SOME EQUIVALENCE THEOREMS ON ABSOLUTE SUMMABILITY METHODS

H. BOR

P.O.Box 121, TR-06502 Bahçelievler, Ankara, Turkey e-mail: hbor33@gmail.com

(Received October 29, 2015; revised November 10, 2015; accepted November 20, 2015)

Abstract. We obtained necessary and sufficient conditions for the equivalence of two general summability methods. Some new and known results are also obtained.

1. Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . Let (p_n) be a sequence of positive numbers such that

(1)
$$P_n = \sum_{v=0}^n p_v \to \infty \text{ as } n \to \infty, \quad (P_{-i} = p_{-i} = 0, i \ge 1).$$

The sequence-to-sequence transformation

(2)
$$t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (t_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [10]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n; \delta|_k$, $k \ge 1$ and $\delta \ge 0$, if (see [7])

(3)
$$\sum_{n=1}^{\infty} (P_n/p_n)^{\delta k+k-1} |t_n - t_{n-1}|^k < \infty.$$

If we set $\delta = 0$, then we obtain $|\bar{N}, p_n|_k$ summability (see [2]). If we take $p_n = 1$ for all values of n, then we get $|C, 1; \delta|_k$ summability (se [9]). Finally, if we set $\delta = 0$ and k = 1, then we get $|\bar{N}, p_n|$ summability.

0236-5294/\$20.00 © 2016 Akadémiai Kiadó, Budapest, Hungary

Key words and phrases: Riesz mean, absolute summability, Hölder inequality, equivalence theorem, Minkowski inequality, infinite series, sequence space.

Mathematics Subject Classification: 26D15, 40F05, 40G05, 40G99, 46A45.

2. Known results

We say that two summability methods are equivalent if they sum the same set of series (not necessarily to the same sums). In the special case k = 1 Sunouchi has proved the following theorem.

THEOREM A [11]. Let (p_n) and (q_n) be positive sequences (where $Q_n = \sum_{v=0}^{n} q_v$). In order that every $|\bar{N}, p_n|$ summable series should be $|\bar{N}, q_n|$ summable it is sufficient that

(4)
$$\frac{q_n P_n}{Q_n p_n} = O(1).$$

Bosanquet observed that (4) is also necessary for the conclusion and so completed Theorem A in necessary and sufficient form (see [8]).

THEOREM B [4]. Let (p_n) and (q_n) be positive sequences and $k \ge 1$. In order that $|\bar{N}, p_n|_k$ should be equivalent to $|\bar{N}, q_n|_k$ it is sufficient that (4) and

(5)
$$\frac{p_n Q_n}{P_n q_n} = O(1)$$

hold.

In this theorem, if we take $q_n = 1$ for $n \in N$, then we get a result of Bor (see [3]).

THEOREM C [6]. Let (p_n) and (q_n) be positive sequences and $k \ge 1$. In order that every $|\bar{N}, p_n|_k$ summable series be $|\bar{N}, q_n|_k$ summable it is necessary that (4) holds. If (5) holds then (4) is also sufficient for the conclusion.

THEOREM D [6]. Let (p_n) and (q_n) be positive sequences and $k \ge 1$. In order that $|\bar{N}, p_n|_k$ be equivalent to $|\bar{N}, q_n|_k$ it is necessary and sufficient that (4) and (5) hold.

3. Main result

The aim of this paper is to generalize Theorem C and Theorem D for the general summability methods. Now, we shall prove the following theorems.

THEOREM 1. Let $k \ge 1$ and $0 \le \delta < 1/k$. Let (p_n) and (q_n) be positive sequences, and let

(6)
$$\sum_{n=v+1}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k-1} \frac{1}{Q_{n-1}} = O\left(\left(\frac{Q_v}{q_v}\right)^{\delta k} \frac{1}{Q_v}\right) \quad as \quad m \to \infty.$$

H. BOR

In order that every $|\bar{N}, p_n; \delta|_k$ summable series be $|\bar{N}, q_n; \delta|_k$ summable it is necessary that (4) holds. If (5) holds then (4) is also sufficient for the conclusion.

It should be noted that if we take $\delta = 0$, then Theorem 1 reduces to Theorem C. In this case the condition (6) reduces to

(7)
$$\sum_{n=v+1}^{m+1} \frac{q_n}{Q_n Q_{n-1}} = O\left(\frac{1}{Q_v}\right) \quad \text{as} \quad m \to \infty,$$

which always exists.

It is also remarked that if we take $(q_n) = 1$ for all values of n, then the condition (6) fulfils.

We use the following lemma in the proof of Theorem 1.

LEMMA 1 [5]. Let $k \ge 1$ and $A = (a_{nv})$ be an infinite matrix. In order that $A \in (l^k, l^k)$ it is necessary that $a_{nv} = O(1)$ for all $n, v \ge 0$.

PROOF OF THEOREM 1. Firstly we prove the necessity. Let (t_n) denote the (\overline{N}, p_n) mean of the series $\sum a_n$. Then, by definition, we have

(8)
$$t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) a_v.$$

If the series $\sum a_n$ is summable $|\overline{N}, p_n; \delta|_k$, then

(9)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |\Delta t_{n-1}|^k < \infty.$$

Since,

$$\Delta t_{n-1} = \left(-\frac{1}{P_{n-1}} + \frac{1}{P_n} \right) \sum_{v=0}^n P_{v-1} a_v$$
$$= -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad n \ge 1, \ (P_{-1} = 0)$$

we have

(10)
$$P_{n-1}a_n = -\frac{P_n P_{n-1}}{p_n} \Delta t_{n-1} + \frac{P_{n-1} P_{n-2}}{p_{n-1}} \Delta t_{n-2}.$$

That is

(11)
$$a_n = -\frac{P_n}{p_n} \Delta t_{n-1} + \frac{P_{n-2}}{p_{n-1}} \Delta t_{n-2} \,.$$

If T_n denotes the (\overline{N}, q_n) mean of the series $\sum a_n$, similarly we have that

(12)
$$T_n = \frac{1}{Q_n} \sum_{v=0}^n q_v s_v = \frac{1}{Q_n} \sum_{v=0}^n (Q_n - Q_{v-1}) a_v.$$

Hence

(13)
$$\Delta T_{n-1} = -\frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^n Q_{v-1} a_v, \quad n \ge 1.$$

Since

$$a_{v} = -\frac{P_{v}}{p_{v}}\Delta t_{v-1} + \frac{P_{v-2}}{p_{v-1}}\Delta t_{v-2},$$

by (11), we have that

$$\Delta T_{n-1} = -\frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^n Q_{v-1} \left(-\frac{P_v}{p_v} \Delta t_{v-1} + \frac{P_{v-2}}{p_{v-1}} \Delta t_{v-2} \right)$$
$$= \frac{q_n P_n}{p_n Q_n} \Delta t_{n-1} + \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} Q_{v-1} \frac{P_v}{p_v} \Delta t_{v-1} - \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} Q_v \frac{P_{v-1}}{p_v} \Delta t_{v-1}$$
$$= \frac{q_n P_n}{p_n Q_n} \Delta t_{n-1} + \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \frac{\Delta t_{v-1}}{p_v} (Q_{v-1} P_v - Q_v P_{v-1}).$$

Also,

$$Q_{v-1}P_v - Q_v P_{v-1} = Q_{v-1}P_v - Q_v (P_v - p_v) = Q_{v-1}P_v - Q_v P_v + p_v Q_v$$

= $(Q_{v-1} - Q_v)P_v + p_v Q_v = -q_v P_v + p_v Q_v,$

so that

$$\Delta T_{n-1} = \frac{q_n P_n}{p_n Q_n} \Delta t_{n-1} - \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \frac{P_v}{p_v} q_v \Delta t_{v-1} + \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} Q_v \Delta t_{v-1}$$
$$= T_{n,1} + T_{n,2} + T_{n,3}.$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

(14)
$$\sum_{n=1}^{\infty} \left(\frac{Q_n}{q_n}\right)^{\delta k+k-1} |T_{n,r}|^k < \infty, \quad \text{for} \quad r = 1, 2, 3.$$

Firstly, we have

$$\sum_{n=1}^{m} \left(\frac{Q_n}{q_n}\right)^{\delta k+k-1} |T_{n,1}|^k = \sum_{n=1}^{m} \left(\frac{Q_n}{q_n}\right)^{\delta k+k-1} \left|\frac{q_n P_n}{p_n Q_n} \Delta t_{n-1}\right|^k$$
$$= O(1) \sum_{n=1}^{m} \left(\frac{Q_n}{q_n}\right)^{\delta k} \left(\frac{P_n}{p_n}\right)^k \frac{q_n}{Q_n} |\Delta t_{n-1}|^k.$$

Since $\frac{q_n}{Q_n} = O(\frac{p_n}{P_n})$ and $\frac{Q_n}{q_n} = O(\frac{P_n}{p_n})$, by (4) and (5), we have that

$$\sum_{n=1}^{m} \left(\frac{Q_n}{q_n}\right)^{\delta k+k-1} |T_{n,1}|^k$$
$$= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |\Delta t_{n-1}|^k = O(1) \quad \text{as} \quad m \to \infty$$

by (9). Now applying Hölder's inequality, as in $T_{n,1}$, we have that

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k+k-1} |T_{n,2}|^k &= \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k+k-1} \left| \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \frac{P_v}{p_v} q_v \Delta t_{v-1} \right|^k \\ &\leq \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k-1} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{p_v}\right)^k q_v |\Delta t_{v-1}|^k \left\{ \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_v \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k-1} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{p_v}\right)^k q_v |\Delta t_{v-1}|^k \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^k q_v |\Delta t_{v-1}|^k \sum_{n=v+1}^{n-1} \left(\frac{Q_n}{q_n}\right)^{\delta k-1} \frac{1}{Q_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{Q_v}{q_v}\right)^{\delta k} \left(\frac{P_v}{p_v}\right)^k \frac{q_v}{Q_v} |\Delta t_{v-1}|^k \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^{\delta k+k-1} |\Delta t_{v-1}|^k = O(1) \quad \text{as} \quad m \to \infty \end{split}$$

by (6) and (9). Finally, as in $T_{n,2}$, we have that

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k+k-1} |T_{n,3}|^k &= \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k+k-1} \left| \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} Q_v \Delta t_{v-1} \right|^k \\ &= \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k-1} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \left(\frac{Q_v}{q_v}\right)^k q_v |\Delta t_{v-1}|^k \left\{ \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_v \right\}^{k-1} \\ &\leq \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k-1} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \left(\frac{Q_v}{q_v}\right)^k q_v |\Delta t_{v-1}|^k \left\{ \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_v \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k-1} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \left(\frac{Q_v}{q_v}\right)^k q_v |\Delta t_{v-1}|^k \\ &= O(1) \sum_{v=1}^m \left(\frac{Q_v}{q_v}\right)^k q_v |\Delta t_{v-1}|^k \sum_{n=v+1}^{m+1} \left(\frac{Q_n}{q_n}\right)^{\delta k-1} \frac{1}{Q_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^{\delta k+k-1} |\Delta t_{v-1}|^k = O(1) \quad \text{as} \quad m \to \infty. \end{split}$$

This completes the proof of sufficiency of Theorem 1. For the proof of the necessity, we consider the series to series version of (2) i.e. for $n \ge 1$, let

$$b_n = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v , \quad c_n = \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^n Q_{v-1} a_v .$$

A simple calculation shows that for $n \ge 1$

$$c_n = \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \frac{b_v}{P_v} \left(P_v Q_{v-1} - P_{v-1} Q_v \right) + \frac{q_n P_n}{Q_n P_n} b_n.$$

From this we can write down at once the matrix A that transforms $\left(\left(\frac{P_n}{p_n}\right)^{\frac{\delta k+k-1}{k}}b_n\right)$ into $\left(\left(\frac{Q_n}{q_n}\right)^{\frac{\delta k+k-1}{k}}c_n\right)$. Thus every $|\bar{N}, p_n; \delta|_k$ summable series is $|\bar{N}, q_n; \delta|_k$ summable if and only if $A \in (l^k, l^k)$. By Lemma 1, it is necessary that the diagonal terms of A must be bounded, which gives that (4) must hold. \Box

It should be remarked that Bennett has given necessary and sufficient conditions for certain classes of matrices to belong to (l^k, l^k) (see [1, (19)]). Our matrix A is not quite of this form, but by removing the first row and the main diagonal it is possible, using the results in [1], to obtain complicated conditions that are both necessary and sufficient for Theorem1 to hold.

THEOREM 2. Let (p_n) and (q_n) be positive sequences satisfying the condition (6), $k \ge 1$, and $0 \le \delta < 1/k$. In order that $|\bar{N}, p_n; \delta|_k$ be equivalent to $|\bar{N}, q_n; \delta|_k$ it is necessary and sufficient that (4) and (5) hold.

It should be remarked that if we set $\delta=0$, then Theorem 2 reduces to Theorem D.

PROOF OF THEOREM 2. Interchange the roles of (p_n) and (q_n) in Theorem 1.

If we take $p_n = 1$ (resp. $q_n = 1$) for all values of n, then we obtain two new equivalence results dealing with the $|C, 1; \delta|_k$ and $|\bar{N}, q_n; \delta|_k$ (resp. $|\bar{N}, p_n; \delta|_k$ and $|C, 1; \delta|_k$) summability methods. \Box

Acknowledgement. The author expresses his sincerest thanks to the referee for valuable suggestions for the improvement of this paper.

References

- G. Bennett, Some elementary inequalities, Quart. J. Math. Oxford (2), 38 (1987), 401–425.
- [2] H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc., 97 (1985), 147–149.
- [3] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc., 98 (1986), 81–84
- [4] H. Bor and B. Thorpe, On some absolute summability methods, *Analysis*, **7** (1987), 145–152.
- [5] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009–1012.
- [6] H. Bor and B. Thorpe, A note on two absolute summability methods, Analysis, 12 (1992), 1–3.
- [7] H. Bor, On local property of $|\bar{N}, p_n; \delta|_k$ summability of factored Fourier series, J. Math. Anal. Appl., **179** (1993), 646–649.
- [8] L. S. Bosanquet, Review of [11], Math. Reviews, MR0034861 (11,654b) (1950).
- [9] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc., 8 (1958), 357–387.
- [10] G. H. Hardy, Divergent Series, Oxford Univ. Press (Oxford, 1949).
- [11] G. Sunouchi, Notes on Fourier analysis. XVIII, Absolute summability of a series with constant terms, *Tôhoku Math. J.*, 2 (1949), 57–65.