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martingale Hardy space Hp(M) = Lp(M) with equivalent norms. Thus we
have the duality between Hp(M) and Hq(M). For the case of p = 1, it is
known that H1(M)∗ = BMO(M) (see [4]).

However, the case of noncommutative quasi-martingale is quite differ-

ent. In particular, the space �Lp(M) of bounded Lp(M)-quasi-martingales

and the Hardy space �Hp(M) of quasi-martingales are not isomorphic to the
noncommutative Lp(M). Hence their dual spaces can not come from that
of Lp(M). Let 1 < p < ∞ and p−1 + q−1 = 1. We prove that the dual space

of �Lp(M) is Lq(M)⊕BDq(M), where BDq(M) is the space of all pred-
icable sequences x = (xn)n�1 such that dx = (dxn)n�1 ∈ l∞

(
Lq(M)

)
and

x1 = 0. Moreover, we prove that the dual space of �Hp(M) is Sq(M), where

Sq(M) is a kind of space which is like but bigger than �Hq(M). For the case
of p = 1, we also obtain the dual results.

2. Preliminaries

Let M be a von Neumann algebra acting on a Hilbert space H and τ
a normal faithful trace on M with τ(1) = 1. We call (M, τ) a noncom-
mutative probability space. For 1 � p � ∞, let Lp(M) be the associated
noncommutative Lp-space. Recall that for 1 � p < ∞, the norm on Lp(M)
is defined by

∥x∥p = τ
(
|x|p

) 1

p , x ∈ Lp(M),

where |x| = (x∗x)
1

2 is the usual modulus of x. Note that if p = ∞, L∞(M)
is just M with the usual operator norm.

The noncommutative column spaces Lp(M; lc2) and the row spaces
Lp(M; lr2) were introduced in [4]. For 1 � p < ∞, define Lp(M; lc2) (resp.
Lp(M; lr2)) as the completion of the family of all finite sequences x = (xn)n�1

in Lp(M) under the norm

∥x∥Lp(M;lc2)
=

�����
(∑

n

|xn|2
) 1

2

�����
p

(
resp. ∥x∥Lp(M;lr2)

=

�����
(∑

n

|x∗n|
2

) 1

2

�����
p

)
.

For p = ∞, define L∞(M; lc2) (resp. L∞(M; lr2)) as the Banach space of (pos-
sible infinite) sequences x = (xn)n�1 in L∞(M) such that

∑
n x

∗
nxn (resp.∑

n xnx
∗
n) converges in w∗-topology.
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Abstract. Let L̃p(M) be the space of all bounded Lp(M)-quasi-martingales

and H̃p(M) the Hardy space of noncommutative quasi-martingales. Then

L̃p(M)∗ = Lq(M)⊕BDq(M), H̃p(M)∗ = Sq(M)

with equivalent norms for 1 < p < ∞ and p−1 + q−1 = 1, where BDq(M) is a sub-
space of l∞(Lq(M)) and Sq(M) is a kind of space which is like but bigger than

H̃q(M). The results for the case of p = 1 are also obtained.

1. Introduction

The theory of noncommutative martingale inequalities has been rapidly
developed since the establishment of the noncommutative Burkholder–
Gundy inequalities in [4]. Many of the classical martingale inequalities (see
e.g. [2], [3] or [6]) have been transferred to the noncommutative setting. We
refer the reader to a survey by Xu [7] for an exposition of this topic.

In this paper we focus on duality theorems for non-commutative quasi-
martingales. Before describing our main results, we recall some dual-
ity results for noncommutative martingale spaces. Let 1 < p < ∞ and
p−1 + q−1 = 1. Since the space of all bounded Lp(M)-martingales is isomet-
ric to the noncommutative Lp-space Lp(M) of operators, the dual space of all
bounded Lp(M)-martingales is the space of all bounded Lq(M)-martingales.
Moreover, because of Burkholder–Gundy inequalities, the noncommutative
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(
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and
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Let x = (xn)n�1 be a sequence in Lp(M). Set dxn = xn−xn−1 for n � 1

(with x0 = 0) and dx = (dxn)n�1. Set

Sc,n(x) =

( n∑
k=1

|dxk|2
) 1

2

and Sr,n(x) =

( n∑
k=1

|dx∗k|
2

) 1

2

.

Then dx belongs to Lp(M; lc2) iff
(
Sc,n(x)

)
is bounded in Lp(M). In this

case, we define Sc(x) = limn→∞ Sc,n(x) = (
∑∞

n=1 |dxn|
2)

1

2 . Similarly, if dx

belongs to Lp(M; lr2) we define Sr(x) = (
∑∞

n=1 |dx∗n|
2)

1

2 .
Let us recall the general setup for noncommutative martingales. Let

(Mn)n�1 be an increasing filtration of von Neumann subalgebras of M such

that the union of Mn’s is weak
∗-dense in M and En (with E0 = 0) the con-

ditional expectation with respect to Mn. A sequence x = (xn)n�1 is said to

be adapted if xn ∈ L1(Mn) for all n � 1, and predictable if xn ∈ L1(Mn−1).
A noncommutative martingale with respect to the filtration (Mn)n�1 is a se-

quence x = (xn)n�1 in L1(M) such that

En(xn+1) = xn for all n � 1.

If additionally, x = (xn)n�1 ⊂ Lp(M) for some 1 � p � ∞, we call x an

Lp(M)-martingale. In this case, we set ∥x∥p = supn ∥xn∥p. If ∥x∥p < ∞,

then x is called a bounded Lp(M)-martingale. We refer to [5] for more
information on noncommutative martingales.

In this paper, we focus on noncommutative quasi-martingales, which
are generalizations of noncommutative martingales and the noncommuta-
tive analogue of classical quasi-martingales.

Definition 2.1. Let 1 � p � ∞. An adapted sequence x = (xn)n�1 in

L1(M) is called a p-quasi-martingale with respect to (Mn)n�1 (or simply

a quasi-martingale for p = 1) if

∞∑
n=1

��En−1(dxn)
��
p
< ∞.

If in addition x = (xn)n�1 ⊂ Lp(M) for some 1 � p � ∞, we call x an

Lp(M)-quasi-martingale. In this case, we set

∥x∥p := sup
n

∥xn∥p +
∞∑
n=1

��En−1(dxn)
��
p
.
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If ∥x∥p < ∞, x is called a bounded Lp(M)-quasi-martingale. The non-

commutative quasi-martingale space �Lp(M) is defined as the space of all
bounded Lp(M)-quasi-martingales, and is equipped with the norm ∥ · ∥p.

A basic fact with respect to quasi-martingales is that each p-quasi-
martingale can be decomposed as a sum of a martingale and a predicable
quasi-martingale which we call Doob’s decomposition. Doob’s decomposi-
tion plays an important role in this paper.

Lemma 2.2 (Doob’s decomposition). Let 1 � p � ∞. Each p-quasi-
martingale x = (xn)n�1 can be uniquely decomposed as a sum of two se-

quences y = (yn)n�1 and z = (zn)n�1, where y = (yn)n�1 is a martingale

and z = (zn)n�1 is a predicable p-quasi-martingale with z1 = 0. Moreover,

when x = (xn)n�1 is Lp(M)-bounded, y = (yn)n�1 and z = (zn)n�1 are also

Lp(M)-bounded.

Proof. We define two sequences y = (yn)n�1 and z = (zn)n�1 by

(2.1) yn =
n∑

k=1

(
dxk − Ek−1(dxk)

)
and zn =

n∑
k=1

(
Ek−1(dxk)

)
.

Then xn = yn + zn holds for every n � 1. It is clear that y = (yn)n�1

is a martingale and z = (zn)n�1 is predicable with z1 = 0. Observe that∑∞
n=1

��En−1(dzn)
��
p
=

∑∞
n=1

��En−1(dxn)
��
p
< ∞, thus z = (zn)n�1 is a p-

quasi-martingale. To prove the uniqueness of the decomposition, assume
that xn = yn + zn and xn = y′n + z′n are two decompositions of x. It comes
from yn − y′n = z′n − zn(n � 1) that (z′n − zn)n�1 is a predicable martingale.

We get that z′n − zn = z′1 − z1 = 0 for all n � 1. Hence zn = z′n and yn = y′n
for all n � 1.

Moreover, if x = (xn)n�1 is Lp(M)-bounded, then

sup
n

∥yn∥p � sup
n

∥xn∥p + sup
n

∥zn∥p � sup
n

∥xn∥p +
∞∑
n=1

∥dzn∥p < ∞.

This shows that y = (yn)n�1 and z = (zn)n�1 are Lp(M)-bounded. �

Remark 2.3. One can see from the proof above that for an adaptable
sequence (not necessarily a quasi-martingale) x = (xn)n�1 in Lp(M), if it

can be decomposed as xn = yn + zn(n � 1), where (yn)n�1 is a martingale

and z = (zn)n�1 is predicable with z1 = 0, then the decomposition is unique.

We will use this fact later.
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3. The dual spaces of �Lp(M) and �Hp(M)

In this section, we first focus on the dual space of �Lp(M) for 1 < p < ∞.
The basic ideal is to use Doob’s decomposition. In fact, each x = (xn)n�1 in

�Lp(M) could be decomposed as xn = yn+ zn for every n � 1, where (yn)n�1

is a bounded Lp(M)-martingale and z = (zn)n�1 is a predicable bounded

Lp(M)-quasi-martingale with z1 = 0. The first part of the decomposition is
the “good part” and it is easy to deal with, since the space of all bounded
Lp(M)-martingales equipped with ∥ · ∥p is isometric to Lp(M). The second
part of the decomposition is the “main part” and for it we should focus on to
deal with. We recall that l1

(
Lp(M)

)
is defined as the space of all sequences

x = (xn)n�1 in Lp(M) such that

∥x∥l1(Lp(M)) =

∞∑
n=1

∥xn∥p < ∞

and l∞
(
Lp(M)

)
is defined as the space of all sequences x = (xn)n�1 in

Lp(M) such that

∥x∥l∞(Lp(M)) = sup
n

∥xn∥p < ∞.

Noting that the space of all predicable p-quasi-martingale difference se-
quences dx = (dxn)n�1 is a subspace of l1

(
Lp(M)

)
and (l1

(
Lp(M)

)
)
∗
=

l∞
(
Lq(M)

)
, this suggests us to consider the space BDp(M) defined in the

following.

Definition 3.1. Let 1 � p � ∞. We define BDp(M) as the space of all
predicable sequences x = (xn)n�1 such that dx = (dxn)n�1 ∈ l∞

(
Lp(M)

)
and x1 = 0, equipped with the norm

∥x∥BDp(M) = ∥dx∥l∞(Lp(M)) = sup
n

∥dxn∥p.

Definition 3.2. Let 1 < p � ∞. We define Lp(M)⊕BDp(M) as the
space of all adaptable sequences x = (xn)n�1 in Lp(M) which can be de-

composed as

xn = yn + zn (n � 1),

where (yn)n�1 is a bounded Lp(M)-martingale and z = (zn)n�1 ∈ BDp(M).

Given x = (xn)n�1 ∈ Lp(M)⊕BDp(M), define

∥x∥Lp(M)⊕BDp(M) = sup
n

∥yn∥p + ∥z∥BDp(M).
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Note that by Remark 2.3, the decomposition in Definition 3.2 is unique,
thus the norm ∥ · ∥Lp(M)⊕BDp(M) is well defined. We can now state the first

result of this section.

Theorem 3.3. Let 1 < p < ∞ and p−1 + q−1 = 1. Then �Lp(M)∗ =
Lq(M)⊕BDq(M) with equivalent norms.

Proof. Let u = (un)n�1 ∈ Lq(M)⊕BDq(M) and un = vn+wn (n � 1)

be the decomposition such that (vn)n�1 is a bounded Lq(M)-martingale and

(wn)n�1 ∈ BDq(M). Let x = (xn)n�1 ∈ �Lp(M) and xn = yn + zn (n � 1)

be its Doob’s decomposition. Then y = (yn)n�1 is a bounded Lp(M)-

martingale and supn ∥yn∥p � ∥x∥p.
Now we define a linear functional on �Lp(M) by

lu(x) = τ(v∞y∞) +

∞∑
n=1

τ(dwndzn),

where v∞ is the limit of (vn)n�1 in Lq(M) and y∞ is the limit of (yn)n�1 in

Lp(M). Then by Hölder’s inequality,

�� lu(x)
�� � ∥v∞∥q∥y∞∥p + sup

n
∥dwn∥q

∞∑
n=1

∥dzn∥p

�
(
sup
n

∥vn∥q + sup
n

∥dwn∥q
)(

sup
n

∥yn∥p +
∞∑
n=1

∥dzn∥p
)

� 2∥u∥Lq(M)⊕BDq(M)∥x∥p.

Thus lu(x) is continuous on �Lp(M) and ∥lu∥ � 2∥u∥Lq(M)
⊕

BDq(M).

We pass to the converse inclusion. Let l ∈ �Lp(M)∗. Let l1 be the restric-
tion of l on Lp(M). Then there exists a element v ∈ Lq(M) and ∥v∥q � ∥l∥
such that

(3.1) l1(a) = τ(av), a ∈ Lp(M).

On the other hand, let Fp be the subspace of l1
(
Lp(M)

)
of all sequences

db = (dbn)n�1 such that b = (bn)n�1 is a predictable quasi-martingale in

�Lp(M) with b1 = 0. It is easy to see that ∥db∥l1(Lp(M)) � ∥b∥�Lp(M) �
2∥db∥l1(Lp(M)) for any db = (dbn)n�1 ∈ Fp. Define a functional on Fp by

l2(db) = l(b), db = (dbn)n�1 ∈ Fp.
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Then l2 is a continuous linear functional on Fp and ∥l2∥ � 2∥l∥. By the
Hahn-Banach theorem, l2 extends to a functional on l1

(
Lp(M)

)
. Since

(l1
(
Lp(M)

)
)
∗
= l∞

(
Lq(M)

)
, the representation theorem allows us to find

a sequence w′ = (w′
n)n�1 ∈ l∞

(
Lq(M)

)
such that

(3.2) l2(s) =

∞∑
n=1

τ(w′
nsn) (s = (sn)n�1 ∈ l1

(
Lp(M)

)
)

and ∥w′∥l∞(Lq(M)) � ∥l2∥. Set w1 = 0 and wn =
∑n

k=1 Ek−1(w
′
k) (n � 2). For

any db = (dbn)n�1 ∈ Fp, noting that db = (dbn)n�1 is predicable, it follows

from (3.2) that

l2(db) =

∞∑
n=1

τ
(
En−1(w

′
ndbn)

)
=

∞∑
n=1

τ
(
dbnEn−1(w

′
n)
)
=

∞∑
n=1

τ(dwndbn).

(3.3)

It remains to show that w = (wn)n�1 ∈ BDq(M). This is true since w =

(wn)n�1 is predicable with w1 = 0 and

∥w∥BDq(M) = sup
n

∥dwn∥q � sup
n

∥w′
n∥q � ∥l2∥ � 2∥l∥.

Set un = vn + wn(n � 1), where vn = En(v)(n � 1). Then u = (un)n�1 ∈
Lq(M)⊕BDq(M) and

∥u∥Lq(M)⊕BDq(M) = ∥v∥q + ∥w∥BDq(M) � ∥l∥+ 2∥l∥ = 3∥l∥.

For any x = (xn)n�1 ∈ �Lp(M), let xn = yn + zn(n � 1) be its Doob’s de-

composition. Noting that y = (yn)n�1 is a bounded Lp(M)-martingale and

dz = (dzn)n�1 ∈ Fp, it follows from (3.1) and (3.3) that

l(x) = l(y) + l(z) = τ(y∞v∞) +
∞∑
n=1

τ(dwndzn). �

Remark 3.4. Let
��L1(M) be the space of all bounded L1(M)-quasi-

martingales x = (xn)n�1 such that x = (xn)n�1 can be decomposed as a sum

of a uniformly integrable L1(M)-martingale y = (yn)n�1 and a predicable

L1(M)-quasi-martingale z = (zn)n�1 with z1 = 0. Recall that the space of

all uniformly integrable L1(M)-martingales is isometric to L1(M) (see [1])
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and L1(M)∗ = M. Then
��L1(M)∗ = M⊕BD∞(M). This proof is similar

to that of Theorem 3.3.

The second part of this section is devoted to the duality theorems for
Hardy spaces of noncommutative quasi-martingales. Now we introduce the
Hardy spaces of noncommutative quasi-martingales.

Definition 3.5. Let 1 � p < ∞.

(i) The column Hardy space �Hc
p(M) of noncommutative quasi-martin-

gales is defined as the space of all Lp(M)-quasi-martingales x = (xn)n�1

such that (dx)n�1 ∈ Lp(M; lc2), equipped with the norm

∥x∥H̃c
p(M) = ∥dx∥Lp(M;lc2)

+

∞∑
n=1

��En−1(dxn)
��
p
.

Similarly, the row space �Hr
p(M) is defined as the space of all Lp(M)-

quasi-martingales x = (xn)n�1 such that x∗ ∈ �Hc
p(M), equipped with the

norm ∥x∥H̃r
p(M) = ∥x∗∥H̃c

p(M).

(ii) The space �Hp(M) is defined as follows. For 1 � p < 2,

�Hp(M) = �Hc
p(M) + �Hr

p(M)

equipped with the sum norm

∥x∥H̃p(M)

= inf
{
∥y∥H̃c

p(M) + ∥z∥H̃r
p(M) : x = y + z, y ∈ �Hc

p(M), z ∈ �Hr
p(M)

}
.

For 2 � p < ∞,

�Hp(M) = �Hc
p(M) ∩ �Hr

p(M),

equipped with the intersection norm

∥x∥H̃p(M) = max
{
∥x∥H̃c

p(M), ∥x∥H̃r
p(M)

}
.

Remark 3.6. It is easy to see that �Hc
p(M) and �Hr

p(M) are Ba-

nach spaces, so is �Hp(M). Moreover, replacing noncommutative quasi-
martingales by noncommutative martingales in Definition 3.5, we get the
Hardy spaces Hc

p(M), Hr
p(M) and Hp(M) of noncommutative martingales.
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Definition 3.7. Let 1 � p < ∞.
(i) We define Sc

p(M) as the space of all adaptable sequences x = (xn)n�1

in Lp(M) which can be decomposed as

(3.4) xn = yn + zn (n � 1),

where y = (yn)n�1 ∈ Hc
p(M) and z = (zn)n�1 ∈ BDp(M). Given x =

(xn)n�1 ∈ Sc
p(M), define

∥x∥Sc
p(M) = ∥y∥Hc

p(M) + ∥z∥BDp(M).

Similarly, we define Sr
p(M) as the space of all adaptable sequences x =

(xn)n�1 in Lp(M) such that x∗ ∈ Sc
p(M), equipped with the norm ∥x∥Sr

p(M)

= ∥x∗∥Sc
p(M).

(ii) We define Sp(M) as the corresponding sum space for 1 � p < 2 and
the corresponding intersection space for 2 � p < ∞.

Note that by Remark 2.3, the decomposition in (3.4) is unique, thus the
norm ∥ · ∥Sc

p(M) is well defined.

Now we are ready to state the following results.

Theorem 3.8. Let 1 < p < ∞ and q be the conjugate index of p. Then

(i) �Hc
p(M)∗ = Sc

q(M) and �Hr
p(M)∗ = Sr

q (M) with equivalent norms.

(ii) �Hp(M)∗ = Sq(M) with equivalent norms.

Proof. (i) Let u = (un)n�1 ∈ Sc
q(M) and un = vn +wn (n � 1) be the

decomposition in (3.4). Define a linear functional on �Hc
p(M) by

lu(x) =

∞∑
n=1

τ(dv∗ndyn) +

∞∑
n=1

τ(dw∗
ndzn)

(
x ∈ �Hc

p(M)
)
,

where xn = yn + zn(n � 1) be its Doob’s decomposition. To show lu is con-
tinuous, we need the following inequality for 1 � p < ∞,

(3.5)

�����
( ∞∑

n=1

|dzn|2
) 1

2

�����
p

�
∞∑
n=1

∥dzn∥p.

It suffices to prove this for finite sequences. Let 2 � p < ∞. By the triangle
inequality in Lp/2(M) we have

�����
( n∑

k=1

|dzn|2
)1/2

�����
p

=

(����
n∑

k=1

|dzn|2
����
p/2

)1/2
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�
( n∑

k=1

�� |dzn|2
��
p/2

)1/2

=

( n∑
k=1

∥dzn∥2p
)1/2

�
∞∑
n=1

∥dzn∥p.

The case of 1 � p < 2 is obtain by the inequality

�����
( n∑

k=1

|dzn|2
)1/2

�����
p

=

(����
n∑

k=1

|dzn|2
����
p/2

p/2

)1/p

�
( n∑

k=1

�� |dzn|2
��p/2

p/2

)1/p

�
( n∑

k=1

∥dzn∥pp
)1/p

�
∞∑
n=1

∥dzn∥p.

This proves the inequality (3.5). It comes from (3.5) that

�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
p

�
�����
( ∞∑

n=1

|dxn|2
) 1

2

�����
p

+

�����
( ∞∑

n=1

|dzn|2
) 1

2

�����
p

� ∥x∥H̃c
p(M).

By Hölder’s inequality (see [7]), the series
∑

n dv
∗
ndyn converges in L1(M)

and
����

∞∑
n=1

dv∗ndyn

����
1

�
�����
( ∞∑

n=1

|dvn|2
) 1

2

�����
q

�����
( ∞∑

n

|dyn|2
) 1

2

�����
p

.

It follows that the series
∑

n τ(dv
∗
ndyn) converges and

����
∞∑
n=1

τ(dv∗ndyn)

���� �
����

∞∑
n=1

dv∗ndyn

����
1

�
�����
( ∞∑

n=1

|dvn|2
) 1

2

�����
q

�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
p

.

On the other hand, the series
∑

n τ(dw
∗
ndzn) converges and

����
∞∑
n=1

τ(dw∗
ndzn)

���� � sup
n

∥dwn∥q
∞∑
n=1

∥dzn∥p.

Putting the preceding inequalities together, we deduce that

�� lu(x)
�� �

�����
( ∞∑

n=1

|dvn|2
) 1

2

�����
q

�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
p

+ sup
n

∥dwn∥q
∞∑
n=1

∥dzn∥p

�
(�����

( ∞∑
n=1

|dvn|2
) 1

2

�����
q

+ sup
n

∥dwn∥q

)(�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
p

+

∞∑
n=1

∥dzn∥p

)
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�
( n∑

k=1

�� |dzn|2
��
p/2

)1/2

=

( n∑
k=1

∥dzn∥2p
)1/2

�
∞∑
n=1

∥dzn∥p.

The case of 1 � p < 2 is obtain by the inequality

�����
( n∑

k=1

|dzn|2
)1/2

�����
p

=

(����
n∑

k=1

|dzn|2
����
p/2

p/2

)1/p

�
( n∑

k=1

�� |dzn|2
��p/2

p/2

)1/p

�
( n∑

k=1

∥dzn∥pp
)1/p

�
∞∑
n=1

∥dzn∥p.

This proves the inequality (3.5). It comes from (3.5) that

�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
p

�
�����
( ∞∑

n=1

|dxn|2
) 1

2

�����
p

+

�����
( ∞∑

n=1

|dzn|2
) 1

2

�����
p

� ∥x∥H̃c
p(M).

By Hölder’s inequality (see [7]), the series
∑

n dv
∗
ndyn converges in L1(M)

and
����

∞∑
n=1

dv∗ndyn

����
1

�
�����
( ∞∑

n=1

|dvn|2
) 1

2

�����
q

�����
( ∞∑

n

|dyn|2
) 1

2

�����
p

.

It follows that the series
∑

n τ(dv
∗
ndyn) converges and

����
∞∑
n=1

τ(dv∗ndyn)

���� �
����

∞∑
n=1

dv∗ndyn

����
1

�
�����
( ∞∑

n=1

|dvn|2
) 1

2

�����
q

�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
p

.

On the other hand, the series
∑

n τ(dw
∗
ndzn) converges and

����
∞∑
n=1

τ(dw∗
ndzn)

���� � sup
n

∥dwn∥q
∞∑
n=1

∥dzn∥p.

Putting the preceding inequalities together, we deduce that

�� lu(x)
�� �

�����
( ∞∑

n=1

|dvn|2
) 1

2

�����
q

�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
p

+ sup
n

∥dwn∥q
∞∑
n=1

∥dzn∥p

�
(�����

( ∞∑
n=1

|dvn|2
) 1

2

�����
q

+ sup
n

∥dwn∥q

)(�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
p

+

∞∑
n=1

∥dzn∥p

)
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� 2∥u∥Sc
q (M)∥x∥H̃c

p(M).

Thus lu is continuous on �Hc
p(M) and ∥lu∥ � 2∥u∥Sc

q (M).

We pass to the converse inclusion. Let l ∈ �Hc
p(M)∗. First we restrict

l on the subspace Hc
p(M). If we identify a martingale x = (xn)n�1 with

its difference sequence dx = (dxn)n�1, we may regard Hc
p(M) as a sub-

space of Lp(M; lc2). By the Hahn-Banach theorem, l extends to a func-
tional on Lp(M; lc2). Since Lp(M; lc2)

∗ = Lq(M; lc2), there exists a sequence
v′ = (v′n)n�1 ∈ Lq(M; lc2) such that

l(s) =

∞∑
n=1

τ(v′∗n sn)
(
s = (sn)n�1 ∈ Lp(M; lc2)

)

and ∥v′∥Lq(M;lc2)
� ∥l∥. Then we have that

(3.6) l(a) =
∞∑
n=1

τ(v′∗n dan)
(
a = (an)n�1 ∈ Hc

p(M)
)
.

Set dvn = En(v′n)− En−1(v
′
n)(n � 1). Then v = (vn)n�1 is a martingale. By

Stein inequality, we have that
�����
( n∑

k=1

|dvk|2
) 1

2

�����
q

=

�����
( n∑

k=1

��Ek(v′k)− Ek−1(v
′
k)
��2
) 1

2

�����
q

� 2Cq

�����
( ∞∑

n=1

|v′n|
2
) 1

2

�����
q

= 2Cq∥v′∥Lq(M;lc2)
,

where Cq is the positive constant depending only on q. Thus ∥v∥Hc
q(M)

� 2Cq∥l∥. For any a = (an)n�1 ∈ Hc
p(M), noting that a = (an)n�1 is a mar-

tingale, we have that for any n � 1

τ(dv∗ndan) = τ(dv∗nan)− τ
(
En−1(dv

∗
n)an−1

)
= τ(

(
En(v′∗n )− En−1(v

′∗
n )

)
an)

= τ
(
v′∗n En(an)

)
− τ

(
v′∗n En−1(an)

)
= τ(v′∗n dan).

It follows from (3.6) that

(3.7) l(a) =
∞∑
n=1

τ(dv∗ndan)
(
a = (an)n�1 ∈ Hc

p(M)
)
.
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On the other hand, let Qp be the subspace of l1
(
Lp(M)

)
of all sequences

db = (dbn)n�1 such that b = (bn)n�1 is a predictable quasi-martingale in

�Hc
p(M) with b1 = 0. It follows from (3.5) that

∥db∥l1(Lp(M)) � ∥b∥H̃c
p(M) � 2∥db∥l1(Lp(M))

for any db = (dbn)n�1 ∈ Qp. Imitating the proof of Theorem 3.3, there exists

a sequence w = (wn)n�1 ∈ BDq(M) such that for any db = (dbn)n�1 ∈ Qp,

(3.8) l(b) =
∞∑
n=1

τ(dw∗
ndbn)

and ∥w∥BDq(M) � 2∥l∥. Set un = vn + wn(n � 1). Then u = (un)n�1 ∈
Sc
q(M) and

∥u∥Sc
q (M) = ∥v∥Hc

q(M) + ∥w∥BDq(M) � 2Cq∥l∥+ 2∥l∥ = 2(Cq + 1)∥l∥.

For any x = (xn)n�1 ∈ �Hc
p(M), let xn = yn + zn(n � 1) be its Doob’s de-

composition. Noting that dz = (dzn)n�1 ∈ Qp, it follows from (3.7) and

(3.8) that

l(x) = l(y) + l(z) =

∞∑
n=1

τ(dv∗ndyn) +

∞∑
n=1

τ(dw∗
ndzn).

Therefore, this proves that �Hc
p(M)∗ = Sc

q(M). Passing to adjoint, we obtain

the identity �Hr
p(M)∗ = Sr

q (M).

(ii) The duality between �Hp(M) and Sq(M) is deduced from the stan-
dard duality between intersection and sum spaces. �

We turn to the case of p = 1. Recall that the dual space of H1(M)
is BMO(M) which is defined in [4] as the intersection space BMO(M) =
BMOc(M)

∩
BMOr(M), where

BMOc(M)

=
{
x ∈ L2(M) : ∥x∥BMOc(M) = sup

n
∥En(

��x− En−1(x)
��2)∥1/2

∞

}
,

BMOr(M) = {x ∈ L2(M) : ∥x∥BMOr(M) = ∥x∗∥BMOc(M)}.
This suggests us to consider the spaces defined in the following.
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Definition 3.9. We define Ec
∞(M) as the space of all adaptable se-

quences x = (xn)n�1 in L2(M) which can be decomposed as

(3.9) xn = yn + zn (n � 1),

where y = (yn)n�1 is a martingale in BMOc(M) and dz = (dzn)n�1 ∈
BD∞(M). Given x ∈ Ec

∞(M), define

∥x∥Ec
∞(M) = ∥y∥BMOc(M) + ∥z∥BD∞(M).

Similarly, we define Er
∞(M) as the space of all adaptable sequences

x = (xn)n�1 in L2(M) such that x∗ = (x∗n)n�1 ∈ Ec
∞(M), equipped with

the norm ∥x∥Er
∞(M) = ∥x∗∥Ec

∞(M). We define E∞(M) as the correspond-

ing sum space for 1 � p < 2 and the corresponding intersection space for
2 � p < ∞.

Theorem 3.10. (i) �Hc
1(M)∗ = Ec

∞(M) and �Hr
1(M)∗ = Er

∞(M) with
equivalent norms.

(ii) �H1(M)∗ = E∞(M) with equivalent norms.

Proof. (i) Let u = (un)n�1 ∈ Ec
∞(M) and un = vn +wn(n � 1) be the

decomposition as in (3.9). Define a linear functional on �Hc
1(M) by

lu(x) =

∞∑
n=1

τ(dv∗ndyn) +

∞∑
n=1

τ(dw∗
ndzn)

(
x ∈ �Hc

1(M)
)
,

where xn = yn + zn(n � 1) is the Doob’s decomposition of x. It follows from
(3.5) that

�����
( ∞∑

n=1

|dyn|2
) 1

2

�����
1

�
�����
( ∞∑

n=1

|dxn|2
) 1

2

�����
1

+

�����
( ∞∑

n=1

��En−1(dxn)
��2
) 1

2

�����
1

� ∥x∥H̃c
1(M).

Moreover,
����

∞∑
n=1

τ(dv∗ndyn)

���� �
√
2∥y∥Hc

1(M)∥v∥BMOc(M)

(see [4], Appendix). Putting the preceding inequalities together, we obtain
that

�� lu(x)
�� � √

2∥y∥Hc
1(M)∥v∥BMOc(M) + sup

n
∥dwn∥∞

∞∑
n=1

∥dzn∥1
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�
√
2

(
∥y∥Hc

1(M) +

∞∑
n=1

∥dzn∥1
)(

∥v∥BMOc(M) + sup
n

∥dwn∥∞
)

� 2
√
2∥x∥H̃c

1(M)∥u∥Ec
∞(M).

Thus lu ∈ �Hc
1(M)∗ and ∥lu∥ � 2

√
2∥u∥Ec

∞(M).

We pass to the converse inclusion. Let l ∈ �Hc
1(M)∗. First we restrict l

on the subspace Hc
1(M). Since Hc

1(M)∗ = BMOc(M), there exists a mar-
tingale v = (vn)n�1 ∈ BMOc(M) such that

(3.10) l(s) =
∞∑
n=1

τ(dv∗ndsn)
(
s = (sn)n�1 ∈ Hc

1(M)
)

and ∥v∥BMOc(M) � ∥l∥.
On the other hand, let Q1 be the subspace of l1

(
L1(M)

)
of all sequences

db = (dbn)n�1 such that b = (bn)n�1 is a predictable quasi-martingale in

�Hc
1(M) with b1 = 0. It is easy to see that ∥db∥l1(L1(M)) � ∥b∥H̃c

1(M) �
2∥db∥l1(L1(M)) for any db = (dbn)n�1 ∈ Q1. Imitating the proof of Theo-

rem 3.3, there exists a sequence w = (wn)n�1 ∈ BD∞(M) such that for any

db = (dbn)n�1 ∈ Q1,

(3.11) l(b) =

∞∑
n=1

τ(dw∗
ndbn)

and ∥w∥BD∞(M) � 2∥l∥. Set un = vn + wn(n � 1). Then u = (un)n�1 ∈
Ec

∞(M) and

∥u∥Ec
∞(M) = ∥v∥BMOc(M) + ∥w∥BD∞(M) � ∥l∥+ 2∥l∥ = 3∥l∥.

For any x = (xn)n�1 ∈ �Hc
1(M), let xn = yn+ zn(n � 1) be its Doob’s decom-

position. Noting that dz = (dzn)n�1 ∈ Q1, it follows from (3.10) and (3.11)

that

l(x) = l(y) + l(z) =
∞∑
n=1

τ(dv∗ndyn) +

∞∑
n=1

τ(dw∗
ndzn).

Therefore, this proves that �Hc
1(M)∗ = Ec

∞(M). Passing to adjoint, we ob-

tain the identity �Hr
1(M)∗ = Er

∞(M).

(ii) The duality between �H1(M) and E∞(M) is deduced from the stan-
dard duality between intersection and sum spaces. �
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