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first kind ([5,7,11]). Similarly, Cauchy polynomials of the second kind ĉn(x)
are defined by the generating function

(2)
t(1 + t)x

(1 + t) ln(1 + t)
=

∞∑

n=0

ĉn(x)
tn

n!
(|t| < 1)

[8,10,11]. Note that x is replaced by −x in [6]. When x = 0, ĉn(0) = ĉn are
the classical Cauchy numbers of the second kind [5,7,11].

In [2], the concept of r-Stirling numbers was introduced as a generaliza-
tion of the classical Stirling numbers. The (unsigned) r-Stirling numbers of
the first kind, denoted by

[
n
m

]
r
, are defined by the number of permutations

of the set {1, . . . , n} having m cycles such that the numbers 1, 2, . . . , r are
in distinct cycles. The r-Stirling numbers of the second kind, denoted by{
n
m

}
r
, are defined by the number of partitions of the set {1, . . . , n} into m

non-empty disjoint subsets, such that the numbers 1, 2, . . . , r are in distinct
subsets. Hence, the classical Stirling numbers can be expressed as

[
n

m

]
=

[
n

m

]

0

,

{
n

m

}
=

{
n

m

}

0

,

and also as [
n

m

]
=

[
n

m

]

1

,

{
n

m

}
=

{
n

m

}

1

(n > 0)

with [
0

0

]

r

=

{
0

0

}

r

= 1,

[
n

0

]

r

=

{
n

0

}

r

= 0 (n > 0) .

2. Some basic results

The generating functions of r-Stirling numbers of the first kind
[
n+r
m+r

]
r

and of the second kind
{
n+r
m+r

}
r
are given by

(3)

(
− ln(1− t)

)m

m!(1− t)r
=

∞∑

n=0

[
n+ r

m+ r

]

r

tn

n!

and

(4)
ert(et − 1)m

m!
=

∞∑

n=0

{
n+ r

m+ r

}

r

tn

n!
,

respectively ([2, Theorem 15, Theorem 16]).
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Abstract. The integer values of Cauchy polynomials are expressed in terms
of r-Stirling numbers of the first kind. Several relations between the integral val-
ues of Bernoulli polynomials and those of Cauchy polynomials are obtained in
terms of r-Stirling numbers of both kinds. Also, we find a relation between the
Cauchy polynomials and hyperharmonic numbers.

1. Introduction

Cauchy polynomials (of the first kind) cn(x) are defined by the generat-
ing function
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=
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n=0

cn(x)
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n!
(|t| < 1)

[8,10,11]. (Note that x is replaced by −x in [6].) The polynomials bn(x) :=
cn(x)/n! are sometimes called Bernoulli polynomials of the second kind (see,
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first kind ([5,7,11]). Similarly, Cauchy polynomials of the second kind ĉn(x)
are defined by the generating function

(2)
t(1 + t)x

(1 + t) ln(1 + t)
=

∞∑

n=0

ĉn(x)
tn

n!
(|t| < 1)

[8,10,11]. Note that x is replaced by −x in [6]. When x = 0, ĉn(0) = ĉn are
the classical Cauchy numbers of the second kind [5,7,11].

In [2], the concept of r-Stirling numbers was introduced as a generaliza-
tion of the classical Stirling numbers. The (unsigned) r-Stirling numbers of
the first kind, denoted by

[
n
m

]
r
, are defined by the number of permutations

of the set {1, . . . , n} having m cycles such that the numbers 1, 2, . . . , r are
in distinct cycles. The r-Stirling numbers of the second kind, denoted by{
n
m

}
r
, are defined by the number of partitions of the set {1, . . . , n} into m

non-empty disjoint subsets, such that the numbers 1, 2, . . . , r are in distinct
subsets. Hence, the classical Stirling numbers can be expressed as

[
n

m

]
=

[
n

m

]

0

,

{
n

m

}
=

{
n

m

}

0

,

and also as [
n

m

]
=

[
n

m

]

1

,

{
n

m

}
=

{
n

m

}

1

(n > 0)

with [
0

0

]

r

=

{
0

0

}

r

= 1,

[
n

0

]

r

=

{
n

0

}

r

= 0 (n > 0) .

2. Some basic results

The generating functions of r-Stirling numbers of the first kind
[
n+r
m+r

]
r

and of the second kind
{
n+r
m+r

}
r
are given by

(3)

(
− ln(1− t)

)m

m!(1− t)r
=

∞∑

n=0

[
n+ r

m+ r

]

r

tn

n!

and

(4)
ert(et − 1)m

m!
=

∞∑

n=0

{
n+ r

m+ r

}

r
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n!
,

respectively ([2, Theorem 15, Theorem 16]).
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For an integer r, Cauchy polynomials of the first kind cn(r) can be ex-
pressed in terms of the r-Stirling numbers of the first kind

[
n+r
m+r

]
r
.

Theorem 1. For nonnegative integers n and r, we have

(5) cn(r) =
n∑

m=0

[
n+ r

m+ r

]

r

(−1)n−m

m+ 1
.

Remark. If r = 0, the identity (5) is reduced to

cn =
n∑

m=0

[
n

m

]
(−1)n−m

m+ 1

(see [5, Ch. VII], [7, Theorem 1], [11, p.1908]).

Proof. Put

Gn,r(x) =
n∑

m=0

[
n+ r

m+ r

]

r

xm .

From (3), we have

∞∑

n=0

Gn,r(x)
tn

n!
=

∞∑

n=0

n∑

m=0

[
n+ r

m+ r

]

r

xm
tn

n!
=

∞∑

m=0

xm
∞∑

n=m

[
n+ r

m+ r

]

r

tn

n!

=

∞∑

m=0

xm
(
− ln(1− t)

)m

m! (1− t)r
=

1

(1− t)r
e−(ln(1−t))x =

1

(1− t)r(1− t)x
.

By integrating with respect to x from 0 to −1 on both sides, we have

∫ −1

0

∞∑

n=0

Gn,r(x)
tn

n!
dx =

∞∑

n=0

n∑

m=0

[
n+ r

m+ r

]

r

tn

n!

∫ −1

0
xm dx

=

∞∑

n=0

n∑

m=0

[
n+ r

m+ r

]

r

(−1)m+1

m+ 1

tn

n!

and by (1)

∫ −1

0

1

(1− t)r(1− t)x
dx =

t

(1− t)r ln(1− t)
= −

∞∑

n=0

cn(r)
(−1)ntn

n!
.

Comparing the coefficients of both sides, we get the identity (5). �
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For an integer r, Cauchy polynomials of the second kind ĉn(r) can also
be expressed in terms of the r-Stirling numbers of the first kind

[
n+r
m+r

]
r
.

Theorem 2. For nonnegative integers n and r, we have

(6) ĉn(−r) = (−1)n
n∑

m=0

[
n+ r

m+ r

]

r

1

m+ 1
.

Remark. If r = 0, the identity (6) is reduced to

ĉn = (−1)n
n∑

m=0

[
n

m

]
1

m+ 1

(see [5, Ch. VII], [7, Theorem 4], [11]).

Proof. From (4), we have

∞∑

n=0

Gn,r(−x)
tn

n!
=

1

(1− t)r
e

(
ln(1−t)

)
x =

(1− t)x

(1− t)r
.

By integrating with respect to x from 0 to −1 on both sides, we have

∫ −1

0

∞∑

n=0

Gn,r(−x)
tn

n!
dx =

∞∑

n=0

n∑

m=0

[
n+ r

m+ r

]

r

tn

n!

∫ −1

0
(−x)m dx

= −
∞∑

n=0

n∑

m=0

[
n+ r

m+ r

]

r

1

m+ 1

tn

n!

and by (2)

∫ −1

0

(1− t)x

(1− t)r
dx =

t

(1− t)r(1− t) ln(1− t)
= −

∞∑

n=0

ĉn(−r)
(−1)ntn

n!
.

Comparing the coefficients of both sides, we get the identity (6). �

3. Some further identities

There exist orthogonality and inverse relations for r-Stirling numbers
([2, Theorem 5, Theorem 6]). Indeed, from the orthogonal relations

n∑

l=m

(−1)n−l

[
n

l

]

r

{
l

m

}

r

=
n∑

l=m

(−1)n−l

{
n

l

}

r

[
l

m

]

r

= δm,n (n ≥ r) ,
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For an integer r, Cauchy polynomials of the second kind ĉn(r) can also
be expressed in terms of the r-Stirling numbers of the first kind

[
n+r
m+r

]
r
.

Theorem 2. For nonnegative integers n and r, we have

(6) ĉn(−r) = (−1)n
n∑

m=0

[
n+ r

m+ r

]

r

1

m+ 1
.

Remark. If r = 0, the identity (6) is reduced to

ĉn = (−1)n
n∑

m=0

[
n

m

]
1

m+ 1

(see [5, Ch. VII], [7, Theorem 4], [11]).

Proof. From (4), we have

∞∑

n=0

Gn,r(−x)
tn

n!
=

1

(1− t)r
e

(
ln(1−t)

)
x =

(1− t)x

(1− t)r
.

By integrating with respect to x from 0 to −1 on both sides, we have

∫ −1

0

∞∑

n=0

Gn,r(−x)
tn

n!
dx =

∞∑

n=0

n∑

m=0

[
n+ r

m+ r

]

r

tn

n!

∫ −1

0
(−x)m dx

= −
∞∑

n=0

n∑

m=0

[
n+ r

m+ r

]

r

1

m+ 1

tn

n!

and by (2)

∫ −1

0

(1− t)x

(1− t)r
dx =

t

(1− t)r(1− t) ln(1− t)
= −

∞∑

n=0

ĉn(−r)
(−1)ntn

n!
.

Comparing the coefficients of both sides, we get the identity (6). �

3. Some further identities

There exist orthogonality and inverse relations for r-Stirling numbers
([2, Theorem 5, Theorem 6]). Indeed, from the orthogonal relations

n∑

l=m

(−1)n−l

[
n

l

]

r

{
l

m

}

r

=
n∑

l=m

(−1)n−l

{
n

l

}

r

[
l

m

]

r

= δm,n (n ≥ r) ,
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where δm,n is the Kronecker delta, we obtain the inverse relations

(7) (−1)nfn =
n∑

m=0

(−1)m
[
n+ r

m+ r

]

r

gm ⇐⇒ gn =
n∑

m=0

{
n+ r

m+ r

}

r

fm .

Applying these identities to Theorems 1 and 2, we immediately obtain
the following result.

Theorem 3. For Cauchy polynomials with an integral value r, we have

(8)
n∑

m=0

{
n+ r

m+ r

}

r

cm(r) =
1

n+ 1

and

(9)
n∑

m=0

{
n+ r

m+ r

}

r

ĉm(−r) =
(−1)n

n+ 1
.

Remark. If r = 0, then Theorem 3 is reduced to the results in [11] and
the special case in [7]. It is well-known that Bernoulli polynomials Bn(x)
are defined by the generating function

(10)
text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π) .

When x = 0, Bn(0) = Bn are the Bernoulli numbers with B1 = −1/2. In
[12, p. 232], for an integer r, Bernoulli polynomials Bn(r) with an integer
value r are expressed as

(11) Bn(r) =
n∑

m=0

{
n+ r

m+ r

}

r

(−1)mm!

m+ 1
.

It immediately follows that

(12)
n∑

m=0

(−1)m
[
n+ r

m+ r

]

r

Bm(r) =
n!

n+ 1
.

There are relations between Bernoulli polynomials and Cauchy polyno-
mials.

Theorem 4. For any integers n and r with n ≥ r ≥ 0, we have

Bn(r) =
n∑

l=0

n∑

m=0

m!

{
n+ r

m+ r

}

r

{
m+ r

l + r

}

r

cl(r) ,
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=
n∑

l=0

n∑

m=0

(−1)n−mm!

{
n+ r

m+ r

}

r

{
m+ r

l + r

}

r

ĉl(−r) ,

cn(r) =

n∑

l=0

n∑

m=0

(−1)n−m+l

m!

[
n+ r

m+ r

]

r

[
m+ r

l + r

]

r

Bl(r) ,

ĉn(−r) =
n∑

l=0

n∑

m=0

(−1)n−l

m!

[
n+ r

m+ r

]

r

[
m+ r

l + r

]

r

Bl(r) .

Remark. If r = 0, then Theorem 4 is reduced to the results in [9].

Proof. We shall prove the first and the fourth identities. The others
can be proven similarly. By (8) in Theorem 3, and using (11), we have

n∑

l=0

n∑

m=0

(−1)mm!

{
n+ r

m+ r

}

r

{
m+ r

l + r

}

r

cl(r)

=
n∑

m=0

(−1)mm!

{
n+ r

m+ r

}

r

m∑

l=0

{
m+ r

l + r

}

r

cl(r)

=

n∑

m=0

{
n+ r

m+ r

}

r

(−1)mm!

m+ 1
= Bn(r) .

By (12) in Theorem 3, and using (6), we have

n∑

l=0

n∑

m=0

(−1)n−l

m!

[
n+ r

m+ r

]

r

[
m+ r

l + r

]

r

Bl(r)

=
n∑

m=0

(−1)n

m!

[
n+ r

m+ r

]

r

m∑

l=0

(−1)l
[
m+ r

l + r

]

r

Bl(r)

= (−1)n
n∑

m=0

[
n+ r

m+ r

]

r

1

m+ 1
= ĉn(−r) . �

4. Hyperharmonic numbers

The hyperharmonic numbers are recursive sums of the classical harmonic
numbers Hn = 1 + 1

2 + · · · + 1
n
(H0 = 0), defined by

H(1)
n := Hn, and H(r)

n = H
(r−1)
1 + · · · +H(r−1)

n
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=
n∑

l=0

n∑

m=0

(−1)n−mm!

{
n+ r

m+ r

}

r

{
m+ r

l + r

}

r

ĉl(−r) ,

cn(r) =

n∑

l=0

n∑

m=0

(−1)n−m+l

m!

[
n+ r

m+ r

]

r

[
m+ r

l + r

]

r

Bl(r) ,

ĉn(−r) =
n∑

l=0

n∑

m=0

(−1)n−l

m!

[
n+ r

m+ r

]

r

[
m+ r

l + r

]

r

Bl(r) .

Remark. If r = 0, then Theorem 4 is reduced to the results in [9].

Proof. We shall prove the first and the fourth identities. The others
can be proven similarly. By (8) in Theorem 3, and using (11), we have

n∑

l=0

n∑

m=0

(−1)mm!

{
n+ r

m+ r

}

r

{
m+ r

l + r

}

r

cl(r)

=
n∑

m=0

(−1)mm!

{
n+ r

m+ r

}

r

m∑

l=0

{
m+ r

l + r

}

r

cl(r)

=

n∑

m=0

{
n+ r

m+ r

}

r

(−1)mm!

m+ 1
= Bn(r) .

By (12) in Theorem 3, and using (6), we have

n∑

l=0

n∑

m=0

(−1)n−l

m!

[
n+ r

m+ r

]

r

[
m+ r

l + r

]

r

Bl(r)

=
n∑

m=0

(−1)n

m!

[
n+ r

m+ r

]

r

m∑

l=0

(−1)l
[
m+ r

l + r

]

r

Bl(r)

= (−1)n
n∑

m=0

[
n+ r

m+ r

]

r

1

m+ 1
= ĉn(−r) . �

4. Hyperharmonic numbers

The hyperharmonic numbers are recursive sums of the classical harmonic
numbers Hn = 1 + 1

2 + · · · + 1
n
(H0 = 0), defined by

H(1)
n := Hn, and H(r)

n = H
(r−1)
1 + · · · +H(r−1)

n
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together with the initial value H
(r)
0 = 0. The generating function of the

hyperharmonics reads as

(13)
∞∑

n=0

H(r)
n tn = −

ln(1− t)

(1− t)r
(|t| < 1).

More on these numbers together with a nice combinatorial interpretation
can be found in the work of Benjamin et al. [1].

It can be seen immediately that the generating functions of

(−1)ncn(−r)/n! and H(r)
n

are inverses of each other:

( ∞∑

n=0

(−1)ncn(−r)

n!
tn
)( ∞∑

n=0

H(r)
n tn

)

=
( −t

(1− t)−r ln(1− t)

)(− ln(1− t)

(1− t)r

)
= t.

The Cauchy product then leads to the following proposition.

Proposition 1. We have

n∑

k=0

(−1)k

k!
ck(−r)H

(r)
n−k = δ1,n .

The hyperharmonic numbers can be extended to real r by the generating
function (13). This way the generalization of Proposition 1 comes easily.

Proposition 2. For any real x and r we have

n∑

k=0

(−1)k

k!
ck(x)H

(r)
n−k =

{(
n+x+r−2

n−1

)
, if n ≥ 1;

0, if n = 0.

Proof. The statement follows from the identity

( ∞∑

n=0

(−1)ncn(x)

n!
tn
)( ∞∑

n=0

H(r)
n tn

)

=
( −t

(1− t)x ln(1− t)

)(− ln(1− t)

(1− t)r

)
=

t

(1− t)x+r

after comparing the coefficients of both sides. �
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