DUALITY THEOREMS FOR NONCOMMUTATIVE QUASI-MARTINGALE SPACES*[∗]*

Y.-L. HOU and C.-B. MA*†*

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P.R. China e-mails: ylhou323@whu.edu.cn, congbianm@whu.edu.cn

(Received May 4, 2015; revised June 4, 2015; accepted June 15, 2015)

Abstract. Let $\widetilde{L}_p(\mathcal{M})$ be the space of all bounded $L_p(\mathcal{M})$ -quasi-martingales and $\mathcal{H}_p(\mathcal{M})$ the Hardy space of noncommutative quasi-martingales. Then

$$
\widetilde{L}_p(\mathcal{M})^* = L_q(\mathcal{M}) \oplus BD_q(\mathcal{M}), \quad \widetilde{\mathcal{H}}_p(\mathcal{M})^* = \mathcal{S}_q(\mathcal{M})
$$

with equivalent norms for $1 < p < \infty$ and $p^{-1} + q^{-1} = 1$, where $BD_q(\mathcal{M})$ is a subspace of $l_{\infty}(L_q(\mathcal{M}))$ and $\mathcal{S}_q(\mathcal{M})$ is a kind of space which is like but bigger than $\widetilde{\mathcal{H}}_q(\mathcal{M})$. The results for the case of $p=1$ are also obtained.

1. Introduction

The theory of noncommutative martingale inequalities has been rapidly developed since the establishment of the noncommutative Burkholder– Gundy inequalities in [4]. Many of the classical martingale inequalities (see e.g. [2], [3] or [6]) have been transferred to the noncommutative setting. We refer the reader to a survey by Xu [7] for an exposition of this topic.

In this paper we focus on duality theorems for non-commutative quasimartingales. Before describing our main results, we recall some duality results for noncommutative martingale spaces. Let $1 < p < \infty$ and $p^{-1} + q^{-1} = 1$. Since the space of all bounded $L_p(\mathcal{M})$ -martingales is isometric to the noncommutative L_p -space $L_p(\mathcal{M})$ of operators, the dual space of all bounded $L_p(\mathcal{M})$ -martingales is the space of all bounded $L_q(\mathcal{M})$ -martingales. Moreover, because of Burkholder–Gundy inequalities, the noncommutative

[∗] This work was supported by National Natural Science Foundation of China (11271293, 11471251) and the Research Fund for the Doctoral Program of Higher Education of China (2014201020205).

[†] Corresponding author.

Key words and phrases: dual space, non-commutative quasi-martingale, Hardy space. *Mathematics Subject Classification:* 46L53, 46L52, 60G42.

martingale Hardy space $\mathcal{H}_p(\mathcal{M}) = L_p(\mathcal{M})$ with equivalent norms. Thus we have the duality between $\mathcal{H}_p(\mathcal{M})$ and $\mathcal{H}_q(\mathcal{M})$. For the case of $p = 1$, it is known that $\mathcal{H}_1(\mathcal{M})^* = \mathcal{BMO}(\mathcal{M})$ (see [4]).

However, the case of noncommutative quasi-martingale is quite different. In particular, the space $\tilde{L}_p(\mathcal{M})$ of bounded $L_p(\mathcal{M})$ -quasi-martingales and the Hardy space $\mathcal{H}_p(\mathcal{M})$ of quasi-martingales are not isomorphic to the noncommutative $L_p(\mathcal{M})$. Hence their dual spaces can not come from that of $L_p(\mathcal{M})$. Let $1 < p < \infty$ and $p^{-1} + q^{-1} = 1$. We prove that the dual space of $\tilde{L}_p(\mathcal{M})$ is $L_q(\mathcal{M}) \oplus BD_q(\mathcal{M})$, where $BD_q(\mathcal{M})$ is the space of all predicable sequences $x = (x_n)_{n \geq 1}$ such that $dx = (dx_n)_{n \geq 1} \in l_\infty(L_q(\mathcal{M}))$ and $x_1 = 0$. Moreover, we prove that the dual space of $\widetilde{\mathcal{H}}_p(\mathcal{M})$ is $\mathcal{S}_q(\mathcal{M})$, where $S_q(\mathcal{M})$ is a kind of space which is like but bigger than $\mathcal{H}_q(\mathcal{M})$. For the case of $p = 1$, we also obtain the dual results.

2. Preliminaries

Let *M* be a von Neumann algebra acting on a Hilbert space *H* and *τ* a normal faithful trace on *M* with $\tau(1) = 1$. We call (M, τ) a noncommutative probability space. For $1 \leq p \leq \infty$, let $L_p(\mathcal{M})$ be the associated noncommutative L_p -space. Recall that for $1 \leq p < \infty$, the norm on $L_p(\mathcal{M})$ is defined by

$$
||x||_p = \tau (|x|^p)^{\frac{1}{p}}, \quad x \in L_p(\mathcal{M}),
$$

where $|x| = (x^*x)^{\frac{1}{2}}$ is the usual modulus of *x*. Note that if $p = \infty$, $L_\infty(\mathcal{M})$ is just M with the usual operator norm.

The noncommutative column spaces $L_p(\mathcal{M}; l_2^c)$ and the row spaces $L_p(\mathcal{M}; l_2^r)$ were introduced in [4]. For $1 \leq p < \infty$, define $L_p(\mathcal{M}; l_2^c)$ (resp. $L_p(\mathcal{M}; l_2^r)$ as the completion of the family of all finite sequences $x = (x_n)_{n \geq 1}$ in $L_p(\mathcal{M})$ under the norm

$$
||x||_{L_p(\mathcal{M};l_2^c)} = \left\| \left(\sum_n |x_n|^2 \right)^{\frac{1}{2}} \right\|_p \quad \left(\text{resp. } ||x||_{L_p(\mathcal{M};l_2^r)} = \left\| \left(\sum_n |x_n^*|^2 \right)^{\frac{1}{2}} \right\|_p \right).
$$

For $p = \infty$, define $L_{\infty}(\mathcal{M}; l_2^c)$ (resp. $L_{\infty}(\mathcal{M}; l_2^r)$) as the Banach space of (possible infinite) sequences $x = (x_n)_{n \geq 1}$ in $L_\infty(M)$ such that $\sum_n x_n^* x_n$ (resp. $\sum_{n} x_n x_n^*$ converges in w^{*}-topology.

Let $x = (x_n)_{n \geq 1}$ be a sequence in $L_p(\mathcal{M})$. Set $dx_n = x_n - x_{n-1}$ for $n \geq 1$ (with $x_0 = 0$) and $dx = (dx_n)_{n \geq 1}$. Set

$$
S_{c,n}(x) = \left(\sum_{k=1}^n |dx_k|^2\right)^{\frac{1}{2}} \text{ and } S_{r,n}(x) = \left(\sum_{k=1}^n |dx_k^*|^2\right)^{\frac{1}{2}}.
$$

Then *dx* belongs to $L_p(\mathcal{M}; l_2^c)$ iff $(S_{c,n}(x))$ is bounded in $L_p(\mathcal{M})$. In this case, we define $S_c(x) = \lim_{n \to \infty} S_{c,n}(x) = \left(\sum_{n=1}^{\infty} |dx_n|^2\right)^{\frac{1}{2}}$. Similarly, if dx belongs to $L_p(\mathcal{M}; l_2^r)$ we define $S_r(x) = \left(\sum_{n=1}^{\infty} |dx_n^*|^2\right)^{\frac{1}{2}}$.

Let us recall the general setup for noncommutative martingales. Let $(\mathcal{M}_n)_{n\geq 1}$ be an increasing filtration of von Neumann subalgebras of $\mathcal M$ such that the union of \mathcal{M}_n 's is weak^{*}-dense in $\mathcal M$ and \mathcal{E}_n (with $\mathcal{E}_0 = 0$) the conditional expectation with respect to \mathcal{M}_n . A sequence $x = (x_n)_{n \geq 1}$ is said to be adapted if $x_n \in L_1(\mathcal{M}_n)$ for all $n \geq 1$, and predictable if $x_n \in L_1(\mathcal{M}_{n-1})$. A noncommutative martingale with respect to the filtration $(\mathcal{M}_n)_{n\geq 1}$ is a sequence $x = (x_n)_{n \geq 1}$ in $L_1(\mathcal{M})$ such that

$$
\mathcal{E}_n(x_{n+1}) = x_n \quad \text{for all} \quad n \ge 1.
$$

If additionally, $x = (x_n)_{n \geq 1} \subset L_p(\mathcal{M})$ for some $1 \leq p \leq \infty$, we call x an *L*^p(*M*)-martingale. In this case, we set $||x||_p = \sup_n ||x_n||_p$. If $||x||_p < \infty$, then x is called a bounded $L_p(\mathcal{M})$ -martingale. We refer to [5] for more information on noncommutative martingales.

In this paper, we focus on noncommutative quasi-martingales, which are generalizations of noncommutative martingales and the noncommutative analogue of classical quasi-martingales.

DEFINITION 2.1. Let $1 \leq p \leq \infty$. An adapted sequence $x = (x_n)_{n \geq 1}$ in $L_1(\mathcal{M})$ is called a *p*-quasi-martingale with respect to $(\mathcal{M}_n)_{n\geq 1}$ (or simply a quasi-martingale for $p = 1$) if

$$
\sum_{n=1}^{\infty} \left\| \mathcal{E}_{n-1}(dx_n) \right\|_p < \infty.
$$

If in addition $x = (x_n)_{n \geq 1} \subset L_p(\mathcal{M})$ for some $1 \leq p \leq \infty$, we call x an $L_p(\mathcal{M})$ -quasi-martingale. In this case, we set

$$
||x||_p := \sup_n ||x_n||_p + \sum_{n=1}^{\infty} ||\mathcal{E}_{n-1}(dx_n)||_p.
$$

If $||x||_p < \infty$, *x* is called a bounded $L_p(\mathcal{M})$ -quasi-martingale. The noncommutative quasi-martingale space $\widetilde{L}_p(\mathcal{M})$ is defined as the space of all bounded $L_p(\mathcal{M})$ -quasi-martingales, and is equipped with the norm $\|\cdot\|_p$.

A basic fact with respect to quasi-martingales is that each *p*-quasimartingale can be decomposed as a sum of a martingale and a predicable quasi-martingale which we call Doob's decomposition. Doob's decomposition plays an important role in this paper.

LEMMA 2.2 (Doob's decomposition). Let $1 \leq p \leq \infty$. Each *p*-quasi*martingale* $x = (x_n)_{n \geq 1}$ *can be uniquely decomposed as a sum of two sequences* $y = (y_n)_{n \geq 1}$ *and* $z = (z_n)_{n \geq 1}$, *where* $y = (y_n)_{n \geq 1}$ *is a martingale and* $z = (z_n)_{n \geq 1}$ *is a predicable p-quasi-martingale with* $z_1 = 0$. *Moreover*, *when* $x = (x_n)_{n \geq 1}$ *is* $L_p(\mathcal{M})$ *-bounded*, $y = (y_n)_{n \geq 1}$ *and* $z = (z_n)_{n \geq 1}$ *are also* $L_p(\mathcal{M})$ -bounded.

PROOF. We define two sequences $y = (y_n)_{n \geq 1}$ and $z = (z_n)_{n \geq 1}$ by

(2.1)
$$
y_n = \sum_{k=1}^n (dx_k - \mathcal{E}_{k-1}(dx_k)) \text{ and } z_n = \sum_{k=1}^n (\mathcal{E}_{k-1}(dx_k)).
$$

Then $x_n = y_n + z_n$ holds for every $n \ge 1$. It is clear that $y = (y_n)_{n \ge 1}$ is a martingale and $z = (z_n)_{n \geq 1}$ is predicable with $z_1 = 0$. Observe that $\sum_{n=1}^{\infty} ||\mathcal{E}_{n-1}(dz_n)||_p = \sum_{n=1}^{\infty} ||\overline{\mathcal{E}}_{n-1}(dx_n)||_p < \infty$, thus $z = (z_n)_{n \geq 1}$ is a pquasi-martingale. To prove the uniqueness of the decomposition, assume that $x_n = y_n + z_n$ and $x_n = y'_n + z'_n$ are two decompositions of *x*. It comes from $y_n - y'_n = z'_n - z_n (n \ge 1)$ that $(z'_n - z_n)_{n \ge 1}$ is a predicable martingale. We get that $z'_n - z_n = z'_1 - z_1 = 0$ for all $n \ge 1$. Hence $z_n = z'_n$ and $y_n = y'_n$ for all $n \geq 1$.

Moreover, if $x = (x_n)_{n \geq 1}$ is $L_p(\mathcal{M})$ -bounded, then

$$
\sup_{n} \|y_{n}\|_{p} \le \sup_{n} \|x_{n}\|_{p} + \sup_{n} \|z_{n}\|_{p} \le \sup_{n} \|x_{n}\|_{p} + \sum_{n=1}^{\infty} \|dz_{n}\|_{p} < \infty.
$$

This shows that $y = (y_n)_{n \geq 1}$ and $z = (z_n)_{n \geq 1}$ are $L_p(\mathcal{M})$ -bounded. \Box

REMARK 2.3. One can see from the proof above that for an adaptable sequence (not necessarily a quasi-martingale) $x = (x_n)_{n \geq 1}$ in $L_p(\mathcal{M})$, if it can be decomposed as $x_n = y_n + z_n (n \ge 1)$, where $(y_n)_{n \ge 1}$ is a martingale and $z = (z_n)_{n \geq 1}$ is predicable with $z_1 = 0$, then the decomposition is unique. We will use this fact later.

3. The dual spaces of $\widetilde{L}_p(\mathcal{M})$ and $\widetilde{\mathcal{H}}_p(\mathcal{M})$

In this section, we first focus on the dual space of $\widetilde{L}_p(\mathcal{M})$ for $1 < p < \infty$. The basic ideal is to use Doob's decomposition. In fact, each $x = (x_n)_{n \geq 1}$ in $\widetilde{L}_p(\mathcal{M})$ could be decomposed as $x_n = y_n + z_n$ for every $n \ge 1$, where $(y_n)_{n \ge 1}$ is a bounded $L_p(\mathcal{M})$ -martingale and $z = (z_n)_{n \geq 1}$ is a predicable bounded $L_p(\mathcal{M})$ -quasi-martingale with $z_1 = 0$. The first part of the decomposition is the "good part" and it is easy to deal with, since the space of all bounded $L_p(\mathcal{M})$ -martingales equipped with $\|\cdot\|_p$ is isometric to $\overline{L}_p(\mathcal{M})$. The second part of the decomposition is the "main part" and for it we should focus on to deal with. We recall that $l_1(L_p(\mathcal{M}))$ is defined as the space of all sequences $x = (x_n)_{n \geq 1}$ in $L_p(\mathcal{M})$ such that

$$
||x||_{l_1(L_p(\mathcal{M}))} = \sum_{n=1}^{\infty} ||x_n||_p < \infty
$$

and $l_{\infty}(L_p(\mathcal{M}))$ is defined as the space of all sequences $x = (x_n)_{n \geq 1}$ in $L_p(\mathcal{M})$ such that

$$
||x||_{l_{\infty}(L_p(\mathcal{M}))} = \sup_n ||x_n||_p < \infty.
$$

Noting that the space of all predicable *p*-quasi-martingale difference sequences $dx = (dx_n)_{n \ge 1}$ is a subspace of $l_1(L_p(\mathcal{M}))$ and $(l_1(L_p(\mathcal{M})))^* =$ $l_{\infty}(L_q(\mathcal{M}))$, this suggests us to consider the space $BD_p(\mathcal{M})$ defined in the following.

DEFINITION 3.1. Let $1 \leq p \leq \infty$. We define $BD_p(\mathcal{M})$ as the space of all predicable sequences $x = (x_n)_{n \geq 1}$ such that $dx = (dx_n)_{n \geq 1} \in l_\infty(L_p(\mathcal{M}))$ and $x_1 = 0$, equipped with the norm

$$
||x||_{BD_p(\mathcal{M})} = ||dx||_{l_{\infty}(L_p(\mathcal{M}))} = \sup_n ||dx_n||_p.
$$

DEFINITION 3.2. Let $1 < p \leq \infty$. We define $L_p(\mathcal{M}) \oplus BD_p(\mathcal{M})$ as the space of all adaptable sequences $x = (x_n)_{n\geq 1}$ in $L_p(\mathcal{M})$ which can be decomposed as

$$
x_n = y_n + z_n \quad (n \ge 1),
$$

where $(y_n)_{n\geq 1}$ is a bounded $L_p(\mathcal{M})$ -martingale and $z = (z_n)_{n\geq 1} \in BD_p(\mathcal{M})$. Given $x = (x_n)_{n \geq 1} \in L_p(\mathcal{M}) \oplus BD_p(\mathcal{M})$, define

$$
||x||_{L_p(\mathcal{M}) \oplus BD_p(\mathcal{M})} = \sup_n ||y_n||_p + ||z||_{BD_p(\mathcal{M})}.
$$

Note that by Remark 2.3, the decomposition in Definition 3.2 is unique, thus the norm $\|\cdot\|_{L_p(\mathcal{M})\oplus BD_p(\mathcal{M})}$ is well defined. We can now state the first result of this section.

THEOREM 3.3. Let $1 < p < \infty$ and $p^{-1} + q^{-1} = 1$. Then $L_p(\mathcal{M})^* =$ $L_q(\mathcal{M}) \oplus BD_q(\mathcal{M})$ *with equivalent norms.*

PROOF. Let $u = (u_n)_{n \geq 1} \in L_q(\mathcal{M}) \oplus BD_q(\mathcal{M})$ and $u_n = v_n + w_n$ $(n \geq 1)$ be the decomposition such that $(v_n)_{n\geq 1}$ is a bounded $L_q(\mathcal{M})$ -martingale and $(w_n)_{n\geq 1} \in BD_q(\mathcal{M})$. Let $x = (x_n)_{n\geq 1} \in \widetilde{L}_p(\mathcal{M})$ and $x_n = y_n + z_n$ $(n \geq 1)$ be its Doob's decomposition. Then $y = (y_n)_{n \geq 1}$ is a bounded $L_p(\mathcal{M})$ martingale and $\sup_n ||y_n||_p \leq ||x||_p$.

Now we define a linear functional on $\tilde{L}_p(\mathcal{M})$ by

$$
l_u(x) = \tau(v_{\infty}y_{\infty}) + \sum_{n=1}^{\infty} \tau(dw_ndz_n),
$$

where v_{∞} is the limit of $(v_n)_{n\geq 1}$ in $L_q(\mathcal{M})$ and y_{∞} is the limit of $(y_n)_{n\geq 1}$ in $L_p(\mathcal{M})$. Then by Hölder's inequality,

$$
|l_u(x)| \le ||v_\infty||_q ||y_\infty||_p + \sup_n ||dw_n||_q \sum_{n=1}^\infty ||dz_n||_p
$$

$$
\le \left(\sup_n ||v_n||_q + \sup_n ||dw_n||_q\right) \left(\sup_n ||y_n||_p + \sum_{n=1}^\infty ||dz_n||_p\right)
$$

$$
\le 2||u||_{L_q(\mathcal{M}) \oplus BD_q(\mathcal{M})} ||x||_p.
$$

Thus $l_u(x)$ is continuous on $L_p(\mathcal{M})$ and $||l_u|| \leq 2||u||_{L_q(\mathcal{M})} \oplus BD_q(\mathcal{M})$.

We pass to the converse inclusion. Let $l \in L_p(\mathcal{M})^*$. Let l_1 be the restriction of *l* on $L_p(\mathcal{M})$. Then there exists a element $v \in L_q(\mathcal{M})$ and $||v||_q \leq ||l||$ such that

(3.1)
$$
l_1(a) = \tau(av), \quad a \in L_p(\mathcal{M}).
$$

On the other hand, let F_p be the subspace of $l_1(L_p(\mathcal{M}))$ of all sequences $db = (db_n)_{n \geq 1}$ such that $b = (b_n)_{n \geq 1}$ is a predictable quasi-martingale in $\widetilde{L}_p(\mathcal{M})$ with $b_1 = 0$. It is easy to see that $||db||_{l_1(L_p(\mathcal{M}))} \leq ||b||_{\widetilde{L}_p(\mathcal{M})} \leq$ $2||db||_{l_1(L_p(\mathcal{M}))}$ for any $db = (db_n)_{n\geq 1}$ ∈ F_p . Define a functional on F_p by

$$
l_2(db) = l(b), \quad db = (db_n)_{n \geq 1} \in F_p.
$$

Then l_2 is a continuous linear functional on F_p and $||l_2|| \leq 2||l||$. By the Hahn-Banach theorem, l_2 extends to a functional on $l_1(L_p(\mathcal{M}))$. Since $(l_1(L_p(\mathcal{M}))^* = l_\infty(L_q(\mathcal{M}))$, the representation theorem allows us to find a sequence $w' = (w'_n)_{n \geq 1} \in l_\infty(L_q(\mathcal{M}))$ such that

(3.2)
$$
l_2(s) = \sum_{n=1}^{\infty} \tau(w_n's_n) \quad (s = (s_n)_{n \geq 1} \in l_1(L_p(\mathcal{M})))
$$

and $||w'||_{l_{\infty}(L_q(\mathcal{M}))} \leq ||l_2||$. Set $w_1 = 0$ and $w_n = \sum_{k=1}^n \mathcal{E}_{k-1}(w'_k)$ $(n \geq 2)$. For any $db = (db_n)_{n \geq 1} \in F_p$, noting that $db = (db_n)_{n \geq 1}$ is predicable, it follows from (3.2) that

$$
(3.3)
$$

$$
l_2(db) = \sum_{n=1}^{\infty} \tau(\mathcal{E}_{n-1}(w'_n db_n)) = \sum_{n=1}^{\infty} \tau\big(db_n \mathcal{E}_{n-1}(w'_n)\big) = \sum_{n=1}^{\infty} \tau(dw_n db_n).
$$

It remains to show that $w = (w_n)_{n \geq 1} \in BD_q(\mathcal{M})$. This is true since $w =$ $(w_n)_{n\geq 1}$ is predicable with $w_1 = 0$ and

$$
||w||_{BD_q(\mathcal{M})} = \sup_n ||dw_n||_q \le \sup_n ||w'_n||_q \le ||l_2|| \le 2||l||.
$$

Set $u_n = v_n + w_n (n \ge 1)$, where $v_n = \mathcal{E}_n(v) (n \ge 1)$. Then $u = (u_n)_{n \ge 1} \in$ $L_q(\mathcal{M}) \oplus BD_q(\mathcal{M})$ and

$$
||u||_{L_q(\mathcal{M})\oplus BD_q(\mathcal{M})} = ||v||_q + ||w||_{BD_q(\mathcal{M})} \le ||l|| + 2||l|| = 3||l||.
$$

For any $x = (x_n)_{n \geq 1} \in \widetilde{L}_p(\mathcal{M})$, let $x_n = y_n + z_n (n \geq 1)$ be its Doob's decomposition. Noting that $y = (y_n)_{n \geq 1}$ is a bounded $L_p(\mathcal{M})$ -martingale and $dz = (dz_n)_{n \geq 1} \in F_p$, it follows from (3.1) and (3.3) that

$$
l(x) = l(y) + l(z) = \tau(y_{\infty}v_{\infty}) + \sum_{n=1}^{\infty} \tau(dw_ndz_n).
$$

REMARK 3.4. Let $L_1(\mathcal{M})$ be the space of all bounded $L_1(\mathcal{M})$ -quasimartingales $x = (x_n)_{n \geq 1}$ such that $x = (x_n)_{n \geq 1}$ can be decomposed as a sum of a uniformly integrable $L_1(\mathcal{M})$ -martingale $y = (y_n)_{n \geq 1}$ and a predicable $L_1(\mathcal{M})$ -quasi-martingale $z = (z_n)_{n \geq 1}$ with $z_1 = 0$. Recall that the space of all uniformly integrable $L_1(\mathcal{M})$ -martingales is isometric to $L_1(\mathcal{M})$ (see [1]) and $L_1(\mathcal{M})^* = \mathcal{M}$. Then $L_1(\mathcal{M})^* = \mathcal{M} \oplus BD_\infty(\mathcal{M})$. This proof is similar to that of Theorem 3.3.

The second part of this section is devoted to the duality theorems for Hardy spaces of noncommutative quasi-martingales. Now we introduce the Hardy spaces of noncommutative quasi-martingales.

DEFINITION 3.5. Let $1 \leq p < \infty$.

(i) The column Hardy space $\mathcal{H}_p^c(\mathcal{M})$ of noncommutative quasi-martingales is defined as the space of all $L_p(\mathcal{M})$ -quasi-martingales $x = (x_n)_{n \geq 1}$ such that $(dx)_{n\geq 1} \in L_p(\mathcal{M}; l_2^c)$, equipped with the norm

$$
||x||_{\widetilde{\mathcal{H}}_p^c(\mathcal{M})} = ||dx||_{L_p(\mathcal{M};l_2^c)} + \sum_{n=1}^{\infty} ||\mathcal{E}_{n-1}(dx_n)||_p.
$$

Similarly, the row space $\mathcal{H}_p^r(\mathcal{M})$ is defined as the space of all $L_p(\mathcal{M})$ quasi-martingales $x = (x_n)_{n \geq 1}$ such that $x^* \in \mathcal{H}_p^c(\mathcal{M})$, equipped with the $\text{norm } \|x\|_{\widetilde{\mathcal{H}}^r_p(\mathcal{M})} = \|x^*\|_{\widetilde{\mathcal{H}}^c_p(\mathcal{M})}.$

(ii) The space $\widetilde{\mathcal{H}}_p(\mathcal{M})$ is defined as follows. For $1 \leq p < 2$,

$$
\widetilde{\mathcal{H}}_p(\mathcal{M}) = \widetilde{\mathcal{H}}_p^c(\mathcal{M}) + \widetilde{\mathcal{H}}_p^r(\mathcal{M})
$$

equipped with the sum norm

 $||x||$ $\widetilde{\mathcal{H}}_n(\mathcal{M})$

$$
=\inf\left\{\,\|y\|_{\widetilde{\mathcal H}_p^c(\mathcal M)}+\|z\|_{\widetilde{\mathcal H}_p^r(\mathcal M)}: x=y+z,\,\,y\in \widetilde{\mathcal H}_p^c(\mathcal M),\,\,z\in \widetilde{\mathcal H}_p^r(\mathcal M)\right\}.
$$

For $2 \leq p < \infty$,

$$
\widetilde{\mathcal{H}}_p(\mathcal{M})=\widetilde{\mathcal{H}}_p^c(\mathcal{M})\cap \widetilde{\mathcal{H}}_p^r(\mathcal{M}),
$$

equipped with the intersection norm

$$
||x||_{\widetilde{\mathcal{H}}_p(\mathcal{M})} = \max \left\{ ||x||_{\widetilde{\mathcal{H}}_p^c(\mathcal{M})}, ||x||_{\widetilde{\mathcal{H}}_p^r(\mathcal{M})} \right\}.
$$

REMARK 3.6. It is easy to see that $\mathcal{H}_p^c(\mathcal{M})$ and $\mathcal{H}_p^r(\mathcal{M})$ are Banach spaces, so is $\widetilde{\mathcal{H}}_p(\mathcal{M})$. Moreover, replacing noncommutative quasimartingales by noncommutative martingales in Definition 3.5, we get the Hardy spaces $\mathcal{H}_p^c(\mathcal{M})$, $\mathcal{H}_p^r(\mathcal{M})$ and $\mathcal{H}_p(\mathcal{M})$ of noncommutative martingales. DEFINITION 3.7. Let $1 \leq p < \infty$.

(i) We define $\mathcal{S}_p^c(\mathcal{M})$ as the space of all adaptable sequences $x = (x_n)_{n \geq 1}$ in $L_p(\mathcal{M})$ which can be decomposed as

$$
(3.4) \t\t x_n = y_n + z_n \t (n \ge 1),
$$

where $y = (y_n)_{n \geq 1} \in \mathcal{H}_p^c(\mathcal{M})$ and $z = (z_n)_{n \geq 1} \in BD_p(\mathcal{M})$. Given $x =$ $(x_n)_{n\geq 1} \in \mathcal{S}_p^c(\mathcal{M})$, define

$$
||x||_{\mathcal{S}_p^c(\mathcal{M})} = ||y||_{\mathcal{H}_p^c(\mathcal{M})} + ||z||_{BD_p(\mathcal{M})}
$$

Similarly, we define $S_p^r(\mathcal{M})$ as the space of all adaptable sequences $x =$ $(x_n)_{n\geq 1}$ in $L_p(\mathcal{M})$ such that $x^*\in \mathcal{S}_p^c(\mathcal{M})$, equipped with the norm $||x||_{\mathcal{S}_p^r(\mathcal{M})}$ $=\|x^*\|_{\mathcal{S}_\infty^c(\mathcal{M})}.$

(ii) We define $\mathcal{S}_p(\mathcal{M})$ as the corresponding sum space for $1 \leq p < 2$ and the corresponding intersection space for $2 \leq p < \infty$.

Note that by Remark 2.3, the decomposition in (3.4) is unique, thus the norm $\|\cdot\|_{\mathcal{S}_{\pi}^{c}(\mathcal{M})}$ is well defined.

Now we are ready to state the following results.

THEOREM 3.8. Let $1 < p < \infty$ and q be the conjugate index of p. Then (i) $\widetilde{\mathcal{H}}_{p}^{c}(\mathcal{M})^{*} = \mathcal{S}_{q}^{c}(\mathcal{M})$ and $\widetilde{\mathcal{H}}_{p}^{r}(\mathcal{M})^{*} = \mathcal{S}_{q}^{r}(\mathcal{M})$ with equivalent norms. (ii) $\widetilde{\mathcal{H}}_p(\mathcal{M})^* = \mathcal{S}_q(\mathcal{M})$ with equivalent norms.

PROOF. (i) Let $u = (u_n)_{n \geq 1} \in \mathcal{S}_q^c(\mathcal{M})$ and $u_n = v_n + w_n$ $(n \geq 1)$ be the decomposition in (3.4). Define a linear functional on $\widetilde{\mathcal{H}}_n^c(\mathcal{M})$ by

$$
l_u(x) = \sum_{n=1}^{\infty} \tau(dv_n^* dy_n) + \sum_{n=1}^{\infty} \tau(dw_n^* dz_n) \quad (x \in \widetilde{\mathcal{H}}_p^c(\mathcal{M})),
$$

where $x_n = y_n + z_n (n \ge 1)$ be its Doob's decomposition. To show l_u is continuous, we need the following inequality for $1 \leq p < \infty$,

(3.5)
$$
\left\| \left(\sum_{n=1}^{\infty} |dz_n|^2 \right)^{\frac{1}{2}} \right\|_p \leq \sum_{n=1}^{\infty} \|dz_n\|_p.
$$

It suffices to prove this for finite sequences. Let $2 \leq p < \infty$. By the triangle inequality in $L_{p/2}(\mathcal{M})$ we have

$$
\left\| \left(\sum_{k=1}^n |dz_n|^2 \right)^{1/2} \right\|_p = \left(\left\| \sum_{k=1}^n |dz_n|^2 \right\|_{p/2} \right)^{1/2}
$$

$$
\leq \left(\sum_{k=1}^n \left\| |dz_n|^2 \right\|_{p/2} \right)^{1/2} = \left(\sum_{k=1}^n \|dz_n\|_p^2\right)^{1/2} \leq \sum_{n=1}^\infty \|dz_n\|_p.
$$

The case of $1 \leq p < 2$ is obtain by the inequality

$$
\left\| \left(\sum_{k=1}^n |dz_n|^2 \right)^{1/2} \right\|_p = \left(\left\| \sum_{k=1}^n |dz_n|^2 \right\|_{p/2}^{p/2} \right)^{1/p}
$$

$$
\leq \left(\sum_{k=1}^n \left\| |dz_n|^2 \right\|_{p/2}^{p/2} \right)^{1/p} \leq \left(\sum_{k=1}^n \|dz_n\|_p^p \right)^{1/p} \leq \sum_{n=1}^\infty \|dz_n\|_p.
$$

This proves the inequality (3.5) . It comes from (3.5) that

$$
\left\| \left(\sum_{n=1}^{\infty} |dy_n|^2 \right)^{\frac{1}{2}} \right\|_p \leq \left\| \left(\sum_{n=1}^{\infty} |dx_n|^2 \right)^{\frac{1}{2}} \right\|_p + \left\| \left(\sum_{n=1}^{\infty} |dz_n|^2 \right)^{\frac{1}{2}} \right\|_p \leq ||x||_{\widetilde{\mathcal{H}}_p(\mathcal{M})}.
$$

By Hölder's inequality (see [7]), the series $\sum_n dv_n^* dy_n$ converges in $L_1(\mathcal{M})$ and

$$
\bigg\|\sum_{n=1}^{\infty} dv_n^* dy_n\bigg\|_1 \le \bigg\|\bigg(\sum_{n=1}^{\infty} |dv_n|^2\bigg)^{\frac{1}{2}}\bigg\|\bigg\|\bigg(\sum_{n}^{\infty} |dy_n|^2\bigg)^{\frac{1}{2}}\bigg\|_p
$$

It follows that the series $\sum_{n} \tau(dv_n^* dy_n)$ converges and

$$
\bigg|\sum_{n=1}^{\infty} \tau(dv_n^* dy_n)\bigg|\leq \bigg\|\sum_{n=1}^{\infty} dv_n^* dy_n\bigg\|_1 \leq \bigg\|\bigg(\sum_{n=1}^{\infty} |dv_n|^2\bigg)^{\frac{1}{2}}\bigg\|\bigg(\sum_{n=1}^{\infty} |dy_n|^2\bigg)^{\frac{1}{2}}\bigg\|_p.
$$

On the other hand, the series $\sum_n \tau(dw_n^* dz_n)$ converges and

$$
\left|\sum_{n=1}^{\infty} \tau(dw_n^* dz_n)\right| \leq \sup_n ||dw_n||_q \sum_{n=1}^{\infty} ||dz_n||_p.
$$

Putting the preceding inequalities together, we deduce that

$$
|l_u(x)| \leq \left\| \left(\sum_{n=1}^{\infty} |dv_n|^2 \right)^{\frac{1}{2}} \right\|_q \left\| \left(\sum_{n=1}^{\infty} |dy_n|^2 \right)^{\frac{1}{2}} \right\|_p + \sup_n \|dw_n\|_q \sum_{n=1}^{\infty} \|dz_n\|_p
$$

$$
\leq \left(\left\| \left(\sum_{n=1}^{\infty} |dv_n|^2 \right)^{\frac{1}{2}} \right\|_q + \sup_n \|dw_n\|_q \right) \left(\left\| \left(\sum_{n=1}^{\infty} |dy_n|^2 \right)^{\frac{1}{2}} \right\|_p + \sum_{n=1}^{\infty} \|dz_n\|_p \right)
$$

142 Y.-L. HOU and C.-B. MA

$$
\leqq 2 \|u\|_{\mathcal{S}_q^c(\mathcal{M})} \|x\|_{\widetilde{\mathcal{H}}_p^c(\mathcal{M})}.
$$

Thus l_u is continuous on $\mathcal{H}_p^c(\mathcal{M})$ and $||l_u|| \leq 2||u||_{\mathcal{S}_q^c(\mathcal{M})}$.

We pass to the converse inclusion. Let $l \in \mathcal{H}_p^c(\mathcal{M})^*$. First we restrict *l* on the subspace $\mathcal{H}_p^c(\mathcal{M})$. If we identify a martingale $x = (x_n)_{n \geq 1}$ with its difference sequence $dx = (dx_n)_{n \geq 1}$, we may regard $\mathcal{H}_p^c(\mathcal{M})$ as a subspace of $L_p(\mathcal{M}; l_2^c)$. By the Hahn-Banach theorem, *l* extends to a functional on $\overline{L}_p(\mathcal{M}; l_2^c)$. Since $L_p(\mathcal{M}; l_2^c)^* = L_q(\mathcal{M}; l_2^c)$, there exists a sequence $v' = (v'_n)_{n \geq 1} \in L_q(\mathcal{M}; l_2^c)$ such that

$$
l(s) = \sum_{n=1}^{\infty} \tau(v_n^{\prime *} s_n) \quad (s = (s_n)_{n \geq 1} \in L_p(\mathcal{M}; l_2^c))
$$

and $||v'||_{L_q(\mathcal{M};l_2^c)} \leq ||l||$. Then we have that

(3.6)
$$
l(a) = \sum_{n=1}^{\infty} \tau(v_n'^* da_n) \quad (a = (a_n)_{n \geq 1} \in \mathcal{H}_p^c(\mathcal{M})).
$$

Set $dv_n = \mathcal{E}_n(v'_n) - \mathcal{E}_{n-1}(v'_n)$ ($n \ge 1$). Then $v = (v_n)_{n \ge 1}$ is a martingale. By Stein inequality, we have that

$$
\left\| \left(\sum_{k=1}^{n} |dv_k|^2 \right)^{\frac{1}{2}} \right\|_q = \left\| \left(\sum_{k=1}^{n} \left| \mathcal{E}_k(v_k') - \mathcal{E}_{k-1}(v_k') \right|^2 \right)^{\frac{1}{2}} \right\|_q
$$

$$
\leq 2C_q \left\| \left(\sum_{n=1}^{\infty} |v_n'|^2 \right)^{\frac{1}{2}} \right\|_q = 2C_q \|\mathbf{v}'\|_{L_q(\mathcal{M}; l_2^c)},
$$

where C_q is the positive constant depending only on *q*. Thus $||v||_{\mathcal{H}_q^c(\mathcal{M})}$ $\leq 2C_q ||l||$. For any $a = (a_n)_{n \geq 1}$ ∈ $\mathcal{H}_p^c(\mathcal{M})$, noting that $a = (a_n)_{n \geq 1}$ is a martingale, we have that for any $n \geq 1$

$$
\tau(dv_n^*da_n) = \tau(dv_n^*a_n) - \tau(\mathcal{E}_{n-1}(dv_n^*)a_{n-1}) = \tau((\mathcal{E}_n(v_n'^*) - \mathcal{E}_{n-1}(v_n'^*))a_n)
$$

$$
= \tau(v_n'^*\mathcal{E}_n(a_n)) - \tau(v_n'^*\mathcal{E}_{n-1}(a_n)) = \tau(v_n'^*da_n).
$$

It follows from (3.6) that

(3.7)
$$
l(a) = \sum_{n=1}^{\infty} \tau(dv_n^*da_n) \quad (a = (a_n)_{n \geq 1} \in \mathcal{H}_p^c(\mathcal{M})).
$$

On the other hand, let Q_p be the subspace of $l_1(L_p(\mathcal{M}))$ of all sequences $db = (db_n)_{n \geq 1}$ such that $b = (b_n)_{n \geq 1}$ is a predictable quasi-martingale in $\mathcal{H}_p^c(\mathcal{M})$ with $b_1 = 0$. It follows from (3.5) that

$$
||db||_{l_1(L_p(\mathcal{M}))} \leq ||b||_{\widetilde{\mathcal{H}}_p^c(\mathcal{M})} \leq 2||db||_{l_1(L_p(\mathcal{M}))}
$$

for any $db = (db_n)_{n \geq 1} \in Q_p$. Imitating the proof of Theorem 3.3, there exists a sequence $w = (w_n)_{n \geq 1} \in BD_q(\mathcal{M})$ such that for any $db = (db_n)_{n \geq 1} \in Q_p$,

(3.8)
$$
l(b) = \sum_{n=1}^{\infty} \tau(dw_n^* db_n)
$$

and $||w||_{BD_q(\mathcal{M})} \leq 2||l||.$ Set $u_n = v_n + w_n (n \geq 1)$. Then $u = (u_n)_{n \geq 1} \in$ $\mathcal{S}_q^c(\mathcal{M})$ and

$$
||u||_{\mathcal{S}_q^c(\mathcal{M})} = ||v||_{\mathcal{H}_q^c(\mathcal{M})} + ||w||_{BD_q(\mathcal{M})} \le 2C_q||l|| + 2||l|| = 2(C_q + 1)||l||.
$$

For any $x = (x_n)_{n \geq 1} \in \mathcal{H}_p^c(\mathcal{M})$, let $x_n = y_n + z_n (n \geq 1)$ be its Doob's decomposition. Noting that $dz = (dz_n)_{n \geq 1} \in Q_p$, it follows from (3.7) and (3.8) that

$$
l(x) = l(y) + l(z) = \sum_{n=1}^{\infty} \tau(dv_n^* dy_n) + \sum_{n=1}^{\infty} \tau(dw_n^* dz_n).
$$

Therefore, this proves that $\mathcal{H}_p^c(\mathcal{M})^* = \mathcal{S}_q^c(\mathcal{M})$. Passing to adjoint, we obtain the identity $\mathcal{H}_p^r(\mathcal{M})^* = \mathcal{S}_q^r(\mathcal{M})$.

(ii) The duality between $\widetilde{\mathcal{H}}_p(\mathcal{M})$ and $\mathcal{S}_q(\mathcal{M})$ is deduced from the standard duality between intersection and sum spaces. \Box

We turn to the case of $p = 1$. Recall that the dual space of $\mathcal{H}_1(\mathcal{M})$ is $\mathcal{BMO}(\mathcal{M})$ which is defined in [4] as the intersection space $\mathcal{BMO}(\mathcal{M})=$ $\mathcal{BMO}^c(\mathcal{M})$ ∩ $\mathcal{BMO}^r(\mathcal{M})$, where

$$
\mathcal{BMO}^c(\mathcal{M})
$$

$$
= \Big\{ x \in L_2(\mathcal{M}) : \|x\|_{\mathcal{BMO}^c(\mathcal{M})} = \sup_n \big\| \mathcal{E}_n \big(\big| x - \mathcal{E}_{n-1}(x) \big|^2 \big) \big\|_{\infty}^{1/2} \Big\},
$$

$$
\mathcal{BMO}^r(\mathcal{M}) = \Big\{ x \in L_2(\mathcal{M}) : \|x\|_{\mathcal{BMO}^r(\mathcal{M})} = \|x^*\|_{\mathcal{BMO}^c(\mathcal{M})} \Big\}.
$$

This suggests us to consider the spaces defined in the following.

DEFINITION 3.9. We define $E^c_{\infty}(\mathcal{M})$ as the space of all adaptable sequences $x = (x_n)_{n \geq 1}$ in $L_2(\mathcal{M})$ which can be decomposed as

$$
(3.9) \t\t x_n = y_n + z_n \t (n \ge 1),
$$

where $y = (y_n)_{n \geq 1}$ is a martingale in $\mathcal{BMO}^c(\mathcal{M})$ and $dz = (dz_n)_{n \geq 1} \in$ *BD*[∞](*M*). Given *x* $\in E^c_\infty(\mathcal{M})$, define

$$
||x||_{E^c_{\infty}(\mathcal{M})} = ||y||_{\mathcal{BMO}^c(\mathcal{M})} + ||z||_{BD_{\infty}(\mathcal{M})}.
$$

Similarly, we define $E^r_\infty(\mathcal{M})$ as the space of all adaptable sequences $x = (x_n)_{n \geq 1}$ in $L_2(\mathcal{M})$ such that $x^* = (x_n^*)_{n \geq 1} \in E^c_\infty(\mathcal{M})$, equipped with the norm $||x||_{E^r_\infty(\mathcal{M})} = ||x^*||_{E^c_\infty(\mathcal{M})}$. We define $E_\infty(\mathcal{M})$ as the corresponding sum space for $1 \leq p < 2$ and the corresponding intersection space for $2 \leq p < \infty$.

THEOREM 3.10. (i) $\mathcal{H}_{1}^{c}(\mathcal{M})^{*} = E_{\infty}^{c}(\mathcal{M})$ and $\mathcal{H}_{1}^{r}(\mathcal{M})^{*} = E_{\infty}^{r}(\mathcal{M})$ with *equivalent norms*.

(ii) $\mathcal{H}_1(\mathcal{M})^* = E_\infty(\mathcal{M})$ *with equivalent norms.*

PROOF. (i) Let $u = (u_n)_{n \geq 1} \in E^c_\infty(\mathcal{M})$ and $u_n = v_n + w_n (n \geq 1)$ be the decomposition as in (3.9). Define a linear functional on $\mathcal{H}_{1}^{c}(\mathcal{M})$ by

$$
l_u(x) = \sum_{n=1}^{\infty} \tau(dv_n^* dy_n) + \sum_{n=1}^{\infty} \tau(dw_n^* dz_n) \left(x \in \widetilde{\mathcal{H}}_1^c(\mathcal{M})\right),
$$

where $x_n = y_n + z_n (n \ge 1)$ is the Doob's decomposition of x. It follows from (3.5) that

$$
\left\| \left(\sum_{n=1}^{\infty} |dy_n|^2 \right)^{\frac{1}{2}} \right\|_1 \leq \left\| \left(\sum_{n=1}^{\infty} |dx_n|^2 \right)^{\frac{1}{2}} \right\|_1 + \left\| \left(\sum_{n=1}^{\infty} \left| \mathcal{E}_{n-1}(dx_n) \right|^2 \right)^{\frac{1}{2}} \right\|_1
$$

$$
\leq ||x||_{\widetilde{\mathcal{H}}_1(\mathcal{M})}.
$$

Moreover,

$$
\left|\sum_{n=1}^{\infty} \tau(dv_n^* dy_n)\right| \leq \sqrt{2} \|y\|_{\mathcal{H}_1^c(\mathcal{M})} \|v\|_{\mathcal{BMO}^c(\mathcal{M})}
$$

(see [4], Appendix). Putting the preceding inequalities together, we obtain that

$$
|l_u(x)| \leq \sqrt{2} ||y||_{\mathcal{H}_1^c(\mathcal{M})} ||v||_{\mathcal{BMO}^c(\mathcal{M})} + \sup_n ||dw_n||_{\infty} \sum_{n=1}^{\infty} ||dz_n||_1
$$

$$
\leq \sqrt{2} \left(\|y\|_{\mathcal{H}_1^c(\mathcal{M})} + \sum_{n=1}^{\infty} \|dz_n\|_1 \right) \left(\|v\|_{\mathcal{BMO}^c(\mathcal{M})} + \sup_n \|dw_n\|_{\infty} \right)
$$

$$
\leq 2\sqrt{2} \|x\|_{\widetilde{\mathcal{H}}_1^c(\mathcal{M})} \|u\|_{E_{\infty}^c(\mathcal{M})}.
$$

Thus $l_u \in \widetilde{\mathcal{H}}_1^c(\mathcal{M})^*$ and $||l_u|| \leq 2\sqrt{2}||u||_{E^c_\infty(\mathcal{M})}$.

We pass to the converse inclusion. Let $l \in \mathcal{H}_{1}^{c}(\mathcal{M})^{*}$. First we restrict *l* on the subspace $\mathcal{H}_{1}^{c}(\mathcal{M})$. Since $\mathcal{H}_{1}^{c}(\mathcal{M})^{*} = \mathcal{BMO}^{c}(\mathcal{M})$, there exists a martingale $v = (v_n)_{n \geq 1} \in \mathcal{BMO}^c(\mathcal{M})$ such that

(3.10)
$$
l(s) = \sum_{n=1}^{\infty} \tau(dv_n^* ds_n) \quad (s = (s_n)_{n \geq 1} \in \mathcal{H}_1^c(\mathcal{M}))
$$

and $||v||_{BMO^c(M)} \leq ||l||$.

On the other hand, let Q_1 be the subspace of $l_1(L_1(\mathcal{M}))$ of all sequences $db = (db_n)_{n \geq 1}$ such that $b = (b_n)_{n \geq 1}$ is a predictable quasi-martingale in $\mathcal{H}_1^c(\mathcal{M})$ with $b_1 = 0$. It is easy to see that $||db||_{l_1(L_1(\mathcal{M}))} \leq ||b||_{\mathcal{H}_1^c(\mathcal{M})} \leq$ $2||db||_{l_1(L_1(\mathcal{M}))}$ for any $db = (db_n)_{n\geq 1}$ ∈ Q_1 . Imitating the proof of Theorem 3.3, there exists a sequence $w = (w_n)_{n \geq 1} \in BD_\infty(\mathcal{M})$ such that for any $db = (db_n)_{n \geq 1} \in Q_1,$

(3.11)
$$
l(b) = \sum_{n=1}^{\infty} \tau(dw_n^* db_n)
$$

and $||w||_{BD_\infty(\mathcal{M})} \leq 2||l||.$ Set $u_n = v_n + w_n (n \geq 1)$. Then $u = (u_n)_{n \geq 1} \in$ $E^c_\infty(\mathcal{M})$ and

$$
||u||_{E^c_{\infty}(\mathcal{M})} = ||v||_{\mathcal{BMO}^c(\mathcal{M})} + ||w||_{BD_{\infty}(\mathcal{M})} \le ||l|| + 2||l|| = 3||l||.
$$

For any $x = (x_n)_{n \geq 1} \in \mathcal{H}_1^c(\mathcal{M})$, let $x_n = y_n + z_n (n \geq 1)$ be its Doob's decomposition. Noting that $dz = (dz_n)_{n\geq 1} \in Q_1$, it follows from (3.10) and (3.11) that

$$
l(x) = l(y) + l(z) = \sum_{n=1}^{\infty} \tau(dv_n^* dy_n) + \sum_{n=1}^{\infty} \tau(dw_n^* dz_n).
$$

Therefore, this proves that $\widetilde{\mathcal{H}}_1^c(\mathcal{M})^* = E^c_\infty(\mathcal{M})$. Passing to adjoint, we obtain the identity $\widetilde{\mathcal{H}}_1^r(\mathcal{M})^* = E_{\infty}^r(\mathcal{M}).$

(ii) The duality between $\mathcal{H}_1(\mathcal{M})$ and $E_\infty(\mathcal{M})$ is deduced from the standard duality between intersection and sum spaces. \Box

 146 Y.-L. HOU and C.-B. MA: DUALITY THEOREMS FOR NONCOMMUTATIVE . . .

References

- [1] I. Cuculescu, Martingales on von Neumann algebra, *J. Multivariate Anal.,* 1 (1971), 17–27.
- [2] A. M. Garsia, *Martingale Inequalities,* Seminar Notes on Recent Progress. Math. Lecture Note. Benjamin (New York, 1973).
- [3] R. Long, *Martingale Spaces and Inequalities,* Peking University Press and Vieweg Publishing (1993).
- [4] G. Pisier and Q. H. Xu, Non-commutative martingale inequalities, *Comm. Math. Phys.,* 189 (1997), 667–698.
- [5] G. Pisier and Q. H. Xu, *Non-commutative Lp-Spaces,* W. B. Johnson and J. Lindenstrauss. Handbook of the Geometry of Banach Spaces Vol. II (North Holland, Elsevier, 2003).
- [6] F. Weisz, *Martingale Hardy Spaces and their Applications in Fourier Analysis,* volume 1568 of Lecture Notes in Math., Springer (Berlin, 1994).
- [7] Q. H. Xu, Recent development on noncommutative martingale inequalities, in: *Functional Space Theory and its Applications,* Wuhan, Proceeding of International Conference in China (2003), pp. 283–314.