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for any positive function ψ(x), non-decreasing in the domain x > x0 for some
x0 > 0 and such that

(2)

∞∑
n=1

1

nψ(n)
< ∞,

then

(3)
Sn − ESn

n
−→ 0 a.s., as n −→ ∞.

The set of all positive functions ψ(x), non-decreasing in the domain
x > x0 (for some x0 > 0) and satisfying (2), was denoted by Petrov as Ψc.

Condition (1) was called Petrov’s condition. It is easy to see that condi-
tion (1) for independent random variables is equivalent to

(4)
n∑

i=1

Var(Xi) = O

(
n2

ψ(n)

)
.

Korchevsky [3] showed that (2) implies the classical Kolmogorov’s con-
dition

∞∑
n=1

Var(Xn)

n2
< ∞,

so Petrov’s theorem is a corollary of Kolmogorov’s theorem.
Petrov [7] formulated some additional conditions under which Petrov’s

condition (1) is sufficient for the strong law of large numbers for random
variables without any assumption about independence.

Theorem 2 [7]. Let {Xn, n � 1} be a sequence of nonnegative random
variables with finite variances satisfying Petrov’s condition (1) and

E(Sn − Sm) � C(n−m) for sufficiently large n−m,

where C is some positive constant. Then (3) holds.

Petrov and Korchevsky [4] generalized the above theorem replacing
Petrov’s condition (1) by a more general condition

(5) E|Sn − ESn|p = O

(
np

ψ(n)

)

for some function ψ ∈ Ψc and some p � 1.
The next step in the Petrov strong law of large numbers research has

been done by Korchevsky [2]. He used an arbitrary norming sequence in
place of the classical normalization.
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Abstract. We study the rate of convergence in the strong law of large num-
bers expressed in terms of complete convergence of Baum–Katz type for sequences
of random variables satisfying Petrov’s condition.

1. Introduction

Let X1, X2, . . . be a sequence of random variables. Put Sn =
∑n

i=1Xi.
We say that the sequence X1, X2, . . . satisfies a law of large numbers if

Sn − ESn

n
−→ 0, as n −→ ∞.

We say that this sequence satisfies a weak law of large numbers (the con-
vergence in probability), a strong law of large numbers (the almost sure
convergence) or a strong law of large numbers of Hsu-Robbins type (the
complete convergence).

Markov showed that if Var(Sn) = o(n2), then the sequence X1, X2, . . .
satisfies the weak law of large numbers without any additional assumptions
about independence.

Petrov [6] strengthened Markov’s condition and proved the analogous
strong law of large numbers for independent random variables.

Theorem 1 [6]. Let {Xn, n � 1} be a sequence of independent random
variables with finite variances. If

(1) Var(Sn) = O

(
n2

ψ(n)

)
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Theorem 3 [2]. Let {Xn, n � 1} be a sequence of nonnegative ran-
dom variables with finite absolute moment of order p � 1. Assume that
{an, n � 1} is non-decreasing unbounded sequence of positive numbers. If

ESn = O(an) and E|Sn − ESn|p = O( ap
n

ψ(an)) for some function ψ ∈ Ψc, then

Sn − ESn

an
−→ 0, a.s., as n −→ ∞.

In all the above theorems there is a function ψ ∈ Ψc. Petrov [6] showed
that the set Ψc is optimal for the strong law of large numbers in the sense of
condition (1). In this situation, it is natural to ask about the subset of Ψc,
i.e., about the set of all functions ψ, for which Petrov’s condition (1) (or
its generalization (5)) is sufficient for the strong law of large numbers of
Hsu-Robbins type.

In this work we study the rate of convergence in the strong law of large
numbers expressed in terms of complete convergence of Baum–Katz type for
sequences of random variables satisfying Petrov’s condition (5).

This problem was considered by Stoica [9]. He presented the Baum–
Katz type theorem in a special form, i.e., considered the convergence of the
series

∞∑
n=1

cnP
[
|Sn − ESn| > εbn

]

for the norming sequence bn = ESn, n � 1 and the coefficients cn =

(ESn)
p−2, n � 1, 1 < p � 2 under the assumption analogous to (5) and some

additional assumption describing change rate of the sequence {Xn, n � 1}.
Here we recall the Baum–Katz type theorem in the version given in the

paper of Gut and Stadtmüller [1].

Theorem 4 [1]. Let p > 0, α > 1/2 and αp � 1. Suppose that {X,Xn,
n � 1} are independent and identically distributed random variables. If

E|X|p < ∞ and, if p � 1 EX = 0,

then
∞∑
n=1

nαp−2P
[
|Sn| > nαε

]
< ∞, for all ε > 0

and
∞∑
n=1

nαp−2P
[
max
1�k�n

|Sk| > nαε
]
< ∞, for all ε > 0.
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If αp > 1, we also have

∞∑
n=1

nαp−2P

[
sup
k�n

����
Sk

kα

���� > ε

]
< ∞, for all ε > 0.

Conversely, if one of the sums is finite for all ε > 0, then so are the others
(for appropriate values p and α), E|X|p < ∞ and if p � 1, then EX = 0.

2. Main results

Denote by Ψc
(r) the set of positive functions ψ, non-decreasing in the

domain x > x0 for some x0 > 0 and such that

∞∑
n=1

nr−2

ψ(n)
< ∞.

Note that for r = 1, Ψc
(1) = Ψc, and if r1 > r2, then Ψc

(r1) ⊂ Ψc
(r2).

In the proofs concerning almost sure convergence and Petrov’s condition,
the following lemma plays the key role.

Lemma 1. If ψ ∈ Ψc then the series
∑∞

n=1 1/ψ(b
n) is convergent for

any b > 1.

Inspired by methods used by Petrov and Korchevsky, we will prove the-
orems concerning complete convergence using the following generalization of
Lemma 1.

Lemma 2. If ψ ∈ Ψc
(r) for some r � 1, then the series

∑∞
n=1 (b

n)r−1/
ψ(bn) is convergent for any b > 1.

In the proof of Lemma 2 we will need the following result.

Lemma 3. Let {an, n � 1} be a sequence of nonnegative numbers, An =∑n
k=1 ak and An → ∞. Then the series

∑∞
n=1 an(An)

r−2/ψ(An) converges

for any function ψ ∈ Ψc
(r), r � 1.

Proof of Lemma 3. Let ψ ∈ Ψc
(r) and let n0 be such that An0

> 0
and ψ(An0

) > 0.
The series

∑∞
n=1 n

r−2/ψ(n) is convergent for r � 1, so the integral

I =

∫ ∞

An0

xr−2

ψ(x)
dx

converges too.
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By the mean-value theorem, we have

∫ An

An−1

xr−2

ψ(x)
dx = (An −An−1)cn, n > n0,

where

(An)
r−2

ψ(An)
� cn � (An−1)

r−2

ψ(An−1)
.

Moreover, we see that An −An−1 = an and then

∞∑
n=n0+1

an(An)
r−2

ψ(An)
�

∞∑
n=n0+1

(An−An−1) ·cn =

∞∑
n=n0+1

∫ An

An−1

xr−2

ψ(x)
dx = I < ∞,

which ends the proof of Lemma 3. �

Proof of Lemma 2. Let b > 1. Put an = bn−1. Then

An = 1 + b+ · · ·+ bn−1 and lim
n→∞

An

bn−1
= 1.

Therefore, the convergence of the series
∑∞

n=1
an(An−1)

r−2

ψ(An)
is equivalent to the

convergence of the series
∑∞

n=1
(bn−1)r−1

ψ(bn−1) .

By Lemma 3, we get the thesis of Lemma 2. �

Theorem 5. Let p � 1, α > 1/2 and αp � 1. Suppose that {Xn, n � 1}
is a sequence of nonnegative random variables satisfying conditions

(6)
ESn

nα
−→ A as n −→ ∞

and (5) for some function ψ ∈ Ψc
(p). Then

∞∑
n=1

nαp−2P
[
|Sn − ESn| > nαε

]
< ∞ for all ε > 0.

Proof. Let b > 1, ε > 0,

m1 = inf
{
m � 0 : bm � n < bm+1 for some n

}

and

ml = inf
{
m > ml−1 : b

m � n < bm+1 for some n
}
, l � 2,

where n and m in the above formulas are nonnegative integers.
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Note that {ml, l � 1} is a sequence of nonnegative integers such that

0 � m1 < m2 . . . and ml −→ ∞, as l −→ ∞.

Moreover, for any positive integers n there exists a positive integer l = l(n)
such that

bml(n) � n < bml(n)+1.

Now for any l � 1, we define the sequences

k
(1)
l = inf

{
k : bml � k < bml+1

}
and k

(2)
l = sup

{
k : bml � k < bml+1

}
.

By definition of k
(1)
l and k

(2)
l , we have

(7) bml(n) � k
(1)
l(n) � n � k

(2)
l(n) < bml(n)+1.

Hence, we get

(8)
k
(i)
l(n)

n
<

bml(n)+1

bml(n)
= b, i = 1, 2

and

(9)
k
(i)
l(n)

n
>

bml(n)

bml(n)+1
=

1

b
i = 1, 2.

Moreover, by (6), we have that for sufficiently large n

(10)

������
ESn

nα
−

ESk
(i)

l(n)

(k(i)l(n))
α

������
< ε, i = 1, 2

and that there exists a constant C such that

0 <
ESn

nα
< C.

Put

(11) b1 =

(
1 +

ε

C − ε

) 1

α

and b2 =
(
1 +

ε

C

) 1

α

.

We see that for b = b1 and b = b2, the estimations (7), (8) and (9) also hold.
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Moreover, for sufficiently large n, we have

Sn − ESn

nα
�

Sk
(2)

l(n)

− ESk
(2)

l(n)

(k(2)l(n))
α

·
(k(2)l(n))

α

nα
− ESn

nα
+

ESk
(2)

l(n)

(k(2)l(n))
α

(12)

+
ESk

(2)

l(n)

(k(2)l(n))
α
·

(
(k(2)l(n))

α

nα
− 1

)
.

By (12), (8), (10) and (11), we get

Sn − ESn

nα
�

Sk
(2)

l(n)

− ESk
(2)

l(n)

(k(2)l(n))
α

· (b2)α + ε+ C
(
1 +

ε

C
− 1

)
(13)

=
Sk

(2)

l(n)

− ESk
(2)

l(n)

(k(2)l(n))
α

· (b2)α + 2ε.

Similarly, for sufficiently large n, we get the lower estimation

Sn − ESn

nα
�

Sk
(1)

l(n)

− ESk
(1)

l(n)

(k(1)l(n))
α

·
(k(1)l(n))

α

nα
− ESn

nα
+

ESk
(1)

l(n)

(k(1)l(n))
α

(14)

+
ESk

(1)

l(n)

(k(1)l(n))
α
·

(
(k(1)l(n))

α

nα
− 1

)

and by (14), (9), (10) and (11), we obtain

Sn − ESn

nα
�

Sk
(1)

l(n)

− ESk
(1)

l(n)

(k(1)l(n))
α

· 1

(b1)
α − ε+ C

(
1

1 + ε
C−ε

− 1

)
(15)

=
Sk

(1)

l(n)

− ESk
(1)

l(n)

(k(1)l(n))
α

· 1

(b1)
α − 2ε.
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From (13) and (15), we have

����
Sn − ESn

nα

����

� max




������
Sk

(1)

l(n)

− ESk
(1)

l(n)

(k(1)l(n))
α

������
· 1

(b1)
α + 2ε,

������
Sk

(2)

l(n)

− ESk
(2)

l(n)

(k(2)l(n))
α

������
· (b2)α + 2ε




and

{
|Sn − ESn| � 3ε · nα

}
⊂

{
|Sk

(1)

l(n)

− ESk
(1)

l(n)
| � ε · (k(1)l(n))

α · (b1)α
}

∪
{
|Sk

(2)

l(n)

− ESk
(2)

l(n)
| � ε · (k(2)l(n))

α · 1

(b2)
α

}
.

Hence, using the estimations (8), (9), Markov’s inequality, the assump-
tion (5), the estimation (7) and Lemma 2, we get

∞∑
n=1

nαp−2P
[
|Sn − ESn| � 3ε · nα

]

�
∞∑
n=1

nαp−2P
[
|Sk

(1)

l(n)

− ESk
(1)

l(n)
| � ε · (k(1)l(n))

α · (b1)α
]

+

∞∑
n=1

nαp−2P
[
|Sk

(2)

l(n)

− ESk
(2)

l(n)
| � ε · (k(2)l(n))

α · 1

(b2)
α

]

�
∞∑
n=1

(
n

k
(1)
l(n)

)αp

·

(
k
(1)
l(n)

n

)2

· (k(1)l(n))
αp−2

P
[
|Sk

(1)

l(n)

− ESk
(1)

l(n)
|

� ε · (k(1)l(n))
α · (b1)α

]

+

∞∑
n=1

(
n

k
(2)
l(n)

)αp

·

(
k
(2)
l(n)

n

)2

· (k(2)l(n))
αp−2

P
[
|Sk

(2)

l(n)

− ESk
(2)

l(n)
|

� ε · (k(2)l(n))
α · 1

(b2)
α

]
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·

(
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(1)
l(n)

n

)2

· (k(1)l(n))
αp−2
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[
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l(n)

− ESk
(1)

l(n)
|
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]

+

∞∑
n=1

(
n

k
(2)
l(n)

)αp

·

(
k
(2)
l(n)

n

)2

· (k(2)l(n))
αp−2
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�
∞∑
n=1

(b1)
αp+2 · (k(1)l(n))

αp−2
E|Sk

(1)

l(n)

− ESk
(1)

l(n)
|p

εp · (k(1)l(n))
αp · (b1)αp

+

∞∑
n=1

(b2)
αp+2 · (k(2)l(n))

αp−2
E|Sk

(2)

l(n)

− ESk
(2)

l(n)
|p

εp · (k(2)l(n))
αp

· (b2)αp

� (b1)
2

εp

∞∑
n=1

(k(1)l(n))
−2

E|Sk
(1)

l(n)

− ESk
(1)

l(n)
|p

+
(b2)

2αp+2

εp

∞∑
n=1

(k(2)l(n))
−2

E|Sk
(2)

l(n)

− ESk
(2)

l(n)
|p

� (b1)
2

εp

∞∑
l=1

(k(1)l )
−2

E|Sk
(1)
l

− ESk
(1)
l
|p
(
(b1)

ml+1 − (b1)
ml
)

+
(b2)

2αp+2

εp

∞∑
l=1

(k(2)l )
−2

E|S(2)
kl

− ES
(2)
kl
|p
(
(b2)

ml+1 − (b2)
ml
)

� (b1)
2(b1 − 1)

εp

∞∑
l=1

(k(1)l )
−2 ·

(k(1)l )
p

ψ(k(1)l )
· (b1)ml

+
(b2)

2αp+2(b2 − 1)

εp

∞∑
l=1

(k(2)l )
−2 ·

(k(2)l )
p

ψ(k(2)l )
· (b2)ml

� (b1)
2(b1 − 1)

εp

∞∑
l=1

(
(b1)

ml
)−2 ·

(
(b1)

ml · b1
)p

ψ
(
(b1)

ml
) · (b1)ml

+
(b2)

2αp+2(b2 − 1)

εp

∞∑
l=1

(
(b2)

ml
)−2 ·

(
(b2)

ml · b2
)p

ψ
(
(b2)

ml
) · (b2)ml

� (b1)
2+p(b1 − 1)

εp

∞∑
l=1

(
(b1)

ml
)p−1

ψ
(
(b1)

ml
)

+
(b2)

2αp+2+p(b2 − 1)

εp

∞∑
l=1

(
(b2)

ml
)p−1

ψ
(
(b2)

ml
) < ∞
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and the proof is now complete. �
Theorem 5 gives sufficient conditions under which the sequence of non-

negative random variables without any assumptions of independence satis-
fies one of the conditions of complete convergence of Baum–Katz type in the
strong law of large numbers.

This theorem also answers the question about the subset of Ψc for which
Petrov’s condition (5) is sufficient for complete convergence in SLLN.

The following example shows that the condition
∑∞

n=1 n
p−2/ψ(n) < ∞

that defines the set Ψc
(p), the class of functions we are looking for, is essen-

tial for complete convergence.

Example 1. Let Ω = (0, 1) be an interval on the real line and P be the
Lebesgue measure. We define the sequence {Xn, n � 1} in the following
way

Xn =




1 for 0 < ω <

1

n

0 otherwise,

n � 1.

It is easy to see that

S1(ω) = 1, ω ∈ (0, 1), Sn(ω) =




n for ω ∈
(
0,

1

n

)

n− 1 for ω ∈
⟨
1

n
,

1

n− 1

)

. . .

1 for ω ∈
⟨
1

2
, 1

)
,

n � 2.

Thus we have

ESn = O(n) and E(Sn − ESn)
2 � ES2

n � 2n.

This proves that {Xn, n � 1} satisfies the assumptions of Theorem 3 for the
function ψ(n) = n and therefore we can state that (3) holds.

The function ψ(n) = n belongs to Ψc but does not belong to Ψc
(2) (the

series
∑∞

n=1 1/ψ(n) diverges). This leads us to conclude that the sequence
{Xn, n � 1} does not satisfy the strong law of large number of Hsu-Robbins
type, i.e.,

∞∑
n=1

P
[
|Sn − ESn| > εn

]
= ∞ for some ε > 0.
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Indeed we have

∞∑
n=1

P
[
|Sn − ESn| > εn

]
�

∞∑
n=1

P [Sn − ESn > εn]

=
∞∑
n=1

P [Sn > ESn + εn] �
∞∑
n=1

P
[
Sn > [lnn] + 1 + εn

]

�
∞∑

n=n0

P [Sn > n] =

∞∑
n=n0

1

ψ(n)
= ∞

for some ε > 0 and some n0 ∈ N.
In the next section, we will consider some specified types of dependence

and give sufficient conditions for convergence rate in the strong law of large
numbers in terms of Petrov’s condition.

3. Dependent random variables

In this section we consider three types of dependence: negatively asso-
ciated random variables, ρ∗-mixing random variables and ϕ-mixing random
variables. For each of these kinds of dependence, we have the maximal
Rosenthal inequality.

Let us recall definitions of the above mentioned type of dependence.

Definition 1. The random variables X1,X2, . . . ,Xn are said to be neg-
atively associated if for any disjoint subsets A,B ⊂ {1, 2, . . . , } and any real
coordinatewise non-decreasing functions f on RA and g on RB ,

cov
(
f(Xk, k ∈ A), g(Xk, k ∈ B)

)
� 0,

provided the covariance exists.

An infinite sequence {Xn, n � 1} of random variables is said to be nega-
tively associated if every finite subset {Xi1 ,Xi2 , . . . ,Xik} is a set of negatively
associated random variables.

Definition 2. A sequence of random variables {Xn, n � 1} is said to
be a ρ∗-mixing sequence if there exists k ∈ N such that

ρ∗(k) = sup
S,T

(
sup

X∈L2(FS), Y ∈L2(FT )

cov(X,Y )√
Var(X) ·Var(Y )

)
< 1,

where S, T are the finite subsets of positive integers such that dist (S,T ) � k
and FW is the σ-field generated by the random variable {Xi, i ∈ W ⊂ N}.
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Definition 3. A sequence of random variables {Xn, n � 1} is called to
be ϕ-mixing (or uniformly strong mixing) if

ϕ(n) = sup
k�1, A∈Fk

1 , P (A)>0, B∈F∞
k+n

��P (B|A)− P (B)
�� −→ 0 as n −→ ∞,

where Fm
n is the σ-field generated by random variables Xn, Xn+1, . . . , Xm.

For these three above mentioned types of dependence, Shao [8] (for nega-
tively associated random variables), Peligrad and Gut [5] (for ρ∗-mixing ran-
dom variables) and Wang et al. [10] (for ϕ-mixing random variables) proved
the maximal Rosenthal-type inequalities.

Let {Xn, n � 1} be a sequence of random variables with EXn = 0 and
E|Xn|p < ∞ for n � 1 and p � 1.

The maximal inequality

(16) E max
1�k�n

����
k∑

i=1

Xi

����
p

� C(p)

{( n∑
i=1

EX2
i

)p/2

+

n∑
i=1

E|Xi|p
}

for p � 2

holds for:
(1) negatively associated random variables,
(2) ρ∗-mixing random variables
(3) ϕ-mixing random variables satisfying

∑∞
n=1 ϕ

1/2(n) < ∞.
For negatively associated random variables, we have additionally

(17) E max
1�k�n

����
k∑

i=1

Xi

����
p

� C(p)

n∑
i=1

E|Xi|p for 1 � p < 2

Theorem 6. Let {Xn, n � 1} be a sequence of negatively associated ran-
dom variables with EXn = 0 and E|Xn|p < ∞ for n � 1 and some p � 1. Let

ψ ∈ Ψc
(p). If for some α > 1/2 and αp � 1

(18)

n∑
i=1

E|Xi|p = O

(
np

ψ(n)

)
,

and additionally for p > 2

(19)

n∑
i=1

E|Xi|2 = O

(
n2

(
ψ(n)

) 2/p
)
,

then

(20)

∞∑
n=1

nαp−2P
[
max
1�k�n

|Sk| > ε · nα
]
< ∞ for all ε > 0.
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Proof. Note that

∞∑
n=1

nαp−2P
[
max
1�k�n

|Sk| > ε · nα
]
=

∞∑
l=1

2l−1∑
n=2l−1

nαp−2P
[
max
1�k�n

|Sk| > ε · nα
]

�
∞∑
l=1

2l−1∑
n=2l−1

nαp−1n−1P
[
max

1�k�2l
|Sk| > ε · nα

]

�
∞∑
l=1

2l−1∑
n=2l−1

(
2l
)αp−1(

2l−1
)−1

P
[
max

1�k�2l
|Sk| > ε ·

(
2l−1

)α]

� 2−1
∞∑
l=1

2l
(
2l
)αp−1(

2l−1
)−1

P
[
max

1�k�2l
|Sk| > ε ·

(
2l−1

)α]

�
∞∑
l=1

(
2l
)αp−1

P
[
max

1�k�2l
|Sk| > ε ·

(
2l−1

)α]

� 2αp · ε−p
∞∑
l=1

(
2l
)αp−1 ·

(
2l
)−αp

E max
1�k�2l

|Sk|p := I.

Let p � 2. Then by (16), (18), (19) and Lemma 2, we have

I � 2αp · ε−p · C(p)

∞∑
l=1

(
2l
)−1

{
2l∑
j=1

E|Xj |p +
( 2l∑

j=1

E(Xj)
2

)p/2
}

� 2αp · ε−p · C(p)

{ ∞∑
l=1

(
2l
)−1

(
2l
)p

ψ
(
2l
) +

∞∑
l=1

(
2l
)−1

( (
2l
)2

(
ψ(2l)

)2/p
)p/2}

� 2αp+1 · ε−p · C(p)

∞∑
l=1

(
2l
)p−1

ψ
(
2l
) < ∞

which proves Theorem 6 in the case p � 2.
Now we consider the case 1 � p < 2. Using (17), (18) and Lemma 2, we

have

I � 2αp · ε−p · C(p)

∞∑
l=1

(
2l
)−1

2l∑
j=1

E|Xj |p

Acta Mathematica Hungarica

14 A. KUCZMASZEWSKA

� 2αp · ε−p · C(p)

∞∑
l=1

(
2l
)−1

(
2l
)p

ψ
(
2l
) � 2αp · ε−p · C(p)

∞∑
l=1

(
2l
)p−1

ψ
(
2l
) < ∞. �

Now we see that one can get a stronger result than (20).

Theorem 7. Under the assumption of Theorem 6 for some p � 1,
α > 1/2 and αp > 1,

(21)

∞∑
n=1

nαp−2P
[
sup
k�n

k−α|Sk| > ε
]
< ∞ for all ε > 0.

Proof. Note that similarly as in the proof of Theorem 6, we have

∞∑
n=1

nαp−2P
[
sup
k�n

k−α|Sk| > ε
]
=

∞∑
l=1

2l−1∑
n=2l−1

nαp−2P
[
sup
k�n

k−α|Sk| > ε
]

�
∞∑
l=1

(
2l
)αp−1

P
[
sup

k�2l−1

k−α|Sk| > ε
]

=
∞∑
l=1

(
2l
)αp−1

∞∑
m=l

P
[

max
2m−1�k<2m

k−α|Sk| > ε
]

=
∞∑

m=1

P
[

max
2m−1�k<2m

k−α|Sk| > ε
] m∑

l=1

(
2l
)αp−1

� C

∞∑
m=1

(2m)αp−1P
[

max
2m−1�k<2m

k−α|Sk| > ε
]

� C
∞∑

m=1

(2m)αp−1P
[

max
2m−1�k<2m

|Sk| > ε ·
(
2m−1

)α]

� C

∞∑
m=1

(2m)αp−1P
[

max
1�k�2m

|Sk| > ε ·
(
2m−1

)α]

� 2αp · C · ε−p
∞∑

m=1

(2m)αp−1 · (2m)−αpE max
1�k�2m

|Sk|p := I.

Now following the considerations in the proof of Theorem 6, we can de-
duce (21). �
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� 2αp · ε−p · C(p)
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2l
)p

ψ
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ψ
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l=1
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n=2l−1
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sup
k�n

k−α|Sk| > ε
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�
∞∑
l=1

(
2l
)αp−1

P
[
sup

k�2l−1

k−α|Sk| > ε
]

=
∞∑
l=1

(
2l
)αp−1

∞∑
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P
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∞∑

m=1

P
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] m∑

l=1

(
2l
)αp−1

� C

∞∑
m=1

(2m)αp−1P
[

max
2m−1�k<2m

k−α|Sk| > ε
]

� C
∞∑

m=1

(2m)αp−1P
[

max
2m−1�k<2m

|Sk| > ε ·
(
2m−1

)α]

� C

∞∑
m=1

(2m)αp−1P
[

max
1�k�2m

|Sk| > ε ·
(
2m−1

)α]
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(2m)αp−1 · (2m)−αpE max
1�k�2m

|Sk|p := I.

Now following the considerations in the proof of Theorem 6, we can de-
duce (21). �

Acta Mathematica Hungarica

CONVERGENCE RATE IN THE PETROV SLLN 69



Acta Mathematica Hungarica 148, 2016

CONVERGENCE RATE IN THE PETROV SLLN 15

Let us note that the following relationship is true

P
[
|Sn| > ε · nα

]
� P

[
max
1�k�n

|Sk| > ε · nα
]
.

Using this fact and following the above obtained results, we can formu-
late a result of Baum–Katz type.

Theorem 8. Let p � 1, α > 1/2 and αp � 1. Suppose that {Xn, n � 1}
are negatively associated random variables with EXn = 0, E|Xn|p < ∞ for

each n � 1 and ψ ∈ Ψc
(p). If

n∑
i=1

E|Xi|p = O

(
np

ψ(n)

)
,

and for p � 2

n∑
i=1

E|Xi|2 = O

(
n2

(
ψ(n)

) 2/p
)
,

then

(22)

∞∑
n=1

nαp−2P
[
|Sn| > nαε

]
< ∞, for all ε > 0,

and
∞∑
n=1

nαp−2P
[
max
1�k�n

|Sk| > nαε
]
< ∞, for all ε > 0.

If αp > 1, we also have

∞∑
n=1

nαp−2P

[
sup
k�n

����
Sk

kα

���� > ε

]
< ∞, for all ε > 0.

Using the fact that the maximal Rosenthal-type inequality (16) is true
for sequences {Xn, n � 1} of ρ∗-mixing and ϕ-mixing random variables, we
can prove, in the same way, analogous theorems for sequences with ρ∗-mixing
and ϕ-mixing types of dependence.

Theorem 9. Let p � 2, α > 1/2. Let ψ ∈ Ψc
(p). Suppose that {Xn,

n � 1} are ρ∗-mixing random variables with EXn = 0 and E|Xn|p < ∞ for
n � 1. If (18) and (19) are fulfilled, then (22),(20) and (21) hold.
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Theorem 10. Let p � 2, α > 1/2. Let ψ ∈ Ψc
(p). Suppose that {Xn,

n � 1} are ϕ-mixing random variables with EXn = 0, E|Xn|p < ∞ for n � 1

and
∑∞

n=1 ϕ
1/2(n) < ∞. If (18) and (19) are fulfilled, then (22), (20) and

(21) hold.

Corollary 1. Let {Xn, n � 1} be negatively associated random vari-
ables or ρ∗-mixing random variables or ϕ-mixing random variables with
EXn = 0, E|Xn|2 < ∞ for each n � 1 and

∑∞
n=1 ϕ

1/2(n) < ∞ in case of
ϕ-mixing type dependence. If

n∑
i=1

E|Xi|2 = O

(
n2

ψ(n)

)
for some ψ ∈ Ψc

(2),

then

(23)

∞∑
n=1

P
[
|Sn| > n · ε

]
< ∞, for all ε > 0,

(24)
∞∑
n=1

P
[
max
1�k�n

|Sn| > n · ε
]
< ∞, for all ε > 0,

and

(25)

∞∑
n=1

P

[
sup
k�n

����
Sk

k

���� > ε

]
< ∞, for all ε > 0.

Proof. Put α = 1 and p = 2. By Theorem 8, Theorem 9 and Theo-
rem 10, we get (23), (24) and (25). �

Remarks. (1) Theorems 8, 9 and 10 give sufficient conditions for the
rate convergence of Baum–Katz type in terms of Petrov’s conditions for some
non-decreasing function ψ ∈ Ψc

(p) ⊂ Ψc without any identical distribution
assumption.

(2) Corollary 1 shows that Petrov’s condition (4) is sufficient not only
for almost sure convergence in the strong law of large numbers but it is
also sufficient for complete convergence for the three types of dependence
considered above provided the function ψ belongs to the set Ψc
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∑∞

n=1 ϕ
1/2(n) < ∞. If (18) and (19) are fulfilled, then (22), (20) and
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∑∞
n=1 ϕ

1/2(n) < ∞ in case of
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n∑
i=1

E|Xi|2 = O

(
n2

ψ(n)

)
for some ψ ∈ Ψc

(2),
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(23)

∞∑
n=1

P
[
|Sn| > n · ε

]
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(24)
∞∑
n=1

P
[
max
1�k�n

|Sn| > n · ε
]
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����
Sk

k

���� > ε
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