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2. Known results

We say that two summability methods are equivalent if they sum the
same set of series (not necessarily to the same sums). In the special case
k = 1 Sunouchi has proved the following theorem.

Theorem A [11]. Let (pn) and (qn) be positive sequences (where Qn =
∑n

v=0 qv). In order that every |N̄ , pn| summable series should be |N̄ , qn|
summable it is sufficient that

(4)
qnPn

Qnpn
= O(1).

Bosanquet observed that (4) is also necessary for the conclusion and so
completed Theorem A in necessary and sufficient form (see [8]).

Theorem B [4]. Let (pn) and (qn) be positive sequences and k ≥ 1. In

order that |N̄ , pn|k should be equivalent to |N̄ , qn|k it is sufficient that (4)
and

(5)
pnQn

Pnqn
= O(1)

hold.

In this theorem, if we take qn = 1 for n ∈ N , then we get a result of Bor
(see [3]).

Theorem C [6]. Let (pn) and (qn) be positive sequences and k ≥ 1. In
order that every |N̄ , pn|k summable series be |N̄ , qn|k summable it is neces-

sary that (4) holds. If (5) holds then (4) is also sufficient for the conclusion.

Theorem D [6]. Let (pn) and (qn) be positive sequences and k ≥ 1. In
order that |N̄ , pn|k be equivalent to |N̄ , qn|k it is necessary and sufficient that

(4) and (5) hold.

3. Main result

The aim of this paper is to generalize Theorem C and Theorem D for the
general summability methods. Now, we shall prove the following theorems.

Theorem 1. Let k ≥ 1 and 0 ≤ δ < 1/k. Let (pn) and (qn) be positive

sequences, and let

(6)
m+1
∑

n=v+1

(Qn

qn

)δk−1 1

Qn−1
= O

(

(Qv

qv

)δk 1

Qv

)

as m → ∞.
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Abstract. We obtained necessary and sufficient conditions for the equiva-
lence of two general summability methods. Some new and known results are also
obtained.

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). Let (pn) be a
sequence of positive numbers such that

(1) Pn =

n
∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

(2) tn =
1

Pn

n
∑

v=0

pvsv

defines the sequence (tn) of the Riesz mean or simply the (N̄, pn) mean of the
sequence (sn), generated by the sequence of coefficients (pn) (see [10]). The
series

∑

an is said to be summable |N̄ , pn; δ|k, k ≥ 1 and δ ≥ 0, if (see [7])

(3)
∞
∑

n=1

(Pn/pn)
δk+k−1|tn − tn−1|

k < ∞.

If we set δ = 0, then we obtain |N̄ , pn|k summability (see [2]). If we take
pn = 1 for all values of n, then we get |C, 1; δ|k summability (se [9]). Finally,
if we set δ = 0 and k = 1, then we get |N̄ , pn| summability.
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In order that every |N̄ , pn; δ|k summable series be |N̄ , qn; δ|k summable it
is necessary that (4) holds. If (5) holds then (4) is also sufficient for the
conclusion.

It should be noted that if we take δ=0, then Theorem 1 reduces to The-
orem C. In this case the condition (6) reduces to

(7)
m+1
∑

n=v+1

qn
QnQn−1

= O
( 1

Qv

)

as m → ∞,

which always exists.
It is also remarked that if we take (qn) = 1 for all values of n, then the

condition (6) fulfils.
We use the following lemma in the proof of Theorem 1.

Lemma 1 [5]. Let k ≥ 1 and A = (anv) be an infinite matrix. In order
that A ∈ (lk, lk) it is necessary that anv = O(1) for all n, v ≥ 0.

Proof of Theorem 1. Firstly we prove the necessity. Let (tn) denote
the (N, pn) mean of the series

∑

an. Then, by definition, we have

(8) tn =
1

Pn

n
∑

v=0

pvsv =
1

Pn

n
∑

v=0

(Pn − Pv−1)av.

If the series
∑

an is summable |N, pn; δ|k, then

(9)
∞
∑

n=1

(Pn

pn

)δk+k−1
|∆tn−1|

k < ∞.

Since,

∆tn−1 =
(

−
1

Pn−1
+

1

Pn

)

n
∑

v=0

Pv−1av

= −
pn

PnPn−1

n
∑

v=1

Pv−1av, n ≥ 1, (P−1 = 0),

we have

(10) Pn−1an = −
PnPn−1

pn
∆tn−1 +

Pn−1Pn−2

pn−1
∆tn−2 .

That is

(11) an = −
Pn

pn
∆tn−1 +

Pn−2

pn−1
∆tn−2 .
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If Tn denotes the (N, qn) mean of the series
∑

an, similarly we have that

(12) Tn =
1

Qn

n
∑

v=0

qvsv =
1

Qn

n
∑

v=0

(Qn −Qv−1)av .

Hence

(13) ∆Tn−1 = −
qn

QnQn−1

n
∑

v=1

Qv−1av, n ≥ 1.

Since

av = −
Pv

pv
∆tv−1 +

Pv−2

pv−1
∆tv−2,

by (11), we have that

∆Tn−1 = −
qn

QnQn−1

n
∑

v=1

Qv−1

(

−
Pv

pv
∆tv−1 +

Pv−2

pv−1
∆tv−2

)

=
qnPn

pnQn

∆tn−1 +
qn

QnQn−1

n−1
∑

v=1

Qv−1
Pv

pv
∆tv−1 −

qn
QnQn−1

n−1
∑

v=1

Qv

Pv−1

pv
∆tv−1

=
qnPn

pnQn

∆tn−1 +
qn

QnQn−1

n−1
∑

v=1

∆tv−1

pv
(Qv−1Pv −QvPv−1).

Also,

Qv−1Pv −QvPv−1 = Qv−1Pv −Qv(Pv − pv) = Qv−1Pv −QvPv + pvQv

= (Qv−1 −Qv)Pv + pvQv = −qvPv + pvQv,

so that

∆Tn−1 =
qnPn

pnQn

∆tn−1 −
qn

QnQn−1

n−1
∑

v=1

Pv

pv
qv∆tv−1 +

qn
QnQn−1

n−1
∑

v=1

Qv∆tv−1

= Tn,1 + Tn,2 + Tn,3.

To complete the proof, by Minkowski’s inequality, it is sufficient to show
that

(14)

∞
∑

n=1

(Qn

qn

)δk+k−1
|Tn,r|

k < ∞, for r = 1, 2, 3.

Acta Mathematica Hungarica

H. BOR210



Acta Mathematica Hungarica 149, 2016

4 H. BOR

If Tn denotes the (N, qn) mean of the series
∑

an, similarly we have that

(12) Tn =
1

Qn

n
∑

v=0

qvsv =
1

Qn

n
∑

v=0

(Qn −Qv−1)av .

Hence

(13) ∆Tn−1 = −
qn

QnQn−1

n
∑

v=1

Qv−1av, n ≥ 1.

Since

av = −
Pv

pv
∆tv−1 +

Pv−2

pv−1
∆tv−2,

by (11), we have that

∆Tn−1 = −
qn

QnQn−1

n
∑

v=1

Qv−1

(

−
Pv

pv
∆tv−1 +

Pv−2

pv−1
∆tv−2

)

=
qnPn

pnQn

∆tn−1 +
qn

QnQn−1

n−1
∑

v=1

Qv−1
Pv

pv
∆tv−1 −

qn
QnQn−1

n−1
∑

v=1

Qv

Pv−1

pv
∆tv−1

=
qnPn

pnQn

∆tn−1 +
qn

QnQn−1

n−1
∑

v=1

∆tv−1

pv
(Qv−1Pv −QvPv−1).

Also,

Qv−1Pv −QvPv−1 = Qv−1Pv −Qv(Pv − pv) = Qv−1Pv −QvPv + pvQv

= (Qv−1 −Qv)Pv + pvQv = −qvPv + pvQv,

so that

∆Tn−1 =
qnPn

pnQn

∆tn−1 −
qn

QnQn−1

n−1
∑

v=1

Pv

pv
qv∆tv−1 +

qn
QnQn−1

n−1
∑

v=1

Qv∆tv−1

= Tn,1 + Tn,2 + Tn,3.

To complete the proof, by Minkowski’s inequality, it is sufficient to show
that

(14)

∞
∑

n=1

(Qn

qn

)δk+k−1
|Tn,r|

k < ∞, for r = 1, 2, 3.

Acta Mathematica Hungarica

EQUIVALENCE THEOREMS ON ABSOLUTE SUMMABILITY METHODS 211



Acta Mathematica Hungarica 149, 2016

EQUIVALENCE THEOREMS ON ABSOLUTE SUMMABILITY METHODS 5

Firstly, we have

m
∑

n=1

(Qn

qn

)δk+k−1
|Tn,1|

k =
m
∑

n=1

(Qn

qn

)δk+k−1
∣

∣

∣

∣

qnPn

pnQn

∆tn−1

∣

∣

∣

∣

k

= O(1)
m
∑

n=1

(Qn

qn

)δk(Pn

pn

)k qn
Qn

|∆tn−1|
k.

Since qn
Qn

= O( pn

Pn

) and Qn

qn
= O(Pn

pn

), by (4) and (5), we have that

m
∑

n=1

(Qn

qn

)δk+k−1
|Tn,1|

k

= O(1)
m
∑

n=1

(Pn

pn

)δk+k−1
|∆tn−1|

k = O(1) as m → ∞

by (9). Now applying Hölder’s inequality, as in Tn,1, we have that

m+1
∑

n=2

(Qn

qn

)δk+k−1
|Tn,2|

k =
m+1
∑

n=2

(Qn

qn

)δk+k−1
∣

∣

∣

∣

qn
QnQn−1

n−1
∑

v=1

Pv

pv
qv∆tv−1

∣

∣

∣

∣

k

≤
m+1
∑

n=2

(Qn

qn

)δk−1 1

Qk
n−1

{ n−1
∑

v=1

Pv

pv
qv|∆tv−1|

}k

≤
m+1
∑

n=2

(Qn

qn

)δk−1 1

Qn−1

n−1
∑

v=1

(Pv

pv

)k

qv|∆tv−1|
k

{

1

Qn−1

n−1
∑

v=1

qv

}k−1

= O(1)
m+1
∑

n=2

(Qn

qn

)δk−1 1

Qn−1

n−1
∑

v=1

(Pv

pv

)k

qv|∆tv−1|
k

= O(1)
m
∑

v=1

(Pv

pv

)k

qv|∆tv−1|
k

m+1
∑

n=v+1

(Qn

qn

)δk−1 1

Qn−1

= O(1)
m
∑

v=1

(Qv

qv

)δk(Pv

pv

)k qv
Qv

|∆tv−1|
k

= O(1)
m
∑

v=1

(Pv

pv

)δk+k−1
|∆tv−1|

k = O(1) as m → ∞
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by (6) and (9). Finally, as in Tn,2, we have that

m+1
∑

n=2

(Qn

qn

)δk+k−1
|Tn,3|

k =

m+1
∑

n=2

(Qn

qn

)δk+k−1
∣

∣

∣

∣

qn
QnQn−1

n−1
∑

v=1

Qv∆tv−1

∣

∣

∣

∣

k

=
m+1
∑

n=2

(Qn

qn

)δk−1 1

Qk
n−1

∣

∣

∣

∣

n−1
∑

v=1

Qv

qv
qv∆tv−1

∣

∣

∣

∣

k

≤
m+1
∑

n=2

(Qn

qn

)δk−1 1

Qn−1

n−1
∑

v=1

(Qv

qv

)k

qv|∆tv−1|
k

{

1

Qn−1

n−1
∑

v=1

qv

}k−1

= O(1)
m+1
∑

n=2

(Qn

qn

)δk−1 1

Qn−1

n−1
∑

v=1

(Qv

qv

)k

qv|∆tv−1|
k

= O(1)
m
∑

v=1

(Qv

qv

)k

qv|∆tv−1|
k

m+1
∑

n=v+1

(Qn

qn

)δk−1 1

Qn−1

= O(1)
m
∑

v=1

(Pv

pv

)δk+k−1
|∆tv−1|

k = O(1) as m → ∞.

This completes the proof of sufficiency of Theorem 1. For the proof of the
necessity, we consider the series to series version of (2) i.e. for n ≥ 1, let

bn =
pn

PnPn−1

n
∑

v=1

Pv−1av , cn =
qn

QnQn−1

n
∑

v=1

Qv−1av .

A simple calculation shows that for n ≥ 1

cn =
qn

QnQn−1

n−1
∑

v=1

bv
Pv

(

PvQv−1 − Pv−1Qv

)

+
qnPn

QnPn

bn.

From this we can write down at once the matrix A that transforms
(

(Pn

pn

)
δk+k−1

k bn
)

into
(

(Qn

qn
)

δk+k−1

k cn
)

. Thus every |N̄ , pn; δ|k summable series

is |N̄ , qn; δ|k summable if and only if A ∈ (lk, lk). By Lemma 1, it is neces-
sary that the diagonal terms of A must be bounded, which gives that (4)
must hold. �

It should be remarked that Bennett has given necessary and sufficient
conditions for certain classes of matrices to belong to (lk, lk) (see [1, (19)]).
Our matrix A is not quite of this form, but by removing the first row and the
main diagonal it is possible, using the results in [1], to obtain complicated
conditions that are both necessary and sufficient for Theorem1 to hold.
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∣
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∣

∣
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∣

∣

∣
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Theorem 2. Let (pn) and (qn) be positive sequences satisfying the con-

dition (6), k ≥ 1, and 0 ≤ δ < 1/k. In order that |N̄ , pn; δ|k be equivalent to

|N̄ , qn; δ|k it is necessary and sufficient that (4) and (5) hold.

It should be remarked that if we set δ=0, then Theorem 2 reduces to
Theorem D.

Proof of theorem 2. Interchange the roles of (pn) and (qn) in The-
orem 1.

If we take pn = 1 (resp. qn = 1) for all values of n, then we obtain two new
equivalence results dealing with the |C, 1; δ|k and |N̄ , qn; δ|k (resp. |N̄ , pn; δ|k
and |C, 1; δ|k ) summability methods. �
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