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Abstract. Let L,(M) be the space of all bounded L, (M )-quasi-martingales
and H,(M) the Hardy space of noncommutative quasi-martingales. Then

EP(M)* = Lq(M) & BDg(M), ﬁp(M)* = 8¢(M)
with equivalent norms for 1 < p < co and p~ ' 4+ ¢~ ! =1, where BDgy(M) is a sub-

space of loo(Lq(M)) and S4z(M) is a kind of space which is like but bigger than
Hq(M). The results for the case of p =1 are also obtained.

1. Introduction

The theory of noncommutative martingale inequalities has been rapidly
developed since the establishment of the noncommutative Burkholder—
Gundy inequalities in [4]. Many of the classical martingale inequalities (see
e.g. [2], [3] or [6]) have been transferred to the noncommutative setting. We
refer the reader to a survey by Xu [7] for an exposition of this topic.

In this paper we focus on duality theorems for non-commutative quasi-
martingales. Before describing our main results, we recall some dual-
ity results for noncommutative martingale spaces. Let 1 <p < oo and
p~ 1+ ¢! = 1. Since the space of all bounded L,(M)-martingales is isomet-
ric to the noncommutative Ly,-space L,(M) of operators, the dual space of all
bounded L,(M)-martingales is the space of all bounded L,(M)-martingales.
Moreover, because of Burkholder—-Gundy inequalities, the noncommutative
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martingale Hardy space H,(M) = L,(M) with equivalent norms. Thus we
have the duality between H,(M) and Hq(M). For the case of p =1, it is
known that Hy(M)* = BMO(M) (see [4]).

However, the case of noncommutative quasi-martingale is quite differ-
ent. In particular, the space L,(M) of bounded L,(M)-quasi-martingales
and the Hardy space 7-[p(/\/l) of quasi-martingales are not isomorphic to the
noncommutative L,(M). Hence their dual spaces can not come from that
of Ly(M). Let 1 <p < oo and p~! + ¢~ = 1. We prove that the dual space
of zp(M) is Ly(M) @ BDy(M), where BD,(M) is the space of all pred-
icable sequences x = (2),,>; such that dz = (dzy),>; € loo(Lg(M)) and

x1 = 0. Moreover, we prove that the dual space of ﬁp(M) is Sq(M), where

Sq¢(M) is a kind of space which is like but bigger than ﬁq(/\/l). For the case
of p =1, we also obtain the dual results.

2. Preliminaries

Let M be a von Neumann algebra acting on a Hilbert space H and T
a normal faithful trace on M with 7(1) =1. We call (M, 7) a noncom-
mutative probability space. For 1 = p = oo, let L,(M) be the associated
noncommutative Ly-space. Recall that for 1 < p < oo, the norm on L,(M)
is defined by

lzll, = 7(lz") . @€ Ly(M),

where |z| = (x*x)% is the usual modulus of . Note that if p = 0o, Leo(M)
is just M with the usual operator norm.

The noncommutative column spaces L,(M;l5) and the row spaces
L,(M;13) were introduced in [4]. For 1 < p < oo, define L,(M;15) (resp.
L,(M;13)) as the completion of the family of all finite sequences x = (x,,),,>,
in L,(M) under the norm -

)

For p = oo, define Lo (M;1§) (resp. Loo(M;15)) as the Banach space of (pos-
sible infinite) sequences z = (zn),>; in Loo(M) such that 3, z7x, (resp.

1

Hﬂ?HLP(M;lg) = H (Z ‘%1’2)

1

<resp. el s = H (Tler)
p n

>, Tnxy) converges in w*-topology.
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Let z = (2n),>; be asequence in L,(M). Set dvy, = 2y —xp—1 forn =1
(with zg = 0) and dz = (dzy),,>;. Set

1

Sen(z) = (i!dﬂfﬁ); and Sy, (z) = (ild@"/f)?

k=1 k=1

Then dz belongs to Ly(M;i5) iff (Sen(z)) is bounded in Ly(M). In this
case, we define Se(z) = limy, 500 Sen(z) = (Xonly \d:vn\2)7. Similarly, if dx

belongs to L,(M;l;) we define S, ( ) = (Z 1 ldxy] )
Let us recall the general setup for noncommutatlve martingales. Let
(My,),,>1 be an increasing filtration of von Neumann subalgebras of M such

that the union of M,,’s is weak*-dense in M and &, (with & = 0) the con-
ditional expectation with respect to M,,. A sequence x = (x,),,>; is said to
be adapted if z,, € L1(M,,) for all n = 1, and predictable if z,, G_Ll(./\/ln_l).
A noncommutative martingale with respect to the filtration (My),,>, is a se-
quence = = (zp),,>; in Li(M) such that -

En(tpns1) =z, forall n=1.

If additionally, z = (zy),,>; C Lp(M) for some 1 < p < oo, we call z an
Lp(M)-martingale. In this case, we set ||z|, = sup, [|znll,. If [lz[[, < oo,
then z is called a bounded L,(M)-martingale. We refer to [5] for more
information on noncommutative martingales.

In this paper, we focus on noncommutative quasi-martingales, which
are generalizations of noncommutative martingales and the noncommuta-
tive analogue of classical quasi-martingales.

DEFINITION 2.1. Let 1 £ p £ co. An adapted sequence z = (z,,),,>; in
Li(M) is called a p-quasi-martingale with respect to (My,),>; (or simply

a quasi-martingale for p = 1) if
o
Z Hé’n_l(dmn)Hp < 0.

If in addition = = (z,),,>; C Lp(M) for some 1= p < oo, we call z an
L,(M)-quasi-martingale. In this case, we set

1], —SUPH%H +2H5n 1(dn)|[ -

n=1
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If ||lz[|, < oo, = is called a bounded L;,(M)-quasi-martingale. The non-

commutative quasi-martingale space Ep(/\/l) is defined as the space of all
bounded L,(M)-quasi-martingales, and is equipped with the norm || - |[,.

A basic fact with respect to quasi-martingales is that each p-quasi-
martingale can be decomposed as a sum of a martingale and a predicable
quasi-martingale which we call Doob’s decomposition. Doob’s decomposi-
tion plays an important role in this paper.

LEMMA 2.2 (Doob’s decomposition). Let 1 < p < co.  Fach p-quasi-
martingale © = (xy),>; can be uniquely decomposed as a sum of two se-
quences y = (Yn),>; and z = (2,),>,, where y= (yn), >, is a martingale
and z = (2n),,>1 is a predicable p—q&asz’—martingale with z1 = 0. Moreover,
when x = (), >, i85 Ly(M)-bounded, y = (yn),>, and 2z = (2,),>, are also
Ly(M)-bounded. - -

PRrROOF. We define two sequences y = (yn),,>; and z = (z,),,>; by

n n

(2.1) Yn = Z (dxk — Ek_l(dxk)) and z, = Z (Sk_l(dxk)) .

k=1 k=1

Then z, =y, + z, holds for every n=1. It is clear that y = (yn),>,
is a martingale and z = (2,),,>; is predicable with z; = 0. Observe that
P Sn_l(dzn)Hp =>", Hgn_l(dxn)Hp < o0, thus 2 = (23),,>; is a p-
quasi-martingale. To prove the uniqueness of the decomposition, assume
that ©, = yn + 2, and x,, = ¥y}, + 2/, are two decompositions of z. It comes
from y, —y), = 2;, — zn(n 2 1) that (2], — 2,),,>, is a predicable martingale.

We get that 2, — 2z, = 2] — 2z =0 for all n =2 1. Hence z, = 2, and y, = y,,
for all n = 1.
Moreover, if © = (xy,),>; is Ly(M)-bounded, then

o0
sup [[ynl,, < sup [|zall, +sup |zall, < sup [lzall, + D lldzall, < co.
n n n n

n=1
This shows that y = (yn),>; and z = (2n),,>; are Ly(M)-bounded. [

REMARK 2.3. One can see from the proof above that for an adaptable
sequence (not necessarily a quasi-martingale) z = (2,,),> in Ly(M), if it
can be decomposed as Z, = ypn + 2,(n = 1), where (y,), >, is a martingale
and z = (2p),,>; is predicable with z; = 0, then the decomposition is unique.
We will use this fact later.
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136 Y.-L. HOU and C.-B. MA

3. The dual spaces of L,(M) and H,(M)

In this section, we first focus on the dual space of Ep(/\/l) for 1 < p < o0.
The basic ideal is to use Doob’s decomposition. In fact, each x = (z,,),>; in
EP(M) could be decomposed as x,, = yn, + 2y, for every n 2 1, where (y,),,>,
is a bounded L,(M)-martingale and z = (2,),>; is a predicable bounded

L,(M)-quasi-martingale with z; = 0. The first part of the decomposition is
the “good part” and it is easy to deal with, since the space of all bounded
Lp(M)-martingales equipped with || - ||, is isometric to L,(M). The second
part of the decomposition is the “main part” and for it we should focus on to
deal with. We recall that l; (L,(M)) is defined as the space of all sequences
xr = (n), > in Ly(M) such that

12l () = D lall, < 00
n=1

and loo(Lp(M)) is defined as the space of all sequences z = (Tn)pz1 In
L,(M) such that

qulm(Lp(M)) = sup [|@,[, < oc.
n
Noting that the space of all predicable p-quasi-martingale difference se-

quences dz = (dzn),>; is a subspace of l1(Ly(M)) and (ll(Lp(./\/l)))* —

loo (Lq(M)), this suggests us to consider the space BD,(M) defined in the
following.

DEFINITION 3.1. Let 1 < p < co. We define BD,(M) as the space of all
predicable sequences z = (x,,),>; such that dx = (dz,),>, € ZOO(LI,(M))
and z; = 0, equipped with the norm

HxHBDZ,(M) = Hd$||loo(Lp(M)) = Sl:LP ||dITL||p'

DEFINITION 3.2. Let 1 < p < co. We define L,(M) & BD,(M) as the
space of all adaptable sequences x = (3!:,1)7@1 in L,(M) which can be de-

composed as
Tn = Yn + 2n (n;1)7

where (yn),,>; is a bounded L,(M)-martingale and z = (2y),,>; € BDp(M).
Given = (zn),,>1 € Lp(M) & BDy(M), define

1%l ., vyeBD, (M) = SUP [Unll, + 121 5D, (A1)-
n
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Note that by Remark 2.3, the decomposition in Definition 3.2 is unique,
thus the norm || - [|, vy@pp, ) is well defined. We can now state the first

result of this section.

THEOREM 3.3. Let 1 <p<oo and p~'+q ' =1. Then L,(M)* =
Ly(M) @ BDy(M) with equivalent norms.

PrOOF. Let u = (upn),>; € Lqy(M)®BDy(M) and up, = v, +wy (n 2 1)
be the decomposition such that (v,), >, is a bounded Lg(M)-martingale and
(Wn),>1 € BDg(M). Let x = (zn),>; € Ly(M) and zp, = yn + 2, (n 2 1)
be its Doob’s decomposition. Then y = (y,),>; is a bounded L,(M)-
martingale and sup,, [|yn|, < [z,

Now we define a linear functional on L,(M) by

o0

lu($) = T(Uooyoo) + z T(dwndzn)g

n=1

where vo is the limit of (vy,), >, in Ly(M) and yo is the limit of (y,), >, in
L,(M). Then by Holder’s inequality,

oo
| 1u(@)| < llosoll 9ol + sup l[dwall, D lldzall,
n

n=1

o
< (supllonll, + sup [, ) (sup ol + 3 ],
n n n n=1

< 2lullz, mesp, 121,

Thus [, (z) is continuous on EP(M) and (L[| = 2l|ull, vy @ BD, (M)-

We pass to the converse inclusion. Let [ € Ep(/\/l)*. Let [; be the restric-
tion of [ on L,(M). Then there exists a element v € Ly(M) and |[v|[, = ||I]]
such that

(3.1) li(a) = 71(av), a € Ly(M).

On the other hand, let F}, be the subspace of ll(Lp(M)) of all sequences
db = (dby), > such that b= (by),>; is a predictable quasi-martingale in

Ly(M) with by =0. Tt is easy to see that [dbll,(z, () = IBllz, (ng) S
2Hdb|]l1(Lp(M)) for any db = (dby,),,>; € Fp. Define a functional on F, by

lo(db) = 1(b), db = (dby),>; € Fp.
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138 Y.-L. HOU and C.-B. MA

Then Iy is a continuous linear functional on F, and ||l2]| < 2||l||. By the
Hahn-Banach theorem, [y extends to a functional on ll(Lp(M)). Since

(ll(Lp(M)))* = loo(Lg(M)) , the representation theorem allows us to find
a sequence w' = (wy,),>; € loo(Lg(M)) such that

(3.2) ZT (wy,5n) 5 = (Sn)p>1 € ll(Lp(M)))
n=1

and 'l (5, o) < Wall- Set wy = 0 and w, = S, E-1(wf) (0 2 2). For
any db = (dby),,>, € Fp, noting that db = (dby,),>, is predicable, it follows
from (3.2) that

(3-3)

iT En—1( w dby,) :iT dbnEn—1( iT dw,,dby,)
n=1 n=1 n=1

It remains to show that w = (wy), >, € BDy(M). This is true since w =
(wn),,>; is predicable with w; = 0 and

1wl 5, (a1 = sup lldwnllg = sup lwnlly = ll221l = 2)12)-

Set wu, = vy, + wyp(n = 1), where v, =&,(v)(n 2 1). Then u= (“n)nzl €
Ly(M) @& BDy(M) and

lullz, myeBp,m) = I0llg + lwllBp,n) = 121+ 2012 = 3[I2].

For any z = (z),>; € zp(/\/l)7 let @, = yn + 2n(n = 1) be its Doob’s de-
composition. Noting that y = (yy),,>; is a bounded L,(M)-martingale and
dz = (dzp), > € Fp, it follows from (3.1) and (3.3) that

() = 1(y) +1(2) = T(YooVoo) + Y _ T(dwndz,). O

n=1

REMARK 3.4. Let Li(M) be the space of all bounded L;(M)-quasi-
martingales = (x,,),,>, such that x = (z,,),,>; can be decomposed as a sum

of a uniformly integrable L;(M)-martingale y = (y»),>; and a predicable
Li(M)-quasi-martingale z = (z,),>; with 21 = 0. Recall that the space of
all uniformly integrable L;(M)-martingales is isometric to Li(M) (see [1])
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DUALITY THEOREMS FOR NONCOMMUTATIVE QUASI-MARTINGALE SPACES 139

and Ly(M)* = M. Then Li(M)* = M & BDy(M). This proof is similar
to that of Theorem 3.3.

The second part of this section is devoted to the duality theorems for
Hardy spaces of noncommutative quasi-martingales. Now we introduce the
Hardy spaces of noncommutative quasi-martingales.

DEFINITION 3.5. Let 1 < p < oo.

(i) The column Hardy space ﬁ;(M) of noncommutative quasi-martin-
gales is defined as the space of all L,(M)-quasi-martingales = = (z,),,>,

such that (dz),,>, € Ly(M;15), equipped with the norm

”xHﬁg(M) = lldz ||z, sz + Z H“:"—l(dx”)up'

n=1

Similarly, the row space ﬁ;(M) is defined as the space of all L,(M)-
quasi-martingales « = (zy,),,>; such that z* € ﬁg(/\/l), equipped with the

norm Hx“ﬁ;(m) = ||z¥| e (M)

(i) The space H,(M) is defined as follows. For 1 < p < 2,

Hp(M) = Hy(M) + Hy (M)
equipped with the sum norm
”w”ﬁp(M)

= inf { Iyl qaay + Nollgyoay s © =+ 2y € Ho(M), 2 € Hp(M)}.

For 2 < p < o0,
Hy(M) = Hy(M) N Hp (M),

equipped with the intersection norm

quﬁp(/\/t) = max{ 2] He (M) ”x”ﬁ;(M)}-
REMARK 3.6. It is easy to see that ﬁ;(/\/l) and ﬁ;(/\/l) are Ba-

nach spaces, so is H,(M). Moreover, replacing noncommutative quasi-
martingales by noncommutative martingales in Definition 3.5, we get the
Hardy spaces Hy (M), H, (M) and H,(M) of noncommutative martingales.
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140 Y.-L. HOU and C.-B. MA

DEFINITION 3.7. Let 1 < p < oo.
i) We define S¢(M) as the space of all adaptable sequences z = () >
p n=1

in L,(M) which can be decomposed as
(3.4) Tn =Yn+2n (n2=1),

where y = (yn),>; € Hy(M) and 2z = (2n),>, € BDy(M). Given z=
(Tn)p>1 € Sp(M), define

|| Se(M) = [y He (M) + HZHBDP(M)'

Similarly, we define S) (M) as the space of all adaptable sequences = =
(Tn)y>1 in Lp(M) such that z* € (M), equipped with the norm |||, rs)

= [J=7|

Sg(M)-
ii) We define S,(M) as the corresponding sum space for 1 < p < 2 and
P g
the corresponding intersection space for 2 < p < co.

Note that by Remark 2.3, the decomposition in (3.4) is unique, thus the
norm || - [| g(aq) is well defined.

Now we are ready to state the following results.

THEOREM 3.8. Let 1 <p < oo and q be the conjugate index of p. Then
(i) ’rzg(/\/l)* = S5(M) and Hp(M)* = Sy (M) with equivalent norms.
(i) Hp(M)* = Sy(M) with equivalent norms.

PRrROOF. (i) Let u = (up),>; € S§(M) and u, = v, +wy (n 2 1) be the
decomposition in (3.4). Define a linear functional on ’;qg(/\/l) by

= ZT(dv;‘;dyn + ZT dwidz,) (z€ ﬁg(M)) ,
n=1 n=1

where x, = yp + zn(n = 1) be its Doob’s decomposition. To show [,, is con-
tinuous, we need the following inequality for 1 < p < oo,

(3.5) H Zrdz| ‘ <> lldznll,,-
n=1

It suffices to prove this for finite sequences. Let 2 < p < co. By the triangle
inequality in L, /5(M) we have
n 1/2
( k=1 / 2)

n 1/2
(Z ‘dzn’2> =
k=1 »
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n 1/2 n 1/2 00
= (Z f \danHp/2) = <Z ||dznu§) <> lldzall,
k=1 k=1 n=1

The case of 1 < p < 2 is obtain by the inequality
) 1/p

(01 (1T)

n 1/p
2
(Z lidzal Hiﬁg) < (Llaaly) 3 el
k=1 n=1
This proves the inequality (3.5). It comes from (3.5) that
(5] <] (5
=1 p n=1 p

By Hélder’s inequality (see [7]), the series ) dv;dy, converges in Li(M)
and

1/2

=

oo
Z dvy, dyn,
n=1 1

It follows that the series ) 7(dv;dy,) converges and

i 7(dv;dyn) i dvpdyn Z Idvn\ Z Idyn
n=1 n=1 1

On the other hand, the series ) 7(dw;dz,) converges and

iT dw dzy)
n=1

Putting the preceding inequalities together, we deduce that

Z !dvn! Z Idyn

ClieT

n=1

A

=

p

<sup||dwnH ZIIdZnH
n=1

o9
+sup [|dwn |, Y lldznll,
n n=1

1

<Z|dvn|2> +sup\|dwn||q>(H(Z\dynP) +Z!dzn||p>
n=1 q n n=1 P n=1
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< 2f|ul

se 1% lzze (agy-

Thus [, is continuous on ﬁg(M) and [[lu|| = 2[|ullgerq)-

We pass to the converse inclusion. Let [ € ﬁ;(M)* First we restrict
[ on the subspace Hj(M). If we identify a martingale z = (z,,),>; with
its difference sequence dr = (dz,),>,, we may regard Hg(M) as a sub-
space of L,(M;l5). By the Hahn-Banach theorem, [ extends to a func-

tional on Ly,(M;15). Since L,(M;I5)" = Ly(M;15), there exists a sequence
V' = (vp)pz1 € Lg(M;1§) such that

NE

I(s) =) 7(vysn) (s= (Sn)p>1 € Lp(M;15))

i
I

and [[v']|, (pag) S (|12 Then we have that

K

(3.6) la) =) 7(vyda,) (a= (an)y>1 € Hi(M)).

1

3
Il

Set dv, = Ep(vy) — En—1(vy,)(n 2 1). Then v = (vy),,>; is a martingale. By

Stein inequality, we have that
(X leuteh) - atep)]?)
q

H <Z ]dvk’2) 2 H — ‘
k=1 g k=1

00 1
2 2
: (Zw )
n=1 q

where C; is the positive constant depending only on ¢. Thus ||UHH( M)
< 2C,[|l]]. For any a = (an),>; € Hy(M), noting that a = (an),>; is a mar-
tingale, we have that for any n = 1

n 1

= 2CqHU’||Lq(M;lg)7

T(dv;day) = 7(dvy,an) — T(Snfl(dv;)an,l) = T((Sn(v;*) — En,l(vg)) an)

=7(vfEnlan)) — (v En—1(an)) = 7(v) day,).

It follows from (3.6) that
(3.7) = 7(dvidan) (a=(an),>, € H5(M)).
n=1
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On the other hand, let @), be the subspace of [ (Lp(./\/l)) of all sequences
db = (dby),>; such that b= (by),>; is a predictable quasi-martingale in

ﬁg(/\/l) with b; = 0. It follows from (3.5) that

1l 2, ) < DBllzs rey < 200l 1, a0

for any db = (db,,) n>1 € Qp- Imitating the proof of Theorem 3.3, there exists
a sequence w = (Wy),,>; € BDy(M) such that for any db = (dby),,>; € Qp,

(3.8) = 7(dw}dby)
n=1

and [|wllgp vy S 20U Set up = vy +wp(n 2 1). Then u = (up),>; €
Sg(M) and

[l

sem) = I0llae vy + lwll o, gy = 2ClIH1 + 211 = 2(C4 + D|Z]]-

For any = = (z),>; € 7-7;(/\/1), let 2, = yn + zn(n = 1) be its Doob’s de-
composition. Noting that dz = (dzy),>; € Qp, it follows from (3.7) and
(3.8) that

o0

U(z) = Uy) +Uz) = Y 7(dvidyn) + Y 7(dwydzn).
n=1 n=1

Therefore, this proves that ﬁ;(M)* = 8§;(M). Passing to adjoint, we obtain
the identity ﬁ;(/\/l)* =S;(M).

(ii) The duality between ﬁp(M) and S;(M) is deduced from the stan-
dard duality between intersection and sum spaces. [l

We turn to the case of p=1. Recall that the dual space of Hi(M)
is BMO(M) which is defined in [4] as the intersection space BMO(M) =
BMO“(M) (\BMO’ (M), where

BMO(M)
= {w € LaM) : Jallspor ey = sup || (| - En-1(@)|*) |17,

This suggests us to consider the spaces defined in the following.
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144 Y.-L. HOU and C.-B. MA

DEFINITION 3.9. We define ES (M) as the space of all adaptable se-
quences r = (zp),,>; in L2(M) which can be decomposed as

(3.9) Tp =Yn+2n (n2=1),

where y = (yn),>; is a martingale in BMO“(M) and dz = (dzp),>; €
BDy(M). Given z € ES (M), define

12l 2o (at) = Wl Batoe(a) + 12l BD L (A1)

Similarly, we define E’ (M) as the space of all adaptable sequences
T = (Tn),>; in La(M) such that 2* = (27),>, € ES (M), equipped with
the norm ||lzf| g, (v = [l27|

Be (M) We define Eo (M) as the correspond-

ing sum space for 1 < p < 2 and the corresponding intersection space for
2 < p<oo.

THEOREM 3.10. (i) HS(M)* = ES (M) and HI(M)* = E7_(M) with
equivalent norms.

(ii) H1(M)* = Eo(M) with equivalent norms.

PROOF. (i) Let u = (un),>; € ES (M) and up, = v, +wn(n = 1) be the

decomposition as in (3.9). Define a linear functional on H¢(M) by

Lu(z) =Y r(dvgdyn) + Y T(dwhdz,) (z € H§(M)),
n=1 n=1

where x,, = yp, + 2z, (n 2 1) is the Doob’s decomposition of x. It follows from
(3.5) that

(S

1

2 = <§:|d$n|2>2

n=1

< [|]

<§:1 \5n1(dfvn)\2>;

+
1 1 1

Hi (M)

Moreover,

< V2|ly|

i T(dvy,dyn)

n=1

Hf(M)HUHBMOC(M)

(see [4], Appendix). Putting the preceding inequalities together, we obtain
that

o0
Hi ) 1Vl s a0 (an) 5P ldwnllog D lldznll,

n=1

|lu(@)] < V2]ly|
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< V3 (Il )+Z||dzn||1>(uv||mo oy -+ sup )

< 27Ja|

Thus I, € HS(M)* and ||L.] < 2v2|ul Be (M

We pass to the converse inclusion. Let [ € ﬁ‘f(/\/l)* First we restrict [
on the subspace H$(M). Since HS(M)" = BMO(M), there exists a mar-
tingale v = (vn),,>; € BMO(M) such that

s (w11l 2, ()

(3.10) I(s) = 7(dvpdsn) (5= (sn),>1 € HS(M))
n=1

and HUHBMOC(M) < i)l

On the other hand, let @1 be the subspace of I3 (Ll (M)) of all sequences
db = (db,),,>; such that b= (b,),>, is a predictable quasi-martingale in
HE(M) with by =0. It is easy to sce that Hdell(Ll(M)) < )§
2Hdb|]l Lu(M)) for any db = (dby),>; € Q1. Imitating the proof of Theo-
rem 3. 3 there exists a sequence w = (wy),;>; € BDx (M) such that for any

db = (dbn),>1 € Q1

(3.11) = 7(dw}dby)
n=1

and [|wllgp_ag =201 Set up = vy +wp(n 2 1). Then u = (up),>; €
ES (M) and

[l 5wty = ol st vy + 1wl o agy = I+ 20120 = 3[12]1-

For any x = (2),,>; € HS (M), let 2, = Y + 20 (n = 1) be its Doob’s decom-
position. Noting that dz = (dzy),,>; € Q1, it follows from (3.10) and (3.11)
that -

(o) =1y) +1(z) = > 7(dvidyn) + Y m(dw)dzy,).
n=1 n=1
Therefore, this proves that HS(M)* = ES (M). Passing to adjoint, we ob-
tain the identity Hj(M)" = EL_(M).
(ii) The duality between H1(M) and E (M) is deduced from the stan-
dard duality between intersection and sum spaces. [J
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