≫ε n

1−ε [6, Theorem 327]). So there is a positive constant c > 0 which
might vary in its different occurences, such that for d ≤ (logH)N we obtain

(5.3) S′(dk,H) = ρ′(dk)
π(H)2

ϕ(dk)2
+O(H2e−c

√
logH).

Let us then choose w = (logH)N so that we apply (5.3). We get

S′
1 =

∑

d≤w

µ(d)S′(dk,H) = π(H)2
∑

d≤w

µ(d)ρ′(dk)

ϕ(dk)2
+O(wH2e−c

√
logH)(5.4)
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= c′fπ(H)2 +O
(
π(H)2

∑

d>w

ρ′(dk)

ϕ(dk)2

)
+O(H2e−c

√
logH) .(5.5)

First of all we pay attention to the constant

c′f =
∞∑

d=1

µ(d)ρ′(dk)

ϕ(dk)2
.

By ρ′(pk) ≤ ρ(pk) ≪ p2k−2+ε for k ≥ 2, and ϕ(n) ≫ε n
1−ε′ , we get

c′f =
∞∑

d=1

µ(d)ρ′(dk)
ϕ(dk)2

≪
∞∑

d=1

d2k−2+ε

d2k−ε′
=

∞∑

d=1

d−2+ε < ∞ .

It is well-known that ρ′(m) is multiplicative, so we can write

c′f =
∏

p

(
1−

ρ′(pk)

ϕ(pk)2

)
.

We also note that c′f �= 0. We need ρ′(pk) < ϕ(pk)2, but even ρ′(pk) ≤

ϕ(pk) holds. Indeed, as ρ′(pk) counts (µ, ν) ∈ (Z/pkZ)2 such that (µ, p) =
(ν, p) = 1, for a fixed such ν, which can take ϕ(pk) values, we have only one
solution of the congruence µ ≡ −Cν̄k (mod pk).

Let us go back to the formula (5.4). For the first error term we first use
that

∑

d>w

ρ′(dk)

ϕ(dk)2
≤

∑

d>w

ρ(dk)

ϕ(dk)2
≪

∑

d>w

d2k−2+ε

d2k−ε
(5.6)

=
∑

d>w

d−2+ε ≪ w−1+ε = (logH)N(ε−1) .

Then the error term is itself bounded from above by

(5.7)
H2

(logH)2
·

1

(logH)N(1−ε)
≪

H2

(logH)K
,

where K > 2 is any real number, as long as we choose N and ε appropriately
after we have already fixed K. For example we can choose N = 2K.

For the second error term in (5.4) we clearly have

(5.8) H2e−c
√
logH ≪

H2

(logH)K
.
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From the formula (5.4) and the error terms estimates (5.7) and (5.8) we
conclude that for any K > 2 we have

(5.9) S′
1 =

∑

d≤(logH)2K

µ(d)S′(dk,H) = c′fπ(H)2 +O
( H2

(logH)K

)
.

5.2. Estimation of S′

2
. It is enough to estimate the sum S′

2 trivially.
Recall that we have already done similarly in (3.6). Applying again [13,
Lemma 1] for square-free d, and using that 1 ≪ H/dk ≪ H2/d2k if d ≤ H1/k ,
we get

(dk,H) = ρ(dk)

[
H2

d2k
+O

(H
dk

)
+O(1)

]
≪ ρ(dk)

H2

d2k
≪ H2d−2+ε .

Then

(5.10) S′
2 ≪ H2

∑

(logH)2K<d≤H1/k

d−2+ε ≪ H2 · (logH)2K(−1+ε) ≪
H2

(logH)K
.

Finally Theorem 2 follows from formula (5.1) and the estimates (5.2),
(5.9) and (5.10). �

6. Some speculations

It is plausible that a similar asymptotic formula as in Theorem 1 holds for
the number of the (d− 1)-free values of any irreducible bivariate polynomial
f(x, y) ∈ Z [x, y] of degree d, which does not have a fixed (d− 1)-th power
prime divisor. With the same straightforward approach we get to the prob-
lem of estimating the number of solutions of the equation f(x, y) = abd−1,
which is hard even in the case xlyk + C = abd−1 for general l + k = d. It
is not clear if the determinant method can be used in such more general
setting.
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[2] A. Biró and K. Lapkova, The class number one problem for the real quadratic fields

Q(
√

(an)2 + 4a), Acta Arith., (2015), to appear.
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