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Our generalization solves two problems. Firstly, just like metric spaces
carry in a natural way a uniform structure (and hence also a uniform con-
vergence structure), we can show, using an idea of Tardiff [12], that each
probabilistic metric space carries a natural probabilistic uniform structure.
Secondly, we can identify a subcategory of the category of probabilistic uni-
form convergence spaces that is isomorphic to the category of probabilistic
metric spaces. In this sense, we can characterize probabilistic metric spaces
entirely by their probabilistic uniform (convergence) structure.

2. Preliminaries

For an ordered set (A,≤) we denote, in case of existence, by
∧

i∈I αi

the infimum and by
∨

i∈I αi the supremum of {αi : i ∈ I} � A. In case of a
two-point set {α, β} we write α ∧ β and α ∨ β, respectively.

For a set S, we denote its power set by P (S) and the set of all filters
F, G, . . . on S by F(S). The set F(S) is ordered by set inclusion and max-
imal elements of F(S) in this order are called ultrafilters. In particular, for
each p ∈ S, the point filter [p] = {A � S : p ∈ A} ∈ F(S) is an ultrafilter. For
F ∈ F(S) and G ∈ F(T ) we denote F×G the filter on S × T generated by
the sets F ×G where F ∈ F and G ∈ G. For Φ,Ψ ∈ F(S × S) we define Φ−1

to be the filter generated by the sets φ−1 = {(p, q) ∈ S × S : (q, p) ∈ φ} and
if for all φ ∈ Φ and ψ ∈ Ψ the sets φ ◦ψ = {(p, q) ∈ S×S : ∃ r ∈ S such that
(p, r) ∈ φ, (r, q) ∈ ψ} are non-empty, we denote the filter generated by these
sets by Φ ◦Ψ.

We assume some familiarity with category theory and refer to the text-
books [1] and [7] for more details. A construct is a category C whose objects
are structured sets (S, ξ) and morphisms are suitable mappings between the
underlying sets. A construct is called topological if it allows initial construc-
tions, i.e. if for every source (fi : S −→ (Si, ξi))i∈I there is a unique structure
ξ on S, such that a mapping g : (T, η) −→ (S, ξ) is a morphism if and only
if for each i ∈ I the composition fi ◦ g : (T, η) −→ (Si, ξi) is a morphism.

A topological construct is called Cartesian closed if for each pair of ob-
jects (S, ξ), (T, η) there is a function space structure on the set C(S, T ) of
morphisms from S to T such that the evaluation mapping ev : C(S, T )× S
−→ T , (f, s) �−→ f(s) is a morphism and that for each object (Z, ζ) and
each morphism f : S × Z −→ T the mapping f ∗ : Z −→ C(S, T ) defined by
f∗(z)(x) = f(x, z) is a morphism [7].

A function ϕ : [0,∞] −→ [0, 1], which is non-decreasing, left-continuous
on (0,∞) and satisfies ϕ(0) = 0 and ϕ(∞) = 1 is called a distance distribu-
tion function [10]. The set of all distance distribution functions is denoted
by ∆+. For example, for each 0 ≤ a < ∞ the functions

εa(x) =

{

0 if 0 ≤ x ≤ a

1 if a < x ≤ ∞
and ε∞(x) =

{

0 if 0 ≤ x < ∞

1 if x = ∞
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Abstract. We develop a theory of probabilistic uniform convergence spaces
based on Tardiff’s neighbourhood systems for probabilistic metric spaces. We
show that the resulting category is topological and Cartesian closed. A subcate-
gory is identified that is isomorphic to the category of probabilistic metric spaces.

1. Introduction

Probabilistic uniform convergence spaces were first defined by Nusser [6].
They form a generalization of both uniform convergence spaces as defined
by Cook and Fischer [2] (and improved by Wyler [13]) and probabilistic uni-
form spaces as defined by Florescu [3]. A probabilistic uniform convergence
structure can loosely be described as a “tower” of uniform convergence struc-
tures, indexed by the unit interval [0,1]. In this paper, we generalize Nusser’s
definition by replacing the “index set” [0, 1] by the set ∆+ of distance dis-
tribution functions [10]. A similar idea was used by Tardiff [12] to generate
a family of neighbourhood structures, and thus a family of topologies, for a
probabilistic metric space. Although the use of a fixed distance distribution
function, a so-called profile function ϕ ∈ ∆∗, allows a probabilistic interpre-
tation (see e.g. [4,10]), Tardiff does not attach such an interpretation to his
neighbourhood systems. Likewise, we also do not see such an interpretation
in our case but use the new index set solely as a technical tool and keep the
name “probabilistic uniform convergence space” because of the similarity of
our spaces with the ones of Nusser and the relation to probabilistic metric
spaces.
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Our generalization solves two problems. Firstly, just like metric spaces
carry in a natural way a uniform structure (and hence also a uniform con-
vergence structure), we can show, using an idea of Tardiff [12], that each
probabilistic metric space carries a natural probabilistic uniform structure.
Secondly, we can identify a subcategory of the category of probabilistic uni-
form convergence spaces that is isomorphic to the category of probabilistic
metric spaces. In this sense, we can characterize probabilistic metric spaces
entirely by their probabilistic uniform (convergence) structure.

2. Preliminaries

For an ordered set (A,≤) we denote, in case of existence, by
∧
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the infimum and by
∨

i∈I αi the supremum of {αi : i ∈ I} � A. In case of a
two-point set {α, β} we write α ∧ β and α ∨ β, respectively.

For a set S, we denote its power set by P (S) and the set of all filters
F, G, . . . on S by F(S). The set F(S) is ordered by set inclusion and max-
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each p ∈ S, the point filter [p] = {A � S : p ∈ A} ∈ F(S) is an ultrafilter. For
F ∈ F(S) and G ∈ F(T ) we denote F×G the filter on S × T generated by
the sets F ×G where F ∈ F and G ∈ G. For Φ,Ψ ∈ F(S × S) we define Φ−1

to be the filter generated by the sets φ−1 = {(p, q) ∈ S × S : (q, p) ∈ φ} and
if for all φ ∈ Φ and ψ ∈ Ψ the sets φ ◦ψ = {(p, q) ∈ S×S : ∃ r ∈ S such that
(p, r) ∈ φ, (r, q) ∈ ψ} are non-empty, we denote the filter generated by these
sets by Φ ◦Ψ.

We assume some familiarity with category theory and refer to the text-
books [1] and [7] for more details. A construct is a category C whose objects
are structured sets (S, ξ) and morphisms are suitable mappings between the
underlying sets. A construct is called topological if it allows initial construc-
tions, i.e. if for every source (fi : S −→ (Si, ξi))i∈I there is a unique structure
ξ on S, such that a mapping g : (T, η) −→ (S, ξ) is a morphism if and only
if for each i ∈ I the composition fi ◦ g : (T, η) −→ (Si, ξi) is a morphism.

A topological construct is called Cartesian closed if for each pair of ob-
jects (S, ξ), (T, η) there is a function space structure on the set C(S, T ) of
morphisms from S to T such that the evaluation mapping ev : C(S, T )× S
−→ T , (f, s) �−→ f(s) is a morphism and that for each object (Z, ζ) and
each morphism f : S × Z −→ T the mapping f ∗ : Z −→ C(S, T ) defined by
f∗(z)(x) = f(x, z) is a morphism [7].

A function ϕ : [0,∞] −→ [0, 1], which is non-decreasing, left-continuous
on (0,∞) and satisfies ϕ(0) = 0 and ϕ(∞) = 1 is called a distance distribu-
tion function [10]. The set of all distance distribution functions is denoted
by ∆+. For example, for each 0 ≤ a < ∞ the functions

εa(x) =

{

0 if 0 ≤ x ≤ a

1 if a < x ≤ ∞
and ε∞(x) =

{

0 if 0 ≤ x < ∞

1 if x = ∞
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are in ∆+. The set ∆+ is ordered pointwise with smallest element ε∞ and
largest element ε0.

Lemma 2.1 [10]. (i) If ϕ,ψ ∈ ∆+, then also ϕ ∧ ψ ∈ ∆+.
(ii) If ϕi ∈ ∆+ for all i ∈ I , then also

∨

i∈I ϕi ∈ ∆+.

Here, ϕ ∧ ψ denotes the pointwise minimum of ϕ and ψ and
∨

i∈I ϕi

denotes the pointwise supremum of the family {ϕi : i ∈ I}.
On the set ∆+, we can define a metric such that weak convergence of

distribution functions is convergence in the metric [11]. We follow the expo-
sition in Tardiff [12] and define the modified Lévy metric on ∆+ by

dL(ϕ,ψ) =
∧

{

ε > 0 : A(ϕ,ψ, ε) and B(ϕ,ψ, ε)
}

where

A(ϕ,ψ, ε) ⇐⇒ ϕ(x− ε)− ε ≤ ψ(x), for x ∈ [0, 1/ε+ ε)

B(ϕ,ψ, ε) ⇐⇒ ϕ(x+ ε) + ε ≥ ψ(x), for x ∈ [0, 1/ε).

A binary operation, τ : ∆+×∆+ −→∆+, which is commutative, associa-
tive, non-decreasing in each place and that satisfies the boundary condition
τ(ϕ, ε0) = ϕ for all ϕ ∈ ∆+, is called a triangle function [10]. The largest tri-
angle function is the pointwise minimum µ(ϕ,ψ) = ϕ∧ψ. It is not difficult to
show that a triangle function that is idempotent, i.e. for which τ(ϕ,ϕ) = ϕ
for all ϕ ∈ ∆+, must be the largest triangle function. For a good survey
on triangle functions see, e.g., [8,9]. A triangle function is called continu-

ous [10,12] if it is a continuous function with respect to the topology and
product topology induced by the modified Lévy metric. A triangle func-
tion is called sup-continuous [10,12], if τ(

∨

i∈I ϕi, ψ) =
∨

i∈I τ(ϕi, ψ) for all
ϕi, ψ ∈ ∆+, (i ∈ I).

A t-norm ∗ : [0, 1]× [0, 1] −→ [0, 1] is a binary operation on [0, 1] which
is associative, commutative, non-decreasing in each argument and which has
1 as the unit. A t-norm is called continuous if it is continuous as a mapping
from [0, 1]× [0, 1] −→ [0, 1]. It is shown e.g. in [10] that for a t-norm ∗, the
mapping τ∗ defined by τ∗(ϕ,ψ)(x) =

∨

u+v=x ϕ(u) ∗ ψ(v) for ϕ,ψ ∈ ∆+ is

a triangle function. For ϕ ∈ ∆+, we denote the right-hand limit ϕ(0+) =
limx→0+ ϕ(x).

Lemma 2.2. For a continuous t-norm ∗ the triangle funtion τ∗(ϕ,ψ)(x) =
∨

u+v=x ϕ(u) ∗ ψ(v) satisfies τ∗(ϕ,ψ)(0+) = ϕ(0+) ∗ ψ(0+).

Proof. Let xn → 0 for n →∞ and xn > 0 for all n. Then τ∗(ϕ,ψ)(xn) =
∨

u+v=xn
ϕ(u) ∗ ψ(v) → τ∗(ϕ,ψ)(0+). Hence there are sequences unk , vnk

such that unk + vnk = xn for all k and ϕ(unk) ∗ ψ(v
n
k ) →

∨

u+v=xn
ϕ(u) ∗ ψ(v).
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Clearly, because 0 ≤ unk , v
n
k ≤ xn then unk , v

n
k → 0 for n → ∞ for all k. Be-

cause ϕ(0) = ψ(0) = 0 we may assume that unn, v
n
n > 0 and hence ϕ(unn)

→ ϕ(0+) and ψ(unn) → ψ(0+). From the continuity of ∗ we conclude ϕ(unn) ∗
ψ(vnn) → ϕ(0+) ∗ ψ(0+). As subsequences of unk and vnk also ϕ(unn) ∗ ψ(v

n
n)

→ τ∗(ϕ,ψ)(0+) and the proof is complete. �

3. Probabilistic uniform convergence spaces

Definition 3.1. A pair (S,Λ) with a set S and Λ = (Λϕ)ϕ∈∆+ , where
Λϕ � F(S × S), is called a probabilistic uniform convergence space if

(PUC1) [(p, p)] ∈ Λϕ for all p ∈ S,ϕ ∈ ∆+;
(PUC2) Φ ∈ Λϕ, Ψ ≥ Φ implies Ψ ∈ Λϕ;
(PUC3) Φ,Ψ ∈ Λϕ implies Φ ∧Ψ ∈ Λϕ;
(PUC4) Φ ∈ Λϕ implies Φ−1 ∈ Λϕ;
(PUC5) Φ ∈ Λϕ and Ψ ∈ Λψ and Φ ◦Ψ ∈ F(S × S) implies Φ ◦Ψ ∈

Λτ(ϕ,ψ);
(PUC6) ψ ≤ ϕ implies Λϕ � Λψ ;
(PUC7) Λε∞ = F(S × S).
A mapping f : (S,Λ) −→ (S′,Λ′) is called uniformly continuous if for

all ϕ ∈ ∆+, Φ ∈ Λϕ implies (f × f)(Φ) ∈ Λ′
ϕ. The category of probabilistic

uniform convergence spaces and uniformly continuous mappings is denoted
by PUCS .

Example 3.2. A Nusser-probabilistic uniform convergence space under

the t-norm ∗ [6] is a pair (S,J ) with a set S and J = (Jα)α∈[0,1] such that
(NPUC1) [(p, p)] ∈ Jα for all p ∈ S,α ∈ [0, 1];
(NPUC2) Φ ∈ Jα, Ψ ≥ Φ implies Ψ ∈ Jα;
(NPUC3) Φ,Ψ ∈ Jα implies Φ ∧Ψ ∈ Jα;
(NPUC4) Φ ∈ Jα implies Φ−1 ∈ Jα;
(NPUC5) Φ ∈ Jα and Ψ ∈ Jβ and Φ◦Ψ ∈ F(S×S) implies Φ◦Ψ ∈ Jα∗β ;
(NPUC6) β ≤ α implies Jα � Jβ ;
(NPUC7) J0 = F(S × S).
A mapping f : (S,J ) −→ (S′,J ′) is called uniformly continuous if for

all α ∈ [0, 1], Φ ∈ Jα implies (f × f)(Φ) ∈ J ′
α. The category of Nusser-

probabilistic uniform convergence spaces and uniformly continuous mappings
is denoted by N -PUCS .

Let now ∗ be a continuous t-norm and consider the triangle func-
tion τ∗. For (S,J ) ∈ |N -PUCS |, we define Φ ∈ ΛJ

ϕ if Φ ∈ Jϕ(0+). With

Lemma 2.2 we see that (S,ΛJ ) ∈ |PUCS |. Also a uniformly continuous map-

ping f : (S,J ) −→ (S′,J ′) is uniformly continuous as a mapping f : (S,ΛJ )

−→ (S′,ΛJ ′). Hence we have an embedding functor A: N -PUCS −→ PUCS

and N -PUCS is isomorphic to a subcategory of PUCS . Given now (S,Λ)
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Lemma 2.2 we see that (S,ΛJ ) ∈ |PUCS |. Also a uniformly continuous map-
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we define Φ ∈ JΛ
α if there is ϕ ∈ ∆+ with ϕ(0+) = α and Φ ∈ Λϕ. Again

we can easily see that this defines a functor B : PUCS −→ N -PUCS . More-
over A ◦B ≥ idPUCS and B ◦A = idN-PUCS . Hence N -PUCS is a reflective
subcategory of PUCS .

Example 3.3. Let (S,F ) be a probabilistic metric space [10], i.e.
F : S × S −→ ∆+ with the properties that for all p, q ∈ S

(PM1) F (p, q) = ε0 ⇐⇒ p = q,
(PM2) F (p, q) = F (q, p),
(PM3) τ(F (p, q), F (q, r)) ≤ F (p, r),

with a triangle function τ . We usually use the index notation Fpq = F (p, q).

A mapping f : (S,F ) −→ (S′, F ′) is non-expansive if Fpq ≤ F ′
f(p)f(q) for

all p, q ∈ S. The category PMET has as objects the probabilistic metric
spaces and as morphisms the non-expansive mappings.

Let ϕ ∈ ∆+ and ε > 0. Define (cf. Tardiff [12])

Nε
ϕ =

�

(p, q) ∈ S × S : Fpq(x+ ε) + ε ≥ ϕ(x) ∀x ∈ [0, 1
ε
)
�

.

Then, clearly D = {(p, p) : p ∈ S} � Nε
ϕ.

Further, let (p, q) ∈ Nϕ,ε1∧ε2 . Then Fpq(x+ ε1 ∧ ε2) + ε1 ∧ ε2 ≥ ϕ(x) for
all x ∈ [0, 1

ε1∧ε2
). Because Fpq ∈ ∆+ we conclude that for all x ∈ [0, 1

ε1
),

[0, 1
ε2
) � [0, 1

ε1∧ε2
) we have

Fpq(x+ ε1) + ε1 ≥ ϕ(x), Fpq(x+ ε2) + ε2 ≥ ϕ(x)

and hence (p, q) ∈ Nε1
ϕ ∩Nε2

ϕ .

From the symmetry, Fpq = Fqp, we further obtain (Nε
ϕ)

−1 = Nε
ϕ.

Let now τ be a continuous triangle function. By a result of Tardiff [12,
Lemma 2.4], for F,G ∈ ∆+ and ε > 0 there is δ > 0 such that

τ(F,G)(x+ ε) + ε ≥ τ(F δ, Gδ)(x) ∀x ∈ [0, 1
ε
).

Here,

F δ(x) =











0 if x ≤ 0

F (x+ δ) + δ ∧ 1 if x ∈ (0, 1
δ
]

1 if x > 1
δ
.

Furthermore, by Tardiff [12, Lemma 2.5], (p, q) ∈ N δ
ϕ iff F δ

pq ≥ ϕ. Let now

(p, q) ∈ N δ
ϕ ◦N δ

ψ . Then there is r ∈ S such that (p, r) ∈ N δ
ϕ and (r, q) ∈ N δ

ψ .

Hence F δ
pr ≥ ϕ and F δ

rq ≥ ψ. It follows that for all x ∈ [0, 1
ε
) we have

τ(ϕ,ψ)(x) ≤ τ(F δ
pr, F

δ
rq)(x) ≤ τ(Fpr, Frq)(x+ ε) + ε ≤ Fpq(x+ ε) + ε.
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Hence (p, q) ∈ Nε
τ(ϕ,ψ).

We can therefore define the ϕ-entourage filter NF
ϕ , which is the filter on

S × S generated by the family {Nε
ϕ : ε > 0}.

Lemma 3.4. Let (S,F ) ∈ |PMET | with a continuous triangle function τ .
Then

(1) NF
ϕ ∈ F(S × S).

(2) NF
ϕ ≤ [D].

(3) NF
ϕ ≤ (NF

ϕ )
−1.

(4) NF
τ(ϕ,ψ) ≤ NF

ϕ ◦ NF
ψ .

(5) ϕ ≤ ψ implies NF
ϕ ≤ NF

ψ .

(6) NF
ε∞ = [S × S].

Lemma 3.5. Let f : (S,F ) −→ (S′, F ′) be non-expansive. Then NF ′

ϕ ≤

(f × f)(NF
ϕ ).

Proof. Let (p, q) ∈ Nε
ϕ. Then for all x ∈ [0, 1

ε
) we have F ′

f(p)f(q)(x+ ε)

+ε ≥ Fpq(x+ ε)+ ε ≥ ϕ(x) and hence (f × f)(p, q) = (f(p), f(q)) ∈ N ′ε
ϕ . �

We define now Φ ∈ ΛF
ϕ if Φ ≥ NF

ϕ . It is then clear that (S,ΛF ) ∈ |PUCS |
In this sense, probabilistic metric spaces carry a natural probabilistic uni-
form convergence structure.

After these examples, we look at the categorical properties of PUCS .

Lemma 3.6. PUCS is a toppological category.

Proof. The proof is routine and we only state the initial structures. Let
(Sj,Λj) ∈ |PUCS | and fj : S −→ Sj be mappings for all j ∈ J . We define,

for Φ ∈ F(S × S) and ϕ ∈ ∆+, the initial structure Λ on S by Φ ∈ Λϕ ⇐⇒

(fj × fj)(Φ) ∈ Λj
ϕ ∀ j ∈ J . �

As a consequence we have subspaces and product spaces in PUCS .

Lemma 3.7. PUCS is Cartesian closed.

Proof. Also this proof is routine and we only state the function space

structures. We define for (S,ΛS), (T,ΛT ) ∈ |PUCS | the set UC(S, T ) =
{f : S −→ T uniformly continuous}. On UC(S, T ) we define the proba-
bilistic uniform convergence structure K by Φ ∈ Kϕ ⇐⇒ ∀ψ ≤ ϕ(F ∈ ΛS

ϕ

⇒ Φ(F) ∈ ΛT
ϕ). Here Φ(F) is the filter generated by the sets φ(F ) =

{(f(p), g(q)) : (f, g) ∈ φ, (p, q) ∈ F}, where φ ∈ Φ and F ∈ F, and

ev : UC(S, T ) × S −→ T, (f, p) �−→ f(p)

is the evaluation mapping. �
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Hence (p, q) ∈ Nε
τ(ϕ,ψ).
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ϕ , which is the filter on

S × S generated by the family {Nε
ϕ : ε > 0}.

Lemma 3.4. Let (S,F ) ∈ |PMET | with a continuous triangle function τ .
Then

(1) NF
ϕ ∈ F(S × S).

(2) NF
ϕ ≤ [D].

(3) NF
ϕ ≤ (NF

ϕ )
−1.

(4) NF
τ(ϕ,ψ) ≤ NF

ϕ ◦ NF
ψ .

(5) ϕ ≤ ψ implies NF
ϕ ≤ NF

ψ .

(6) NF
ε∞ = [S × S].

Lemma 3.5. Let f : (S,F ) −→ (S′, F ′) be non-expansive. Then NF ′

ϕ ≤

(f × f)(NF
ϕ ).

Proof. Let (p, q) ∈ Nε
ϕ. Then for all x ∈ [0, 1

ε
) we have F ′

f(p)f(q)(x+ ε)

+ε ≥ Fpq(x+ ε)+ ε ≥ ϕ(x) and hence (f × f)(p, q) = (f(p), f(q)) ∈ N ′ε
ϕ . �

We define now Φ ∈ ΛF
ϕ if Φ ≥ NF

ϕ . It is then clear that (S,ΛF ) ∈ |PUCS |
In this sense, probabilistic metric spaces carry a natural probabilistic uni-
form convergence structure.

After these examples, we look at the categorical properties of PUCS .

Lemma 3.6. PUCS is a toppological category.

Proof. The proof is routine and we only state the initial structures. Let
(Sj,Λj) ∈ |PUCS | and fj : S −→ Sj be mappings for all j ∈ J . We define,

for Φ ∈ F(S × S) and ϕ ∈ ∆+, the initial structure Λ on S by Φ ∈ Λϕ ⇐⇒

(fj × fj)(Φ) ∈ Λj
ϕ ∀ j ∈ J . �

As a consequence we have subspaces and product spaces in PUCS .

Lemma 3.7. PUCS is Cartesian closed.

Proof. Also this proof is routine and we only state the function space

structures. We define for (S,ΛS), (T,ΛT ) ∈ |PUCS | the set UC(S, T ) =
{f : S −→ T uniformly continuous}. On UC(S, T ) we define the proba-
bilistic uniform convergence structure K by Φ ∈ Kϕ ⇐⇒ ∀ψ ≤ ϕ(F ∈ ΛS

ϕ

⇒ Φ(F) ∈ ΛT
ϕ). Here Φ(F) is the filter generated by the sets φ(F ) =

{(f(p), g(q)) : (f, g) ∈ φ, (p, q) ∈ F}, where φ ∈ Φ and F ∈ F, and

ev : UC(S, T ) × S −→ T, (f, p) �−→ f(p)

is the evaluation mapping. �
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4. The underlying probabilistic convergence structure

Definition 4.1 [5]. Let S be a set. A family of mappings c = (cϕ : F(S)
−→ P (S))ϕ∈∆+ which satisfies the axioms

(PC1) p ∈ cϕ([p]) for all p ∈ S,ϕ ∈ ∆+,
(PC2) cϕ(F) � cϕ(G) whenever F ≤ G,
(PC3) cψ(F) � cϕ(F) whenever ϕ ≤ ψ,
(PC4) p ∈ cε∞(F) for all p ∈ S,F ∈ F(S),

is called a probabilistic convergence structure on S and the pair (S, c) is
called a probabilistic convergence space. A mapping f : (S, c) −→ (S′, c′) is
called continuous if f(p) ∈ c′ϕ(f(F)) whenever p ∈ cϕ(F) for every p ∈ S and
for every F ∈ F(S). The category of probabilistic convergence spaces with
continuous mappings as morphisms is denoted by PCONV .

For (S,F ) ∈ |PMET |, N ∈ NF
ϕ and p ∈ S we define N(p) = {q ∈ S : (p, q)

∈ N} and Nϕ(p) as the filter generated by the family {N(p) : N ∈ NF
ϕ}. Then

Nϕ(p) is the ϕ-neighbourhood filter of p, Np
ϕ in Tardiff [12]. In fact, we have

(p, q) ∈ Nε
ϕ iff q ∈ Nε

ϕ(p) iff Fpq(x+ ε) + ε ≥ ϕ(x) ∀x ∈ [0, 1
ε
) iff q ∈ Np,ε

ϕ .

Lemma 4.2. Let (S,F ) ∈ |PMET | and p ∈ S and F ∈ F(S). Then F

≥ N
p
ϕ iff F× [p] ≥ Nϕ.

Proof. We have F× [p] ≥ Nϕ iff for all F ∈ F we have that F × {p}
∈ Nϕ. This is equivalent to that for all F ∈ F there is ε > 0 such that Nε

ϕ

� F ×{p}. The latter means that from (p, q) ∈ Nε
ϕ it follows that q ∈ F , i.e.

that from q ∈ Nε
ϕ(p) it follows that q ∈ F . Hence F× [p] ≥ Nϕ is equivalent

to that for all F ∈ F there is ε > 0 such that Nε
ϕ(p) � F , i.e. to F ≥ N

p
ϕ. �

We therefore define, for (S,Λ) ∈ |PUCS |, the probabilistic convergence

structure cΛ by p ∈ cΛϕ(F) ⇐⇒ F× [p] ∈ Λϕ.

Lemma 4.3. Let (S,Λ) ∈ |PUCS |. Then (S, cΛ) ∈ |PCONV | and satis-
fies axiom
(PLS5) for all ϕ ∈ ∆+ and all F,G ∈ F(S), cΛϕ(F) ∩ cΛϕ(G) � cΛϕ(F ∧G).

Lemma 4.4. Let (S,Λ), (T,M) ∈ |PUCS | and let f : (S,Λ) −→ (T,M)

be uniformly continuous. Then f : (S, cΛ) −→ (T, cM ) is continuous.

Proof. If p ∈ cΛϕ(F), then F× [p] ∈ Λϕ. The uniform continuity of f

then implies f(F)× [f(p)] = (f × f)(F× [p]) ∈ Mϕ, i.e. f(p) ∈ cMϕ (f(F)). �

Hence we can define a functor

C :











PUCS −→ PCONV

(S,Λ) �−→ (S, cΛ)

f �−→ f.
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Lemma 4.5. The functor C preserves initial constructions: If (fj:

S −→ (Sj,Λj))j∈J is a source in PUCS and Λ the initial structure on S, then

cΛ is the initial structure with respect to the source (fj : S −→ (Sj, cΛ
j))j∈J .

Proof. We have p ∈ cΛϕ(F) iff F× [p] ∈ Λϕ. This is equivalent to fj(F)

× [fj(p)] = (fj × fj)(F× [p]) ∈ Λj
ϕ for all j ∈ J , i.e. to fj(p) ∈ cΛ

j

ϕ (fj(F)) for
all j ∈ J . �

The probabibilistic convergence space underlying a probabilistic uniform
convergence space has some strong properties. For a triangle function τ , a
probabilistic convergence space (S, c) is called τ -transitive [5] if for all p, q, r
∈ S, p ∈ cτ(ϕ,ψ)([r]) whenever p ∈ cϕ([q]) and q ∈ cψ([r]).

Lemma 4.6. If (S,Λ) ∈ |PUCS |, then (S, cΛ) is τ -transitive.

Proof. If p ∈ cΛϕ([q]) and q ∈ cΛψ([r]), then [q]× [p] ∈ Λϕ and [r]× [q]

∈ Λψ . Hence [r]× [p] = ([r]× [q]) ◦ ([q]× [p]) ∈ Λτ(ϕ,ψ), i.e. p ∈ cΛ
τ(ϕ,ψ)([r]).

�

A probabilistic convergence space (S, c) is called symmetric [5] if for all
p, q ∈ S, p ∈ cϕ([q]) whenever q ∈ cϕ([p]).

Lemma 4.7. If (S,Λ) ∈ |PUCS |, then (S, cΛ) is symmetric.

Proof. This follows from (PUC3) and ([p]× [q])−1 = [q]× [p]. �

A probabilistic convergence space (S, c) is called a T1-space [5] if p = q
whenever

∨

{ϕ : p ∈ cϕ([q])} = ε0. It is called a T2-space if p = q whenever
∨

{ϕ : p ∈ cϕ(F)} = ε0 =
∨

{ψ : q ∈ cψ(F)}. Clearly, every T2-space is always
a T1-space.

Lemma 4.8. If (S,Λ) ∈ |PUCS | and the triangle function τ is sup-

continuous, then (S, cΛ) is a T1-space if and only if it is a T2-space.

Proof. Let F ∈ F(S) and p, q ∈ S. If p ∈ cΛϕ(F) and q ∈ cΛψ(F), then

F× [p] ∈ Λϕ and F× [q] ∈ Λψ . By symmetry then [q]×F = (F× [q])−1 ∈ Λψ

and hence

[q]× [p] = ([q]× F) ◦ (F× [p]) ∈ Λτ(ϕ,ψ),

i.e. q ∈ cΛ
τ(ϕ,ψ)([p]). So if

∨

p∈cΛϕ(F)
ϕ = ε0 =

∨

q∈cΛψ(F)
ψ, then

ε0 = τ(ε0, ε0) =
∨

p∈cΛϕ(F),q∈c
Λ
ψ(F)

τ(ϕ,ψ) ≤
∨

q∈cΛ
τ(ϕ,ψ)([p])

τ(ϕ,ψ) ≤
∨

q∈cΛη ([p])

η,

and hence p = q, because (S, cΛ) is a T1-space. �
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Lemma 4.5. The functor C preserves initial constructions: If (fj:

S −→ (Sj,Λj))j∈J is a source in PUCS and Λ the initial structure on S, then

cΛ is the initial structure with respect to the source (fj : S −→ (Sj, cΛ
j))j∈J .

Proof. We have p ∈ cΛϕ(F) iff F× [p] ∈ Λϕ. This is equivalent to fj(F)

× [fj(p)] = (fj × fj)(F× [p]) ∈ Λj
ϕ for all j ∈ J , i.e. to fj(p) ∈ cΛ

j

ϕ (fj(F)) for
all j ∈ J . �

The probabibilistic convergence space underlying a probabilistic uniform
convergence space has some strong properties. For a triangle function τ , a
probabilistic convergence space (S, c) is called τ -transitive [5] if for all p, q, r
∈ S, p ∈ cτ(ϕ,ψ)([r]) whenever p ∈ cϕ([q]) and q ∈ cψ([r]).

Lemma 4.6. If (S,Λ) ∈ |PUCS |, then (S, cΛ) is τ -transitive.

Proof. If p ∈ cΛϕ([q]) and q ∈ cΛψ([r]), then [q]× [p] ∈ Λϕ and [r]× [q]

∈ Λψ . Hence [r]× [p] = ([r]× [q]) ◦ ([q]× [p]) ∈ Λτ(ϕ,ψ), i.e. p ∈ cΛ
τ(ϕ,ψ)([r]).

�

A probabilistic convergence space (S, c) is called symmetric [5] if for all
p, q ∈ S, p ∈ cϕ([q]) whenever q ∈ cϕ([p]).

Lemma 4.7. If (S,Λ) ∈ |PUCS |, then (S, cΛ) is symmetric.

Proof. This follows from (PUC3) and ([p]× [q])−1 = [q]× [p]. �

A probabilistic convergence space (S, c) is called a T1-space [5] if p = q
whenever

∨

{ϕ : p ∈ cϕ([q])} = ε0. It is called a T2-space if p = q whenever
∨

{ϕ : p ∈ cϕ(F)} = ε0 =
∨

{ψ : q ∈ cψ(F)}. Clearly, every T2-space is always
a T1-space.

Lemma 4.8. If (S,Λ) ∈ |PUCS | and the triangle function τ is sup-

continuous, then (S, cΛ) is a T1-space if and only if it is a T2-space.

Proof. Let F ∈ F(S) and p, q ∈ S. If p ∈ cΛϕ(F) and q ∈ cΛψ(F), then

F× [p] ∈ Λϕ and F× [q] ∈ Λψ . By symmetry then [q]×F = (F× [q])−1 ∈ Λψ

and hence

[q]× [p] = ([q]× F) ◦ (F× [p]) ∈ Λτ(ϕ,ψ),

i.e. q ∈ cΛ
τ(ϕ,ψ)([p]). So if

∨

p∈cΛϕ(F)
ϕ = ε0 =

∨

q∈cΛψ(F)
ψ, then

ε0 = τ(ε0, ε0) =
∨

p∈cΛϕ(F),q∈c
Λ
ψ(F)

τ(ϕ,ψ) ≤
∨

q∈cΛ
τ(ϕ,ψ)([p])

τ(ϕ,ψ) ≤
∨

q∈cΛη ([p])

η,

and hence p = q, because (S, cΛ) is a T1-space. �
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5. Probabilistic uniform spaces and principal probabilistic

uniform convergence spaces

Motivated by Lemma 3.4 we give the following definition.

Definition 5.1. A pair (S,N) with N = (Nϕ)ϕ∈∆+ is called a probabilis-

tic uniform space (under the triangle function τ ) if for all ϕ,ψ ∈ ∆+

(PU1) Nϕ ∈ F(S × S).
(PU2) Nϕ ≤ [D].
(PU3) Nϕ ≤ (Nϕ)

−1.
(PU4) Nτ(ϕ,ψ) ≤ Nϕ ◦ Nψ .
(PU5) ϕ ≤ ψ implies Nϕ ≤ Nψ .
(PU6) Nε∞ = [S × S].
A mapping f : (S,N) −→ (S′,N′) is called uniformly continuous if N

′
ϕ

≤ (f × f)(Nϕ) for all ϕ ∈ ∆+. The category with objects the probabilistic
uniform spaces and uniformly continuous mappings as morphisms is denoted
by PUNIF .

Let (S,N) ∈ |PUNIF |. If we define Φ ∈ ΛN
ϕ if Φ ≥ Nϕ, then (S,ΛN)

∈ |PUCS |. It is also clear that uniformly continuous mappings between
probabilistic uniform spaces are uniformly continuous as mappings between
the corresponding probabilistic uniform convergence spaces. Hence PUNIF

is isomorphic to a subcategory of PUCS .

Example 5.2. Let (S,F ) ∈ |PMET |. Then (S,NF ) ∈ |PUNIF |.

Example 5.3 (Florescu [3]). A Florescu-probabilistic uniform space

(S,U) with U = (Uα)α∈[0,1] (under the t-norm ∗) satisfies the axioms
(FPU1) Uα ∈ F(S × S) for all α ∈ [0, 1].
(FPU2) Uα ≤ [D] for all α ∈ [0, 1].
(FPU3) Uα ≤ (Uα)

−1.
(FPU4) Uα∗β ≤ Uα ◦ Uβ .
(FPU5) α ≤ β implies Uα ≤ Uβ .
(FPU6) U0 = [S × S].
Florescu [3] does not define morphisms, but we can define them by

f : (S,U) −→ (S′,U′) is uniformly continuous if U′
α ≤ (f × f)(Uα) for all α

∈ [0, 1]. We denote the resulting category then by F -PUNIF .
For a Florescu-probabilistic uniform space (S,U) we define a probabilis-

tic uniform space by N
U
ϕ = Uα if ϕ(0+) = α. If the t-norm ∗ is continuous,

it follows with Lemma 2.2 that (S,NU) is a probabilistic uniform space un-
der the triangle function τ∗. Also, a uniformly continuous function f : (S,U)

→ (S′,U′) is uniformly continuous as mapping f : (S,NU) → (S′,NU′

). Hence
the category of Florescu-probabilistic uniform spaces F -PUNIF is a subcat-
egory of PUNIF .
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Example 5.4. If (S,U) is a uniform space in the sense of Bourbaki and

if we define for ϕ ∈ ∆+, NU
ϕ = U , then (S,NU ) is a probabilistic uniform

space. Clearly, uniform continuity is also preserved and hence UNIF is a
subcategory of PUNIF .

Definition 5.5. Let (S,Λ) ∈ |PUCS |. Then (S,Λ) is called a principal

probabilistic uniform convergence space if Φ ∈ Λϕ whenever Φ ≥ NΛ
ϕ , where

NΛ
ϕ =

�

Ψ∈Λϕ
Ψ. The subcategory of PUCS consisting of the principal prob-

abilistic uniform convergence spaces is denoted by PPUCS .

Clearly, for (S,F ) ∈ |PMET |, (S,ΛF ) is principal and we have NΛF

ϕ =
�

Ψ∈ΛF
ϕ
Ψ =

�

Ψ≥NF
ϕ
Ψ = N

F
ϕ .

Lemma 5.6. Let (S,Λ) ∈ |PPUCS |. Then (S,NΛ) ∈ |PUNIF |.

Proof. Clearly (PU1) is true. For (PU2) we note that for all p ∈ S we
have [(p, p)] ∈ Λϕ and hence [(p, p)] ≥ NΛ

ϕ. It follows that [D] =
�

p∈S[(p, p)]

≥ N
Λ
ϕ . (PU3), (PU4) and (PU5) follow from the fact that NΛ

ϕ ∈ Λϕ. (PU6)
finally follows from [S × S] ∈ Λε∞ . �

Lemma 5.7. Let (S,Λ), (S′,Λ′) ∈ |PPUCS | and let f : (S,Λ) −→ (S′,Λ′)

be uniformly continuous. Then f : (S,NΛ) −→ (S′,NΛ′) is uniformly contin-

uous.

Proof. We have

(f × f)(NΛ
ϕ) = (f × f)(

�

Φ∈Λϕ

Φ) =
�

Φ∈Λϕ

(f × f)(Φ)

≥
�

(f×f)(Φ)∈Λ′

ϕ

(f × f)(Φ) ≥ N
Λ′

ϕ . �

Hence we can define two functors:

A :











PPUCS −→ PUNIF

(S,Λ) �−→ (S,NΛ)

f �−→ f

and B :











PUNIF −→ PPUCS

(S,N) �−→ (S,ΛN)

f �−→ f.

Because N
(ΛN)
ϕ =

�

Φ∈ΛN
ϕ
Φ =

�

Φ≥Nϕ
Φ = Nϕ and Φ ∈ Λ

(NΛ)
ϕ ⇐⇒ Φ ≥ NΛ

ϕ

⇐⇒ Φ ∈ Λϕ (because (X,Λ) is principal), these functors are isomorphism
functors.

Theorem 5.8. The categories PUNIF and PPUCS are isomorphic.
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Example 5.4. If (S,U) is a uniform space in the sense of Bourbaki and

if we define for ϕ ∈ ∆+, NU
ϕ = U , then (S,NU ) is a probabilistic uniform

space. Clearly, uniform continuity is also preserved and hence UNIF is a
subcategory of PUNIF .

Definition 5.5. Let (S,Λ) ∈ |PUCS |. Then (S,Λ) is called a principal

probabilistic uniform convergence space if Φ ∈ Λϕ whenever Φ ≥ NΛ
ϕ , where

NΛ
ϕ =

�

Ψ∈Λϕ
Ψ. The subcategory of PUCS consisting of the principal prob-

abilistic uniform convergence spaces is denoted by PPUCS .

Clearly, for (S,F ) ∈ |PMET |, (S,ΛF ) is principal and we have NΛF

ϕ =
�

Ψ∈ΛF
ϕ
Ψ =

�

Ψ≥NF
ϕ
Ψ = N

F
ϕ .

Lemma 5.6. Let (S,Λ) ∈ |PPUCS |. Then (S,NΛ) ∈ |PUNIF |.

Proof. Clearly (PU1) is true. For (PU2) we note that for all p ∈ S we
have [(p, p)] ∈ Λϕ and hence [(p, p)] ≥ NΛ

ϕ. It follows that [D] =
�

p∈S[(p, p)]

≥ N
Λ
ϕ . (PU3), (PU4) and (PU5) follow from the fact that NΛ

ϕ ∈ Λϕ. (PU6)
finally follows from [S × S] ∈ Λε∞ . �

Lemma 5.7. Let (S,Λ), (S′,Λ′) ∈ |PPUCS | and let f : (S,Λ) −→ (S′,Λ′)

be uniformly continuous. Then f : (S,NΛ) −→ (S′,NΛ′) is uniformly contin-

uous.

Proof. We have

(f × f)(NΛ
ϕ) = (f × f)(

�

Φ∈Λϕ

Φ) =
�

Φ∈Λϕ

(f × f)(Φ)

≥
�

(f×f)(Φ)∈Λ′

ϕ

(f × f)(Φ) ≥ N
Λ′

ϕ . �

Hence we can define two functors:

A :











PPUCS −→ PUNIF

(S,Λ) �−→ (S,NΛ)

f �−→ f

and B :











PUNIF −→ PPUCS

(S,N) �−→ (S,ΛN)

f �−→ f.

Because N
(ΛN)
ϕ =

�

Φ∈ΛN
ϕ
Φ =

�

Φ≥Nϕ
Φ = Nϕ and Φ ∈ Λ

(NΛ)
ϕ ⇐⇒ Φ ≥ NΛ

ϕ

⇐⇒ Φ ∈ Λϕ (because (X,Λ) is principal), these functors are isomorphism
functors.

Theorem 5.8. The categories PUNIF and PPUCS are isomorphic.
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The embedding of PUNIF into PUCS is very nice if we consider the
largest triangle function µ(ϕ,ψ) = ϕ ∧ ψ.

Lemma 5.9. If the triangle function is idempotent, then PPUCS is a
reflective subcategory of PUCS .

Proof. For (S,Λ) ∈ |PUCS | and for ϕ ∈ ∆+ we define the ϕ-entourage
filter NΛ

ϕ =
�

Φ∈Λϕ
Φ. Then NΛ

ϕ ≤ [D], NΛ
ϕ ≤ (NΛ

ϕ)
−1 and ϕ ≤ ψ implies NΛ

ϕ

≤ NΛ
ψ . We define J Λ

ϕ = {Φ ∈ F(S × S) : Φ ≤ NΛ
ϕ, Φ ≤ Φ ◦Φ}. Then [S × S]

∈ J Λ
ϕ , i.e. J Λ

ϕ �= ∅ and N
∗
ϕ =

�

Φ∈J Λ
ϕ
Φ ∈ F(S×S). It is not difficult to show

that N∗
ϕ ∈ J Λ

ϕ and hence N∗
ϕ ≤ N∗

ϕ ◦ N∗
ϕ. Furthermore, N∗

ϕ ≤ NΛ
ϕ ≤ [D] and

also N
∗
ϕ = (N∗

ϕ)
−1. We define now Φ ∈ Λ∗

ϕ if Φ ≥ N
∗
ϕ. Clearly then (S,Λ∗)

∈ |PPUCS | and for Φ ∈ Λϕ we have Φ ≥ NΛ
ϕ ≥ N∗

ϕ, i.e. Φ ∈ Λ∗
ϕ. Hence, the

identity mapping idS : (S,Λ) −→ (S,Λ∗) is uniformly continuous. If f : (S,Λ)
−→ (T,M) is uniformly continuous in PUCS , then f : (S,Λ∗) −→ (T,M∗)
is also uniformly continuous as a mapping in PPUCS . In fact, let Φ ≤ NM

ϕ

such that Φ ≤ Φ ◦Φ. Then Φ ≤ (f × f)(NΛ
ϕ) and hence (f × f)−1(Φ) exists

and (f × f)−1(Φ) ≤ NΛ
ϕ . As

(f × f)−1(Φ) ≤ (f × f)−1(Φ ◦ Φ) ≤ (f × f)−1(Φ) ◦ (f × f)−1(Φ)

we see that (f × f)−1(Φ) ∈ J Λ
ϕ and therefore (f × f)−1(Φ) ≤ N∗

ϕ. We con-

clude from this that Φ ≤ (f × f)(N∗
ϕ) and because Φ ∈ JM

ϕ was arbitrary,

we conclude (f × f)(N∗
ϕ) ≥ N

′∗
ϕ . Hence we can define a functor

K :











PUCS −→ PPUCS

(S,Λ) �−→ (S,Λ∗)

f �−→ f.

If we denote the embedding functor E : PPUCS −→ PUCS , then for (S,Λ)
∈ |PPUCS | we have Λϕ = Λ∗

ϕ for all ϕ ∈ ∆+. This follows from the idempo-

tency of τ as in this case NΛ
ϕ ∈ J Λ

ϕ . Hence K ◦ E = idPPUCS . We have seen
above that E ◦K ≥ idPUCS and hence the claim follows. �

We can state the last result in the following form:

Theorem 5.10. If the triangle function is the minimum on ∆+ then
PUNIF is isomorphic to a reflective subcategory of PUCS .

6. A subcategory of PUCS which is isomorphic to PMET

In this section we identify a subcategory of PUCS which is isomorphic
to PMET . To this end we note the following result.
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Lemma 6.1 (Tardiff [12]). Let (S,F ) ∈ |PMET | and let ϕ ∈ ∆+ and p, q
∈ S. Then [(p, q)] ≥ NF

ϕ if and only if Fpq ≥ ϕ.

Lemma 6.2. Let (S,F ) ∈ |PMET | with a continuous triangle function τ .

Then (S,ΛF ) is principal and a T1-space.

Proof. By definition, (S,ΛF ) is principal. In order to show that it is a
T1-space, we apply the Lemma above. If

Fpq =
�

{ϕ ∈ ∆+ : Fpq ≥ ϕ} =
�

{ϕ ∈ ∆+ : [(p, q)] ≥ N
F
ϕ}

=
�

{ϕ ∈ ∆+ : p ∈ cΛ
F

ϕ ([q])} = ε0

then, by (PM1), we have p = q. �

The following axiom will be central. We say that (S,Λ) ∈ |PUCS | satis-
fies the axiom (UPM) if for all ultrafilters Φ ∈ F(S × S) and all ϕ ∈ ∆+

Φ ∈ Λϕ ⇐⇒ ∀φ ∈ Φ, ε > 0 ∃ (p, q) ∈ φ

such that
�

ψ:[(p,q)]∈Λψ

ψ(x+ ε) + ε ≥ ϕ(x) ∀x ∈ [0, 1
ε
).

Lemma 6.3. Let (S,F ) ∈ |PMET | and the triangle function τ be con-
tinuous. Then (S,ΛF ) satisfies (UPM).

Proof. Let Φ ∈ F(S × S) be an ultrafilter. Let first Φ ∈ ΛF
ϕ . Then

Φ ≥ NF
ϕ and hence for φ ∈ Φ and ε > 0 we have φ ∩Nε

ϕ �= ∅. Thus there is
(p, q) ∈ φ such that

�

ψ:[(p,q)]∈ΛF
ψ

ψ(x+ ε) + ε = Fpq(x+ ε) + ε ≥ ϕ(x) ∀x ∈ [0, 1
ε
).

Conversely, let for all φ ∈ Φ and all ε > 0 there exist (p, q) ∈ φ such that
�

ψ:[(p,q)]∈ΛF
ψ
ψ(x+ε)+ε ≥ ϕ(x) for all x ∈ [0, 1

ε
). By Lemma 6.1 we conclude

that Fpq(x+ ε)+ ε ≥ ϕ(x) for all x ∈ [0, 1
ε
). Hence Φ∨NF

ϕ exists and because

Φ is an ultrafilter we conclude Φ ≥ FF
ϕ . �

We denote the subcategory of PUCS with objects the principal T1-spaces
that satisfy the axiom (UPM) by PM -PUCS . From the results above and
the results in Sections 4 and 5, we see that for a continuous triangle function
we can define the following functor.

D :











PMET �−→ PM -PUCS

(S,F ) �−→ (S,ΛF )

f �−→ f.
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Let now (S,Λ) ∈ |PUCS |. We define for p, q ∈ S the following distance
distribution function.

FΛ
pq =

�

ϕ:[(p.q)]∈Λϕ

ϕ.

Lemma 6.4. Let (S,Λ) ∈ |PUCS | be a T1-space and let the triangle

function τ be sup-continuous. Then (S,FΛ) is a probabilistic metric space.

Proof. (PM1) follows, because [(p, q)] = [p]× [q], directly from the T1-
property, (PM2) follows from [(p, q)]−1 = [(q, p)] and (PUC4). For (PM3)
we use the sup-continuity and proceed as follows. We have

τ(FΛ
pq, F

Λ
qr)=

�

ϕ:[(p,q)]∈Λϕ,ψ:[(q,r)]∈Λψ

τ(ϕ,ψ) ≤
�

ψ,ϕ:[(p,r)]∈Λτ(ϕ,ψ)

τ(ϕ,ψ) ≤ FΛ
pr. �

Lemma 6.5. Let (S,Λ), (T,M) ∈ |PUCS | and let f : S −→ T be uni-

formly continuous. Then f : (S,FΛ) −→ (T,FM) is non-expansive.

Proof. Let p, q ∈ S. Then, because (f × f)([(p, q)]) = [(f(p), f(q))] we
conclude, using the uniform continuity of f ,

FΛ
pq =

�

ϕ:[(p,q)]∈Λϕ

ϕ ≤
�

ϕ:[(f(p),f(q))]∈Mϕ

ϕ = FM
f(p),f(q). �

Hence, if τ is a sup-continuous triangle function, we can define a functor

E :











PM -PUCS �−→ PMET

(S,Λ) �−→ (S,FΛ)

f �−→ f.

We will show that D and E are isomorphism functors.

Lemma 6.6. Let τ be a continuous and sup-continuous triangle function.
Then E ◦D = idPMET .

Proof. Let (S,F ) ∈ |PMET | and p, q ∈ S. Then, using Lemma 6.1,

F (ΛF )
pq =

�

ϕ:[(p,q)]∈ΛF
ϕ

ϕ =
�

ϕ:[(p,q)]≥NF
ϕ

ϕ =
�

ϕ:Fpq≥ϕ

ϕ = Fpq.

Hence D(C((S,F ))) = (S,FΛF

) = (S,F ). �

Lemma 6.7. Let τ be a continuous and sup-continuous triangle function.
Then D ◦ E = idPM -PUCS .
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Proof. Let (S,Λ) ∈ |PM -PUCS | and let ϕ ∈ ∆+ and Φ ∈ F(S × S) be
an ultrafilter. Let first Φ ∈ Λϕ. If φ ∈ Φ and ε > 0, then, by the axiom
(UPM), there is (p, q) ∈ φ such that

FΛ
pq(x+ ε) + ε =

∨

ψ:[(p,q)]∈Λψ

ψ(x+ ε) + ε ≥ ϕ(x) ∀x ∈ [0, 1
ε
).

Hence (p, q) ∈ NFΛ

ϕ . Therefore Φ∨NF
ϕ exists and because Φ is an ultrafilter,

we conclude Φ ≥ N
FΛ

ϕ , i.e. Φ ∈ ΛFΛ

ϕ .

Conversely, if Φ ∈ ΛFΛ

ϕ , then Φ ≥ NFΛ

ϕ . Hence for all φ ∈ Φ and all Nε
ϕ

∈ NFΛ

ϕ we have φ ∩Nε
ϕ �= ∅. Hence there is (p, q) ∈ φ such that

∨

ψ:[(p,q)]∈Λψ

ψ(x+ ε) + ε = FΛ
pq(x+ ε) + ε ≥ ϕ(x) ∀x ∈ [0, 1

ε
).

From the axiom (UPM) we conclude that Φ ∈ Λϕ. Because both (S,Λ) and

(S,ΛFΛ) are principal and every filter is the intersection of its finer ultrafil-

ters, we obtain (S,Λ) = (S,ΛFΛ). �

Theorem 6.8. Let τ be a continuous and sup-continuous triangle func-

tion. Then PMET and PM -PUCS are isomorphic categories.
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