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Abstract. We study selective and game-theoretic versions of properties
like the ccc, weak Lindelöfness and separability, giving various characterizations
of them and exploring connections between these properties and some classical
cardinal invariants of the continuum.

1. Introduction

Chain conditions provide a measure of how small is a space, from a topo-
logical point of view. For example, a space has the countable chain condition
(ccc) if it does not contain an uncountable family of pairwise disjoint non-
empty open sets. This is one of the weakest chain conditions one can put
on a space, while separability may be considered one of the strongest. Of
course, every separable space satisfies the ccc.

Todorcevic [15] surveys a wealth of chain conditions that are between the
ccc and separability, elaborating on their classifying power, in the sense that
the better the space, the greater number of chain conditions it identifies.
A few examples of this phenomenon are Knaster’s result that separability
and Knaster’s property (that is, every uncountable family of open sets con-
tains an uncountable family where each pair of elements meets) are equiva-
lent on ordered continua and Shapirovskii’s result that separability and the
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Shanin condition (that is, point-countable families of open sets are count-
able) are equivalent for compact spaces of countable tightness. These are
all ZFC results, but the picture is even clearer in certain models of set the-
ory: for example, the ccc and separability are equivalent for linearly ordered
spaces under MAω1

. Some of these characterizations even offer topological
equivalents of certain combinatorial principles. Let us just mention Todor-
cevic and Velickovic’s result that MAω1

is equivalent to the statement that
every compact first-countable ccc space is separable.

In more recent times the framework of selection principles in mathemat-
ics and topological games has been applied to chain conditions offering more
examples of the phenomenon underlined by Todorcevic. A typical selective
chain condition is the one considered by the first-named author in [1] which
states that one can diagonalize a family with a dense union from a count-
able sequence of maximal pairwise disjoint families of non-empty open sets.
Daniels, Kunen and Zhou introduced a game-theoretic strengthening of this
property in [9] by using a two-player game where each player plays an inning
per natural number and at a given inning, the first player chooses a maxi-
mal pairwise disjoint open family, while the second player picks an open set
from it. The second player wins if the set of all open sets he picked has dense
union. If the second player has a winning strategy in this game on a given
space X , then X is selectively ccc, which in turn implies that X is ccc. Un-
fortunately, there are countable spaces failing the selective versions of the
ccc (see [1]), so separability alone does not appear to play any role in this
context. What should take the role of separability when dealing with selec-
tive chain conditions is countable π-weight. Recall that a π-base for a space
X is a family P of non-empty open sets such that for every non-empty open
U ⊂ X there is P ∈ P such that P ⊂ U . The π-weight of a space is then
the minimum cardinality of a π-base. It is easy to see that in every space
with a countable π-base the second player has a winning strategy in the ccc
game. The second-named author proved in [7] that this is actually equiva-
lent to having a countable π-base for spaces with a countable local π-base at
every point. A selective version and a game-theoretic version of separabil-
ity were defined by Scheepers in [13] in a similar way. The former turns out
to be equivalent to a countable π-base for compact spaces and the latter is
equivalent to a countable π-base for all regular spaces. These results seem
to suggest that the same classifying ability of traditional chain condition is
shared by their selective versions, as long as one takes countable π-weight
as the ultimate selective chain condition.

Even though they measure the topological smallness of a space, chain
conditions seldom put any bound on its cardinality. Indeed, while a separa-
ble regular space cannot have cardinality larger than 2c, there are ccc spaces
of arbitrarily large cardinality: it suffices to consider the Cantor Cube 2κ,
where κ is any cardinal. Nonetheless, chain conditions feature prominently
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in a few classical cardinal inequalities. A result of Hajnal and Juhász states
that the cardinality of a ccc first countable space does not exceed the contin-
uum. An interesting partial generalization of this theorem, that also gener-
alizes Arhangel’skii’s theorem on the cardinality of first-countable compacta,
is due to Bell, Ginsburg and Woods. They proved that the cardinality of a
first-countable weakly Lindelöf normal space does not exceed the continuum.
Weakly Lindelöf means that every open cover has a countable subcollection
with dense union, a condition which is easily seen to be satisfied by all ccc
spaces. The question of whether normality can be relaxed to regularity in
this result has remained open, but Angelo Bella gave a partial answer to it
in [7] by considering the natural game-theoretic strengthening of the weak
Lindelöf property. In the third section of our paper we prove that this game
is equivalent to a sort of dual of Berner and Juhász’s classical point-picking
game and exploit this equivalence to give a short proof to Bella’s Theorem.

Another reason for our interest in game-theoretic strengthenings of chain
conditions is that they provide an unexpected ZFC partial positive answer
to the old problem of the productivity of the ccc. It was already known by
Kurepa that the square of a Suslin Line is not ccc. Thus, consistently, the
countable chain condition is not productive. Both Knaster’s property and
the Shanin condition are productive, and one can use these results along
with the above mentioned equivalences to prove that under MAω1

the ccc
is productive. In [9] Daniels, Kunen and Zhou proved in ZFC that if player
II has a winning strategy in the ccc game on every factor of an arbitrary
product then it also has it on the full product.

In Section 2 we deal with selective properties. In particular, we charac-
terize the selective ccc on Pixley–Roy hyperspaces and we give a consistent
topological characterization of cov(M) by means of the weak Rothberger
property.

In Section 3 we concentrate on game versions. We prove preservation re-
sults in finite unions and products and give a characterization of the weak
Rothberger game that we then exploit to prove cardinal inequalities in topo-
logical spaces. Finally, we construct counterexamples showing the sharpness
of our inequalities.

Given a space X with topology τ , we fix some notation about families
of open covers and families of subsets of X :

• O = {U : U ⊂ τ ∧⋃U = X}.
• OD = {U : U ⊂ τ ∧⋃U = X}.
• Ω = {U : U ⊂ τ ∧ (∀F ∈ [X]<ω∃O ∈ U : F ⊂ O}.
• D = {D ⊂ X : D = X}.
• DO = {O ∈ τ : O = X}.
An element of Ω is usually known as an ω-cover of X .
Let us recall some basic selection principles and two-person infinite games

we will deal with in our paper. Let A,B ⊂ P(X).

SELECTIVE VERSIONS OF CHAIN CONDITION-TYPE PROPERTIES 3
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• We say that X satisfies Sκ
1 (A,B) if for every sequence {Aα : α < κ}

⊂ A, we can choose Bα ∈ Aα such that {Bα : α < κ} ∈ B.
• We say that X satisfies Sκ

fin(A,B) if for every sequence {Aα : α < κ}
⊂ A, we can choose Bα ∈ [Aα]

<ω such that
⋃{Bα : α < κ} ∈ B.

• We denote by Gκ
1(A,B) the two-person game in κ many innings such

that, at inning α < κ, player one picks Aα ∈ A and player two picks Bα ∈ Aα.
Player two wins if {Bα : α < κ} ∈ B.

• We denote by Gκ
fin(A,B) the two-person game in κ many innings

such that, at inning α < κ, player one picks Aα ∈ A and player two picks
Bα ∈ [Aα]

<ω. Player two wins if
⋃{Bα : α < κ} ∈ B.

The properties Sω
1 (O,O) and Sω

fin(O,O) are now known as Rothberger
and Menger respectively. Moreover, we recall that X satisfies Sω

1 (Ω,Ω) if
and only if every finite power of X is Rothberger.

2. Selective versions

In [13], Marion Scheepers defined a natural selective version of separa-
bility which is now known as R-separability (see [4]). The R in the name
comes, of course, from Rothberger.

Definition 2.1. A space is R-separable if it satisfies Sω
1 (D,D). In

other words, for every sequence {Dn : n < ω} of dense sets there is a point
xn ∈ Dn, for every n < ω such that {xn : n < ω} is dense in X .

R-separability is much stronger than separability. For example, it im-
plies that every dense set is separable, and by a result of Juhász and She-
lah [10], this is equivalent to countable π-weight in the realm of compact
spaces. Moreover, there are even examples of countable spaces that are not
R-separable (see [5] and [14]).

In [1] the first named author introduced the following weakening of R-
separability, following a suggestion of Sakai.

Definition 2.2. We say that the space X has property S if it satisfies
Sω

1 (DO,D), that is, for every sequence {On : n < ω} of open dense sets we
can pick points xn ∈ On such that {xn : n < ω} is dense.

One of the most interesting features about property S is that it lies
strictly between R-separability and a natural selective version of the count-
able chain condition that was introduced by Scheepers in [12].

Definition 2.3. We say that X is selectively ccc if it satisfies
Sω

1 (OD,OD). In other words, for every sequence {Un : n < ω} of open fami-
lies, such that

⋃Un is dense for every n < ω we can pick an open set Un ∈ Un

such that
⋃{Un : n < ω} is dense.

L. F. AURICHI, S. SPADARO and L. ZDOMSKYY4
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Obviously, every space having property S is selectively ccc, but the con-
verse does not hold, since 2κ is selectively ccc for every cardinal κ (see [1]),
but fails to have property S for κ > c because it is not even separable then.

Let X be a space and set PR(X) = [X]<ω. There is a natural topology
on PR(X) called the Pixley–Roy topology. A basic open neighbourhood of
F ∈ PR(X) is a set of the form [F,U ] =

{
G ∈ PR(X) : F ⊂ G ⊂ U

}
, where

F ⊂ U and U ⊂ X is open in the topology on X .
While other selective properties have been characterized on PR(X) (see,

for example, [11] and [8]), the problem of characterizing the selective ccc of
PR(X) has remained open. We introduce a new selection principle to pro-
vide such a characterization and then reduce the selective ccc of the Pixley–
Roy hyperspace of a separable metrizable space X to a well-known selective
covering property of X .

Definition 2.4. Let (X, τ) be a topological space, and F ⊂ {
(F,U) ∈

[X]<ω × τ : F ⊂ U
}
. We call F an ω-double cover if for every pair (G,V ) ∈

[X]<ω × τ such that G ⊂ V there is (F,U) ∈ F such that F ⊂ V and G ⊂ U .
The family of all ω-double covers will be indicated with Ω2.

Proposition 2.5. Sω
1 (Ω

2,Ω2) ⇒ Sω
1 (Ω,Ω).

Proof. Just note that if Un is an ω-cover then
{
(∅, U) : U ∈ Un

}
is an

ω-double cover. �

Theorem 2.6. PR(X) has Sω
1 (OD,OD) if and only if X has

Sω
1 (Ω

2,Ω2).

Proof. For the direct implication, let {Fn : n < ω} ⊂ Ω2. Now let
On =

{
[F,U ] : (F,U) ∈ Fn

}
. Then {On : n < ω} ⊂ OD

(
PR(X)

)
. By

the Sω
1 (OD,OD) property of PR(X) we can find [Fn, Un] ∈ On such that{

[Fn, Un] : n < ω
} ⊂ OD. We then have that

{
(Fn, Un) : n < ω

} ∈ Ω2. In-
deed, let (F,U) ∈ {

(F,U) ∈ [X]<ω × τ : F ⊂ U
}
. Then [F,U ]∩ [Fn, Un] 
= ∅

for some n. So there is H extending both F and Fn such that H ⊂ Un and
H ⊂ U , and that implies F ⊂ Un and Fn ⊂ U .

Vice versa, suppose X has Sω
1 (Ω

2,Ω2) and let {Un : n < ω} be a se-
quence of open families with dense union in PR(X). Without loss of gen-
erality we can assume that Un is made up of basic open sets. Let now
Fn =

{
(F,U) : [F,U ] ∈ Un

}
. Then Fn ∈ Ω2, for every n < ω. Hence we can

find (Fn, Un) ∈ Fn such that
{
(Fn, Un) : n < ω

} ∈ Ω2. Now by the same
argument

{
[Fn, Un] : n < ω

}
has dense union in PR(X). �

Corollary 2.7. If PR(X) satisfies Sω
1 (OD,OD) (that is, PR(X) is

selectively ccc) then X satisfies Sω
1 (Ω,Ω).

SELECTIVE VERSIONS OF CHAIN CONDITION-TYPE PROPERTIES 5
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Corollary 2.8. If X satisfies Sω
1 (Ω

2,Ω2) and U ⊂ X is open then U
satisfies Sω

1 (Ω
2,Ω2).

Proof. If X satisfies Sω
1 (Ω

2,Ω2) then PR(X) is selectively ccc. Now
PR(U) = [∅, U ] is an open subspace of a selectively ccc space and hence it
is selectively ccc. But then U satisfies Sω

1 (Ω
2,Ω2). �

Theorem 2.9. Let X be a second-countable space. Then X is Sω
1 (Ω

2,Ω2)
if and only if X is Sω

1 (Ω,Ω).

Proof. The direct implication is clear by Proposition 2.5. For the con-
verse implication, let {Bn : n < ω} be a countable base for X which is closed
under finite unions. Let {Ik : k < ω} be a partition of ω into infinite sets.
Let {Un : n < ω} ⊂ Ω2. We can assume without loss of generality that for
every n < ω and for every (F,U) ∈ Un there is k < ω such that U ⊂ Bk.
Moreover, we can assume that for every n < ω, and for every (F,U) ∈ Un, if
V is an open subset of X such that F ⊂ V ⊂ U then (F, V ) ∈ Un. For every
n ∈ Ik, define families Vn as follows:

Vn =
{
U : (F,U) ∈ Un ∧ U ⊂ Bk

}
.

Then Vn is an ω-cover of Bk and hence we can pick an element Un ∈ Vn

for every n ∈ Ik such that {Un : n ∈ Ik} is an ω-cover of Bk. Let Fn ∈ [X]<ω

be such that Fn ⊂ Un and (Fn, Un) ∈ Un. We claim that V = {(Fn, Un) :
n < ω} is an ω-double cover for X . Indeed, let (G,V ) be any pair, where
G ∈ [X]<ω, V ⊂ X is open and G ⊂ V . Let k < ω be such that G ⊂ Bk ⊂ V .
Then we can find an n ∈ Ik such that G ⊂ Un. Now Fn ⊂ Un ⊂ Bk ⊂ V and
hence V is actually an ω-double cover for X . �

Corollary 2.10. Let X be a separable metrizable space. Then PR(X)
is selectively ccc if and only if every finite power of X is Rothberger.

The weak Lindelöf property is a covering property that may be consid-
ered a chain condition, since it is a consequence of the ccc. We finish this
section by considering the natural question of when a weakly Lindelöf space
satisfies the selective version of weak Lindelöfness, that is, Sω

1 (O,OD). As
in [2], we will call this property the weak Rothberger property.

Theorem 2.11. Let X be a weakly Lindelöf space such that πw(X) <
cov(M). Then X is weakly Rothberger.

Proof. Recall that the space ωω with its usual topology is homeomor-
phic to the irrationals and cov(M) can be characterized as the least cardinal
of a cover of the irrationals by nowhere dense sets.

Let {Bα : α < κ} enumerate a π-base of X for some κ < cov(M). Let
{Un : n < ω} be a sequence of open covers. Since X is weakly Lindelöf we

L. F. AURICHI, S. SPADARO and L. ZDOMSKYY6
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can find a countable subcollection {Un
k : k < ω} of Un such that

⋃
k<ω U

n
k is

dense. Define Nα to be the following set:

Nα = {f ∈ ωω : (∀n)(Bα ∩ Un
f(n) = ∅)}.

Claim. The set Nα is nowhere dense in ωω for every α < κ.

Proof of Claim. It will suffice to prove that for every α < κ, the
set ωω \Nα is dense in ωω. Let [σ] be a basic open set in ωω, where
σ ∈ ⋃

n<ω ωn and [σ] = {f ∈ ωω : f ⊃ σ}. Let k = dom(σ) and pick j < ω

such that Bα ∩ Uk
j 
= ∅. Let τ = σ ∪ {

(k, j)
}

and note that [τ ] ⊂ [σ] and
any function in the open set [τ ] misses Nα. 

Since κ < cov(M) we can pick f 
∈ ⋃
α<κNα. Then {Un

f(n) : n < ω} is
the selection showing that X is weakly Rothberger. �

Theorem 2.12. Under cov(M) < b there is a compact space which is
not weakly Rothberger and has π-weight cov(M).

Proof. Assume that cov(M) < b. We claim that β
(
cov(M)

)
is the

required example.
We say that F ⊂ ωω satisfies property (P) if for every g ∈ ωω there is

f ∈ F such that f(n) 
= g(n) for every n < ω.

Claim. There is a family F ⊂ ωω of cardinality cov(M) satisfying prop-
erty (P) such that f(n) < b(n) for some b ∈ ωω and every f ∈ F .

Proof of Claim. By Lemma 2.4.2 of [3] there is a family F ′ ⊂ ωω of
cardinality cov(M) satisfying (P). Let

{
hα : α < cov(M)

}
be an enumera-

tion of F ′.
Since cov(M) < b, we can fix a function b ∈ ωω such that hα <∗ b, for

every α < cov(M). Now, for every α < cov(M) there is nα < ω such that
hα(n) < b(n) for every n � nα. For every α < cov(M), n < ω and i < b(n)
define:

hiα(n) =

{
i if n < nα

hα(n) if n � nα.

It is easy to see that F =
{
hiα : i < b(n), α < cov(M)

}
is a subfamily

of ωω satisfying (P) and such that h(n) < b(n), for every h ∈ F . 
Let

{
fα : α < cov(M)

}
be an enumeration of F and for every n let

us consider the following finite clopen cover of β
(
cov(M)

)
: Un =

{
Un
k :

k < b(n)
}
, where Un

k = β(
{
ξ < cov(M) : fξ(n) = k

}
) and β(A) is the set

of all ultrafilters on cov(M) containing A. We claim that the sequence {Un :
n ∈ ω} witnesses that β

(
cov(M)

)
fails to have Sω

1 (O,OD). Indeed, suppose

SELECTIVE VERSIONS OF CHAIN CONDITION-TYPE PROPERTIES 7
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that
⋃

n∈ω Un
g(n) is dense in β

(
cov(M)

)
for some g ∈ ωω. Then, in particu-

lar, cov(M) ⊂ ⋃
n∈ω Un

g(n).
But since F satisfies property (P), there exists ξ < cov(M) such that

fξ(n) 
= g(n) for all n, which means that ξ 
∈ Un
g(n) for all n, and that is a

contradiction. �

Corollary 2.13. Assume cov(M) < b. Then cov(M) can be charac-
terized as the minimum π-weight of a non-weakly Rothberger weakly Lindelöf
space.

Question 2.14. Is it true in ZFC that cov(M) is the minimum π-weight
of a non-weakly Rothberger weakly Lindelöf space?

3. Game versions

The property S defined in the previous section has a natural game ver-
sion.

Definition 3.1. We say that X has property S+ if the second player
has a winning strategy in the game Gω

1 (DO,D). This is the two person game
of countable length where at inning n player one picks a dense open set On

and player two picks a point xn ∈ On. Player two wins if the set of all points
he picked is dense in X .

Lemma 3.2. Property S+ is hereditary for open sets.

Proof. Let X be a space with property S+ and U ⊂ X be a non-empty
open subset. Let τ be a winning strategy for player II in Gω

1 (DO,D) on X .
Let σ be the strategy assigning to the open dense subset O of U the point
τ
(
O ∪ Int(X \ U)

)
if this last point is in O, and any point of O otherwise.

Then σ is a winning strategy for player II in Gω
1 (DO,D) on O. �

The following fact is also clear.

Lemma 3.3. If D is dense in X and D has property S+ then X also
has property S+.

Proposition 3.4. Property S+ is preserved by finite unions.

Proof. Once this is proved for the union of two spaces, the result will
follow easily by induction, so let X be a topological space and A and B be
subspaces with property S+ such that X = A∪B. If Int(A)∩A = ∅ then B
is dense in X and we are done. Similarly, if Int(B) ∩B = ∅ we are done. So
we can assume that Int(A) ∩A and Int(B) ∩B are both non-empty subsets
of X . By Lemma 3.2 we can fix a winning strategy σA for player two on
Int(A) ∩A and a winning strategy σB for player two on Int(B) ∩B in the

L. F. AURICHI, S. SPADARO and L. ZDOMSKYY8
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game Gω
1 (DO,D). The set Int(A)∪ Int(B) is a dense open subset of X . Note

that if U is dense open in X then U ∩ Int(A) ∩A is dense open in Int(A)
∩A and U ∩ Int(B) ∩B is dense open in Int(B) ∩B. We are now going to
define a strategy σ for player two on A ∪B.

Suppose that in the first n innings, player two played the following se-
quence of dense open sets (Ui : i � n).

If n = 2k for some k < ω, we let

σ
(
(Ui : i � n)

)
= σA(

(
U2i ∩ Int(A) ∩A : i � k

)
).

If n = 2k + 1 for some k < ω, we let

σ
(
(Ui : i � n)

)
= σB(

(
U2i+1 ∩ Int(B) ∩B : i � k

)
).

Note now that, by the definition of σA and σB we have that:

{σ((Ui : i � n)
)
: n < ω}

= {σA((U2i : i � k)
)
: k < ω} ∪ {σB((U2i+1 : i � k)

)
: k < ω}

= Int(A) ∩A ∪ Int(B) ∩B = X.

So σ is a winning strategy for player two in Gω
1 (DO,D)

)
on X and we

are done. �
In a similar way, one can prove the following propositions:

Proposition 3.5. If player two has a winning strategy in Gω
fin(DO,D)

on Ai, for every i � n then he also has a winning strategy in that game on
A1 ∪A2 ∪ . . . ∪An.

Proposition 3.6. The properties Sω
1 (DO,D) and Sω

fin(DO,D)
)
are pre-

served by finite unions.

The natural game version of the weak Rothberger property, introduced
in the end of the previous section is the game Gω

1 (O,OD). This is tightly
connected to the dual version of the point-picking game studied by Berner
and Juhász in [6].

Definition 3.7. Let Gp
o(κ) be the following game. At inning α < κ,

player one picks a point xα ∈ X and player two picks an open set Uα such
that xα ∈ Uα. Player one wins if and only if

⋃
α<κ Uα is dense in X .

We may call this the open-picking game. We prove that the game
Gκ

1(O,OD) and the game Gp
o(κ) are dual, in the following sense.

SELECTIVE VERSIONS OF CHAIN CONDITION-TYPE PROPERTIES 9
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Theorem 3.8. (1) Player one has a winning strategy in Gp
o(κ) if and

only if player two has a winning strategy in Gκ
1(O,OD).

(2) Player two has a winning strategy in Gp
o(κ) if and only if player one

has a winning strategy in Gκ
1(O,OD).

Proof. The direct implication of (1) is easy to see. Indeed, let τ be a
winning strategy for player one in Gp

o(κ). Given an open cover U let σ
(
(U))

be any open set O ∈ U such that τ(∅) ∈ O. Assuming we have defined σ
for the first α many innings, and {Oβ : β � α} is a sequence of open covers,
let σ

(
(Oβ : β � α)

)
be any open set O ∈ Oα such that τ

(
(σ(Oγ : γ � β) :

β < α)
) ∈ O. Then σ is a winning strategy for player two in Gκ

1(O,OD).
Indeed, let (O0, O0,O1, O1, . . .Oα, Oα, . . . ) be a play, where player two plays
according to σ. Then τ

(
(σ(Oγ : γ � β) : β < α)

) ∈ Oα, and hence
⋃{Oα :

α < κ} is dense, as τ is a winning strategy for player one in Gp
o(κ).

To prove the converse implication of (1), let σ be a winning strategy for
player two in Gκ

1(O,OD) on some space X .

Claim. Let (Oα : α < β) be a sequence of open covers. Then there is
a point x ∈ X such that, for every neighbourhood U of x there is an open
cover U with U = σ

(
(Oα : α < β)�(U)) .

Proof of Claim. Recalling that O denotes the set of all open covers
of X , let V = {V be open: (∀U ∈ O)(V 
= σ

(
(Oα : α < β)�(U))}. Its def-

inition easily implies that V cannot be an open cover, and hence there is a
point x ∈ X \⋃V . By definition of V we must have that for every neighbour-
hood U of x there is an open cover U such that U = σ

(
(Oα : α < β)�(U))

and hence we are done. 
Use the Claim to choose a point x0 such that for every neighbourhood

U of x0 there is an open cover U with σ(U) = U and let τ(∅) = x0.
Suppose we have defined τ for the first α many innings. Let now {Vβ :

β � α} be a sequence of open sets and let {Oβ : β < α} be a sequence
of open covers such that Vβ = σ

(
(Oγ : γ � β)

)
for every β < α. Use the

claim to choose a point xα such that for every open neighbourhood U of xα
there is an open cover O with U = σ

(
(Oβ : β < α)�(O)

)
and let τ

(
(Vβ :

β � α)
)
= xα.

We now claim that τ is a winning strategy for player one in Gp
o(κ). In-

deed, let (x0, V0, x1, V1, . . . xα, Vα, . . . ) be a play where player one uses strat-
egy τ . Then there must be a sequence of open covers {Oα : α < κ} such
that Vβ = σ

(
(Oα : α < β)

)
, for every β < κ. Since σ is a winning strategy

for two in Gκ
1(O,OD) then

⋃{Vα : α < κ} is dense in X and this proves that
τ is a winning strategy for player one in Gp

o(κ).
To prove the direct implication of (2), let τ be a winning strategy for

player two in Gp
0(κ). We define a winning strategy σ for player one in
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Gκ
1(O,OD) as follows: in his first move player one plays the open cover

σ(∅) = {
τ(x) : x ∈ X

}
. Assuming we have defined σ for every inning β,

with β < α, let (Uβ : β < α) be a sequence of open sets such that there is a
sequence {xβ : β < α} of points with Uβ = τ(xγ : γ � β). Then we simply
define σ

(
(Uβ : β < α)

)
to be {τ( (xβ : β < α)�(x)

)
: x ∈ X}. We claim

that σ is a winning strategy for player one in Gκ
1(O,OD).

Indeed, let (O0, U0, . . .Oα, Uα . . . ) be a play of Gκ
1(O,OD) where player

one plays according to σ. Therefore, we can find a sequence {xα : α < κ}
of points such that Uα = τ

(
(xγ : γ < α)

)
, and hence

⋃
α<κ Uα is not dense,

since τ is a winning strategy for player two in Gp
o(κ). So σ must be a winning

strategy for player one in Gκ
1(O,OD).

To prove the converse implication of (2), let σ be a winning strategy
for player one in Gκ

1(O,OD). We will use σ to define a winning strategy τ
for player two in Gp

o(κ). Given a point x ∈ X , let τ
(
(x)

)
be any open set

U ∈ σ(∅) such that x ∈ U .
Now suppose τ has been defined for all sequences of points of ordinal

length less than α. Given a sequence {xβ : β � α} ⊂ X , let τ
(
(xβ : β � α)

)
be any open set U ∈ σ((τ

(
(xγ : γ � β) : β < α

)
) such that xα ∈ U . We

claim that τ thus defined is a winning strategy for player two in Gp
o(κ).

Indeed, let x0, U0, x1, U1, . . . xα, Uα . . . be a play of Gp
o(κ), where player

two plays according to τ . Then Uα ∈ σ((τ
(
(xγ : γ � β) : β < α

)
) for every

α < κ and hence, since σ is a winning strategy for player I in Gκ
1(O,OD) we

must have that
⋃

α<κ Uα is not dense, and we are done. �
We are now going to exploit this result to give a short proof to a result

of Angelo Bella from [7].

Theorem 3.9. Let (X, τ) be a regular space. Suppose that player two
has a winning strategy in Gκ

1(O,OD). Then d(X) � χ(X)<κ.

Proof. Using Theorem 3.8 fix a winning strategy σ for player one in
Gp

o(κ). Let M be a < κ-closed elementary submodel of H(θ) for large enough
regular θ such that |M | = χ(X)<κ, (X, τ), σ ∈ M and χ(X) + 1 ⊂ κ.

We claim that X ∩M is dense in X . Suppose not, and let V ⊂ X be
an open set such that V ∩X ∩M = ∅. For every x ∈ X ∩M , let Ux ∈ M
be a local base of size � χ(X). Since χ(X) + 1 ⊂ M we have Ux ⊂ M , and
hence we can find in M a neighbourhood Ux of x such that Ux ∩ V = ∅.

Since we have both X ∈ M and σ ∈ M , the first move of player one
σ
(
(∅)) := x0 is a point of M . Let player two pick the open set Ux0

.
Suppose that for some countable ordinal α, player two picked the open

set Uxβ
at inning β for every β < α. Note that {Uxβ

: β < α} ⊂ M and since
M is < κ closed we have {Uβ : β < α} ∈ M . Therefore xα := σ

(
(X)�(Uβ :

β < α)
) ∈ M . Let player two play Uxα

at the αth inning. Since σ is a win-
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ning strategy for player one, we must have that
⋃{Uxα

: α < ω1} is a dense
set. But this is impossible, because V ∩ Uxα

= ∅ for every α < κ. �

Corollary 3.10 (A. Bella). Let X be a first-countable regular space. If
player two has a winning strategy in Gℵ1

1 (O,OD) then |X| � 2ℵ0 .

Proof. Every first countable space with a dense set of cardinality con-
tinuum has cardinality at most (2ℵ0)ℵ0 = 2ℵ0 . �

Corollary 3.11. Every first countable regular space where player II
has a winning strategy in Gω

1 (O,OD) is separable.

Theorem 3.12. Let X be a first countable regular space. If player two
has a winning strategy in Gℵ0

1 (O,OD) then X is separable.

The above theorem would lead one to conjecture that if player two has
a winning strategy in Gℵ1

1 (O,OD) on a first countable regular space X , then
X should have density ℵ1, but in Example 3.14 we are going to show that
this is not the case, not even if Gω1

1 (O,OD) is replaced with the stronger
(for player II) game Gω1

1 (O,O).

Lemma 3.13. Assume cov(M) > ℵ1 + c = ℵ2. Then there is a set Y ⊂ I
= [0, 1] of cardinality ℵ2 such that the intersection of Y with every meager
set of I has cardinality at most ℵ1.

Proof. MAω1
implies that I is not the union of ℵ1 many nowhere dense

sets. Note that I has continuum many closed sets, so we can use c = ω2 to fix
an enumeration {Fα : α < ω2} of the closed nowhere dense subsets of I. We
are going to construct Y by transfinite induction. Suppose we have chosen
points {yα : α < β} ⊂ I, where β < ω2. Choose any point yβ ∈ I \ (⋃α<β Fα

∪ {yα : α < β}). Then Y = {yα : α < ω2} is the desired set. �

Example 3.14 (cov(M) > ℵ1 + c = ω2). A first countable regular space
X such that player two has a winning strategy in Gω1

1 (O,O) and d(X) > ℵ1.

Proof. Recall the construction of the Alexandroff Double D of the unit
interval. We define a topology on D = I× {0, 1} by declaring every point
of I× {1} to be isolated and declaring a neighbourhood of a point (x, 0)
∈ I× {0} to be of the form U × {0} ∪U × {1} \ F , where U is an Euclidean
open set and F is a finite set. It is easy to see that D is a compact Hausdorff
space with points Gδ, and hence it is first countable.

Let now Y be the set constructed in Lemma 3.13. Without loss of
generality we can assume that Y is dense in I. Now, consider the space
X = Y × {0, 1} with the topology induced by D. Then X is a regular first
countable space of density ℵ2. Fix a countable dense set D ⊂ Y . We let
C = D × {0}.
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Claim. The complement of every open set containing C has cardinality
at most ℵ1.

Proof of Claim. Let U be an open subset of X such that C ⊂ U .
Since Y is hereditarily Lindelöf, we can assume that U =

⋃
n<ω

(
Un × {0}

∪Un×{1}\Fn

)
, where Un is the trace on Y of an Euclidean open set and Fn

is finite. Let O =
⋃

n<ω Un and let V be an open subset of I such that V ∩ Y
= O. Since V is dense in I, I \ V is nowhere dense, and hence A = (I \ V )
∩ Y has cardinality at most ℵ1. Now X \ U ⊂ (

A× {0, 1}) ∪⋃
n<ω Fn and

since the latter set has cardinality at most ℵ1, also X \U has cardinality at
most ℵ1, as we wanted. 

A winning strategy for player two in Gω1

1 (O,O) is now easy to describe.
Let {xn : n < ω} be an enumeration of C, and suppose that Uα is the open
cover played by player one at inning α. At inning n < ω player two picks an
open set Un ∈ Un such that xn ∈ Un. Let {zα : α < ω1} be an enumeration
of X \⋃n<ω Un. Then at inning ω + α player two simply picks an open set
Uω+α ∈ Uω+α such that zα ∈ Uω+α. We then have that {Uα : α < ω1} is an
open cover, regardless of player one’s choices, and hence the strategy we have
defined is a winning one. �

Question 3.15. Can we get a space with the features of Example 3.14
simply from the negation of CH?

Here is another application of Theorem 3.8, regarding the behavior of
the game version of weak Lindelöfness in products.

Theorem 3.16. Suppose player two has a winning strategy in Gω
1 (O,D)

on X and Y is separable. Then player two has a winning strategy in
Gω

1 (O,D) on X × Y .

Proof. Exploiting Theorem 3.8, fix a winning strategy σX for player
one on X in Gp

o(ω) and fix a countable dense set {dn : n < ω} for Y . Par-
tition ω into infinitely many sets {Ik : k < ω} in such a way that if {ikj :
j < ω} is an increasing enumeration of Ik then {ikj : k < ω} is an increasing
sequence, for every j < ω. We now define a winning strategy for player one
in Gp

o(ω).
Assume player two played open set Ui × Vi at inning i, for i � n, and let

k, j < ω be such that n = ikj . Let σX×Y

(
(U1 × V1, U2 × V2, . . . , Un × Vn)

)
be

(xn, yn), where xn = σX
(
(Uikm : m � j)

)
and yn = dk.

Let now

(σX×Y (∅), U1 × V1, πX×Y (U1 × V1), . . . )

be a play. We claim that
⋃{Un ×Vn : n < ω} is dense. Indeed, let U ×V be

a non-empty basic open set in X × Y . Then there is k < ω such that dk ∈ V

SELECTIVE VERSIONS OF CHAIN CONDITION-TYPE PROPERTIES 13
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and since πX is a winning strategy for Gp
o(ω) on X then there is n ∈ Ik such

that U ∩Un 
= ∅. Since dk ∈ Vn we have (U × V )∩ (Un × Vn) 
= ∅ and hence
we are done. �

Let us recall the definition of the point open game Go
p(κ), due to Berner

and Juhász [6].

Definition 3.17. Two players play κ many innings. At inning α, player
one chooses an open set Oα and player two plays a point xα ∈ Oα. Player
one wins in Go

p(κ) if {xα : α < κ} is dense in X .

Scheepers proved in [13] that the game Go
p(κ) is equivalent to the gener-

alized R-separability game Gκ
1(D,D), in the following sense.

Theorem 3.18. (1) Player one has a winning strategy in Go
p(κ) if and

only if player two has a winning strategy in Gκ
1(D,D).

(2) Player two has a winning strategy in Go
p(κ) if and only if player one

has a winning strategy in Gκ
1(D,D).

He actually stated the result only for the case κ = ω.
We now exploit Scheeper’s result to prove that every regular space where

player two has a winning strategy in Gω1

1 (D,D) has π-weight at most con-
tinuum. As a byproduct we obtain an alternative proof of Scheeper’s result
countable π-weight is equivalent to the property that player two has a win-
ning strategy in the R-separability game (see [13]).

Theorem 3.19. Let X be a regular space and suppose that player two
has a winning strategy in Gκ

1(D,D). Then πw(X) � 2<κ.

Proof. Let τ be the set of all open sets of X and fix a strategy σ for
player one in Go

p(κ). Let M be a < κ-closed elementary submodel of H(θ)
for some large enough regular θ such that X, τ ∈ M , |M | � 2<κ.

Claim. X ∩M is dense in X.

Proof of Claim. Play a game of Go
p(ω1) where the first player plays ac-

cording to σ and the second player picks all its points in M . In other words,
let α < κ, and suppose that at inning β < α, player one picked non-empty
open set Uβ ∈ M and player two picked a point xβ ∈ Uβ ∩M . At inning α,
player one plays non-empty open set Uα = σ

(
(xβ : β < α)

)
which is an el-

ement of M by κ-closedness and player two plays any point xα ∈ Uα ∩M .
Since σ is a winning strategy for player one, we must have that {xα : α < κ}
is a dense set. But {xα : α < κ} ⊂ X ∩M , and hence the claim. 

We now claim that τ ∩M is a π-base. Suppose this is not the case, and
let V be an open set such that U � V for every U ∈ τ ∩M . By regularity
of X we can actually assume that U � V , for every U ∈ τ ∩M . Now play
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a game of Go
p(κ) in a similar way as in the above claim, with the only differ-

ence that at inning α player two picks a point xα ∈ Uα \V ∩M . Since player
one is playing according to σ, we again have that {xα : α < κ} is dense, but
this is impossible, since V ∩ {xα : α < κ} = ∅. �

Corollary 3.20 (Scheepers). Let X be a regular space. Then X has
a countable π-base if and only if player two has a winning strategy in
Gω

1 (D,D).
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