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namely, that of uniform partial frames. We have found that partial frames
have served to throw into relief some features of pointfree topology that are
specific to certain cases and some that obtain more generally. In [9] we in-
vestigated some aspects of the rôle of countability and the importance of
σ-frames in frame theory. On the other hand, we see in the current paper
that the theory of completeness and completions is quite general and well-
behaved and does not depend heavily on countability conditions. This is of
interest, since the construction of a completion for a uniform σ-frame in [23]
depends on a crucial countability argument of Ginsburg and Isbell ([10]).

A partial frame is a meet-semilattice in which certain joins exist and
finite meets distribute over these joins. We specify these joins by means of
a so-called selection function (see Definition 2.1). The following are well-
known special cases:

1. In the case that all joins are specified, we have the notion of a frame.
2. In the case that countable joins are specified, we have the notion of

a σ-frame.
3. In the case that joins of subsets with cardinality less than some reg-

ular cardinal κ are specified, we have the notion of a κ-frame.
Any selection function must satisfy certain axioms to produce a workable

theory; the axioms we use here were all introduced in [9]. While the choice of
these is not obvious, it is the mark of a good axiom, we feel, that it appears
inevitable in retrospect (with apologies to Robert Louis Stevenson).

In [8] we use covers to describe uniform structures on partial frames;
uniform frames and uniform σ-frames arise as special cases. In this paper
we develop the notion of completeness for a uniform partial frame, using
the frame-theoretic version of the well-known fact that a complete uniform
space is isomorphic to any uniform space in which it is densely embedded.

In constructing a completion, we make substantial use of the functor
which takes S-ideals and the functor which takes S-cozero elements, as well
as the category equivalence that these functors induce. (See [9] for details.)
Our strategy allows the transfer of important properties concerning the com-
pletion from the category of uniform frames to that of uniform partial frames.

As expected, a uniform partial frame is compact if and only if it is com-
plete and totally bounded. We conclude by providing two constructions of
the Samuel compactification. One involves the completion of the totally
bounded coreflection; the other uses the functors mentioned above to trans-
fer the corresponding compactification from uniform frames.

2. Background

See [19] and [12] as references for frame theory; see [3], [16], [20] and [22]
for σ-frames; see [15] for κ-frames; see [14] and [1] for general category the-
ory. We make substantial use of completions of uniform frames; see for
instance [5], [2], [19], as well as [11], [13].
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namely, that of uniform partial frames. We have found that partial frames
have served to throw into relief some features of pointfree topology that are
specific to certain cases and some that obtain more generally. In [9] we in-
vestigated some aspects of the rôle of countability and the importance of
σ-frames in frame theory. On the other hand, we see in the current paper
that the theory of completeness and completions is quite general and well-
behaved and does not depend heavily on countability conditions. This is of
interest, since the construction of a completion for a uniform σ-frame in [23]
depends on a crucial countability argument of Ginsburg and Isbell ([10]).

A partial frame is a meet-semilattice in which certain joins exist and
finite meets distribute over these joins. We specify these joins by means of
a so-called selection function (see Definition 2.1). The following are well-
known special cases:

1. In the case that all joins are specified, we have the notion of a frame.
2. In the case that countable joins are specified, we have the notion of

a σ-frame.
3. In the case that joins of subsets with cardinality less than some reg-

ular cardinal κ are specified, we have the notion of a κ-frame.
Any selection function must satisfy certain axioms to produce a workable

theory; the axioms we use here were all introduced in [9]. While the choice of
these is not obvious, it is the mark of a good axiom, we feel, that it appears
inevitable in retrospect (with apologies to Robert Louis Stevenson).

In [8] we use covers to describe uniform structures on partial frames;
uniform frames and uniform σ-frames arise as special cases. In this paper
we develop the notion of completeness for a uniform partial frame, using
the frame-theoretic version of the well-known fact that a complete uniform
space is isomorphic to any uniform space in which it is densely embedded.

In constructing a completion, we make substantial use of the functor
which takes S-ideals and the functor which takes S-cozero elements, as well
as the category equivalence that these functors induce. (See [9] for details.)
Our strategy allows the transfer of important properties concerning the com-
pletion from the category of uniform frames to that of uniform partial frames.

As expected, a uniform partial frame is compact if and only if it is com-
plete and totally bounded. We conclude by providing two constructions of
the Samuel compactification. One involves the completion of the totally
bounded coreflection; the other uses the functors mentioned above to trans-
fer the corresponding compactification from uniform frames.

2. Background

See [19] and [12] as references for frame theory; see [3], [16], [20] and [22]
for σ-frames; see [15] for κ-frames; see [14] and [1] for general category the-
ory. We make substantial use of completions of uniform frames; see for
instance [5], [2], [19], as well as [11], [13].
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The specific topic of partial frames is relatively new. In [8] we intro-
duce the axiom system that we use for S-frames (our technical term for
partial frames), and discuss regularity, normality and compactness as well
as provide a method for constructing certain coreflections in the category of
uniform S-frames. In [9] we discuss the functors HS and CozS for partial
frames which will appear again in this paper, but with uniform structure
added. Other approaches to partial frames can be found in [26], [25], [18]
and [24]. For a discussion of how our work relates to these, see [8].

A meet-semilattice A is a partially ordered set in which all finite subsets
have a meet. In particular, we regard the empty set as finite, so a meet-
semilattice comes equipped with a top element, which we denote by 1. We
also insist that a meet-semilattice should have a bottom element, which we
denote by 0. (Technically, one might wish to refer to these as bounded meet-
semilattices.) A function f : A → B is a meet-semilattice map if it preserves
finite meets, as well as the top and the bottom element. D is a downset
of A if x � y ∈ D implies that x ∈ D. We use the notation ↓a = {x ∈ A :
x � a} for principal downsets and ↓C =

∪
{↓c : c ∈ C} for any subset C of A.

Similarly ↑ a = {x ∈ A : x � a}.

Definition 2.1. A selection function is a rule, which we usually denote
by S , which assigns to each meet-semilattice A a collection SA of subsets
of A, such that the following conditions hold (for all meet-semilattices A
and B):
(S1) For all x ∈ A, {x} ∈ SA.
(S2) If G,H ∈ SA then G ∧H = {x ∧ y : x ∈ G, y ∈ H} ∈ SA.
(S3) If G ∈ SA and, for all x ∈ G, x =

∨
Hx for some Hx ∈ SA, then∪

x∈GHx ∈ SA.
(S4) For any meet-semilattice map f : A → B,

S
(
f [A]

)
=

{
f [G] : G ∈ SA

}
� SB.

Once a selection function, S , has been fixed, we speak informally of the
members of SA as the designated subsets of A.

Definition 2.2. Let S be a selection function.
1. An S-frame, L, is a meet-semilattice that satisfies the following two

conditions:
(a) For all G ∈ SL, G has a join in L (i.e.

∨
G exists).

(b) For all x ∈ L, for all G ∈ SL, x ∧
∨
G =

∨
y∈G x ∧ y.

2. Let L and M be S-frames. An S-frame map f : L → M is a meet-
semilattice map such that, for all G ∈ SL, f

( ∨
G = big) =

∨
y∈G f(y).

3. SFrm is the category with S-frames as objects and S-frame maps
as morphisms. In the case where S selects all subsets, we get the category
Frm of frames and frame maps.
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4. Let S be a selection function and L an S-frame. We shall call a subset
M of L a sub S-frame of L if it satisfies M is an S-frame and the identical
embedding i : M → L is an S-frame map.

The following axiom, which we impose on all our selection functions,
makes the behaviour of subobjects tractable:
(S5) For any S-frame L, if M is a sub S-frame of L, G � M and G ∈ SL,

then G ∈ SM .

Definition 2.3. Let S be a selection function and A an arbitrary meet-
semilattice. We now further require that S satisfies the following axioms:

(SCount) Every countable subset of A is designated.
(SCov) Every subset of a designated cover of A is designated. (By

a cover of A we mean, as usual, a subset C of A such that
∨
C = 1.)

(SRef) Let X,Y � A. If X � Y with X designated in A there is a des-
ignated C � A such that X � C � Y . (By X � Y we mean, as usual, that
for each x ∈ X there exists y ∈ Y such that x � y.)

Below we give the standard definitions of the rather below and com-
pletely below relations; they apply in an S-frame as they do in any lattice.

Definition 2.4. Let L be an S-frame.
(a) For a, b ∈ L, we say a is rather below b, written a ≺ b, if there exists

t ∈ L satisfying a ∧ t = 0 and t ∨ b = 1.
(b) For a, b ∈ L, we say a is completely below b, written a ≺≺ b, if there

exists a set
{
xr ∈ L : r ∈ [0, 1] ∩Q

}
for which r < t implies xr ≺ xt.

(c) We call an S-frame L completely regular if each a ∈ L can be written
a =

∨
T for some designated subset T of L such that t ≺≺ a for all t ∈ T .

The full subcategory of SFrm with completely regular S-frames as objects,
will be denoted by CregSFrm.

Definition 2.5. Let S be a selection function and L an S-frame.
1. We call C an S-cover of L if C ∈ SL and

∨
C = 1. If C and D are

S-covers of L, then C ∧D = {c ∧ d : c ∈ C, d ∈ D} is an S-cover of L.
2. If C and D are S-covers of L, we say that C refines D and write

C � D if, for all c ∈ C, there exists d ∈ D such that c � d.
3. If a ∈ L and C is an S-cover of L, we set Ca = {c ∈ C : c ∧ a ̸= 0}.

If a, b ∈ L and C is an S-cover of L, we write a▹C b if Ca �↓b. We say that
a is uniformly below b with respect to C. In the presence of (SCov), Ca �↓b
amounts to Ca =

∨
Ca � b.

4. If C and D are S-covers of L, we say that C star-refines D, and write
C <∗ D, if, for all c ∈ C, there is d ∈ D such that c▹C d.

5. A non-empty collection of S-covers, UL, of L is an S-pre-uniformity
on L if it is filtered by meet and star-refinement. UL is an S-uniformity on
L if it further satisfies the following compatibility condition: For any x ∈ L,
there exists a designated subset T of L such that x =

∨
T and t ∈ T implies
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M of L a sub S-frame of L if it satisfies M is an S-frame and the identical
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(S5) For any S-frame L, if M is a sub S-frame of L, G � M and G ∈ SL,
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(SCov) Every subset of a designated cover of A is designated. (By

a cover of A we mean, as usual, a subset C of A such that
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that t▹C x for some C ∈ UL. The pair (L,UL) is called a uniform S-frame.
We frequently use the notation a▹ b whenever there is some C ∈ UL such
that a▹C b and say that a is uniformly below b in (L,UL). In the case that
S selects all subsets we recover the usual definitions of pre-uniformities and
uniformities on a frame.

6. Let (L,UL) and (M,UM) be uniform S-frames. Then f : (L,UL)
→ (M,UM) is said to be uniform if f : L → M is an S-frame map and for
each C ∈ UL, f [C] ∈ UM . We denote the category of uniform S-frames and
uniform maps by UniSFrm. In the case that S selects all subsets, we get
the category UniFrm.

7. If (L,UL) is a uniform S-frame, then L is a completely regular S-
frame: If a▹ b in (L,UL) then a ≺ b in L. Since ▹ interpolates by the
existence of star-refinements, this yields that a▹ b implies a ≺≺ b which is
sufficient. (Details can be found in [8].)

3. HS and CozS for uniform S-frames

In this section, we extend the functors HS (taking S-ideals) and CozS
(taking S-cozero elements) to the uniform setting. The aim will be to provide
a category equivalence between the uniform S-frames and the S-Lindelöf, S-
separable uniform frames.

Definition 3.1. Let N be a frame.
1. We call an element a of N an S-Lindelöf element of N if it satisfies:

If a =
∨
B for some B � N , then a =

∨
C for some designated subset C of

N such that C � B. (There are other equivalent definitions; see Lemma 4.1
of [9].)

2. We call N an S-Lindelöf frame if its top element is an S-Lindelöf
element.

Definition 3.2. We call a uniform frame (N,VN) S-separable if, for
each A ∈ VN there exists B ∈ VN such that B is an S-cover of N and
B � A; that is, every uniform cover is refined by a uniform S-cover.

We now extend the functor HS to the uniform setting making use of the
following definitions and results, which appear in [9].

Definition 3.3. (a) A subset J of an S-frame L is an S-ideal of L if
J is a non-empty downset closed under designated joins (the latter meaning
that if X � J , for X a designated subset of L, then

∨
X ∈ J).

(b) The collection of all S-ideals of an S-frame L will be denoted HSL,
and called the S-ideal frame of L.

(c) Taking S-ideals provides a functor HS : SFrm → Frm. Its action on
a morphism h is defined by: For J ∈ HSL, let HSh(J) =

⟨
h[J ]

⟩
, the S-ideal

generated by the image h[J ].
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We now define a uniformity on the frame HSL.

Definition 3.4. Let (L,UL) be a uniform S-frame. For C ∈ UL, define
Ĉ = {↓c : c ∈ C}. Let VHSL = {A : A is a cover of HSL and Ĉ � A for
some C ∈ UL}. Set HS(L,UL) = (HSL,VHSL).

Lemma 3.5. HS(L,UL) is an S-Lindelöf, S-separable uniform frame.

Proof. We first note that, since ↓: L → HSL is an S-frame map (see
Proposition 3.8 of [9]), it is, in particular, a meet-semilattice map, and so

Ĉ is a designated subset of HSL, whenever C is a designated subset of L.
Moreover,

∨
Ĉ =

∨
{↓c : c ∈ C} =↓1, by the construction of joins in HSL.

Thus Ĉ ∈ VHSL for every C ∈ UL.
To show that VHSL is closed under binary meets, we note that Ĉ ∧ D̂ =

Ĉ ∧D for any C,D ∈ UL.
For compatibility, we must show that, for each I ∈ HSL, we have

I =
∨{

J ∈ HSL : J ▹ I in HS(L,UL)
}
; it is sufficient to do so for the

principal ideals. So take a ∈ L, and write a =
∨
T for some designated

subset T of L satisfying t ∈ T ⇒ t▹ a in (L,UL). For each such t, there

exists C ∈ UL with Ct � a. It follows easily that Ĉ(↓t) �↓a, so ↓t▹ ↓a in
HS(L,UL). Further, using the fact that T is a designated subset of L, we
obtain ↓a =

∨
{↓t : t ∈ T}, so ↓a has been exhibited as required.

For the star-refinement condition, it will suffice to show that, for C,D
∈ UL, C <∗ D ⇒ Ĉ <∗ D̂. Now Ĉ(↓c) =

∨
{↓b : b ∈ C, ↓b∧ ↓c ̸=↓0}. For

such b, b ∧ c ̸= 0, so b � Cc. But Cc � d for some d ∈ D, so b � d, giving

↓b �↓d. Then Ĉ(↓c) �↓d, showing that Ĉ <∗ D̂.
Thus far we have shown that HS(L,UL) is a uniform frame. That HSL is

S-Lindelöf was shown in Corollary 4.4 of [9]. That HS(L,UL) is S-separable
is clear, because VHSL is generated by {Ĉ : C ∈ UL} and each such Ĉ is an
S-cover of HSL, as was mentioned in the first paragraph of this proof. �

Lemma 3.6. Taking S-ideals provides a functor

HS : UniSFrm → UniFrm.

Proof. Let h : (L,UL) → (M,UM) be a morphism inUniSFrm. From
Remark 3.7 of [9] we know that, for any J ∈ HSL, HSh(J) is the S-ideal
generated by the image h[J ], which is ↓h[J ]. We note that, for a ∈ L,

HSh(↓a) =↓h(a). So, for C ∈ UL, HSh[Ĉ] =
{
↓h(c) : c ∈ C

}
= �h[C] and

h[C] ∈ UM . This shows that, for any A ∈ VHSL, we have HSh[A] ∈ VHSM ,
making HSh : HS(L,UL) → HS(M,UM) a uniform map. �
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We now define a uniformity on the frame HSL.

Definition 3.4. Let (L,UL) be a uniform S-frame. For C ∈ UL, define
Ĉ = {↓c : c ∈ C}. Let VHSL = {A : A is a cover of HSL and Ĉ � A for
some C ∈ UL}. Set HS(L,UL) = (HSL,VHSL).

Lemma 3.5. HS(L,UL) is an S-Lindelöf, S-separable uniform frame.

Proof. We first note that, since ↓: L → HSL is an S-frame map (see
Proposition 3.8 of [9]), it is, in particular, a meet-semilattice map, and so

Ĉ is a designated subset of HSL, whenever C is a designated subset of L.
Moreover,

∨
Ĉ =

∨
{↓c : c ∈ C} =↓1, by the construction of joins in HSL.

Thus Ĉ ∈ VHSL for every C ∈ UL.
To show that VHSL is closed under binary meets, we note that Ĉ ∧ D̂ =

Ĉ ∧D for any C,D ∈ UL.
For compatibility, we must show that, for each I ∈ HSL, we have

I =
∨{

J ∈ HSL : J ▹ I in HS(L,UL)
}
; it is sufficient to do so for the

principal ideals. So take a ∈ L, and write a =
∨
T for some designated

subset T of L satisfying t ∈ T ⇒ t▹ a in (L,UL). For each such t, there

exists C ∈ UL with Ct � a. It follows easily that Ĉ(↓t) �↓a, so ↓t▹ ↓a in
HS(L,UL). Further, using the fact that T is a designated subset of L, we
obtain ↓a =

∨
{↓t : t ∈ T}, so ↓a has been exhibited as required.

For the star-refinement condition, it will suffice to show that, for C,D
∈ UL, C <∗ D ⇒ Ĉ <∗ D̂. Now Ĉ(↓c) =

∨
{↓b : b ∈ C, ↓b∧ ↓c ̸=↓0}. For

such b, b ∧ c ̸= 0, so b � Cc. But Cc � d for some d ∈ D, so b � d, giving

↓b �↓d. Then Ĉ(↓c) �↓d, showing that Ĉ <∗ D̂.
Thus far we have shown that HS(L,UL) is a uniform frame. That HSL is

S-Lindelöf was shown in Corollary 4.4 of [9]. That HS(L,UL) is S-separable
is clear, because VHSL is generated by {Ĉ : C ∈ UL} and each such Ĉ is an
S-cover of HSL, as was mentioned in the first paragraph of this proof. �

Lemma 3.6. Taking S-ideals provides a functor

HS : UniSFrm → UniFrm.

Proof. Let h : (L,UL) → (M,UM) be a morphism inUniSFrm. From
Remark 3.7 of [9] we know that, for any J ∈ HSL, HSh(J) is the S-ideal
generated by the image h[J ], which is ↓h[J ]. We note that, for a ∈ L,

HSh(↓a) =↓h(a). So, for C ∈ UL, HSh[Ĉ] =
{
↓h(c) : c ∈ C

}
= �h[C] and

h[C] ∈ UM . This shows that, for any A ∈ VHSL, we have HSh[A] ∈ VHSM ,
making HSh : HS(L,UL) → HS(M,UM) a uniform map. �
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Clearly from the previous two results, taking S-ideals actually provides
a functor

HS : UniSFrm → SLindSsep UniFrm

where SLindSsep UniFrm is the full subcategory consisting of the S-
Lindelöf S-separable uniform frames.

We now provide a functor in the opposite direction, which will show
eventually that HS actually gives a category equivalence. In order to do
this, we need the following definitions and results which appear in [9].

Definition 3.7. Let N be a frame and a ∈ N .
(a) We call a an S-cozero element of N if a =

∨
T for some designated

subset T of N such that t ≺≺ a for all t ∈ T .
(b) We denote the S-frame consisting of all S-cozero elements of a frame

N by CozS N .
(c) Taking S-cozero elements provides a functor CozS : Frm → SFrm.

It acts on morphisms by restriction.

We now lift CozS to a functor from SLindSsep UniFrm to UniSFrm
by constructing an S-uniformity on CozS N as follows:

Lemma 3.8. Let (N,VN) be an S-Lindelöf, S-separable uniform frame.
Define U CozS N = {A � CozS N : A ∈ VN and A designated in CozS N}.

Then CozS(N,VN) = (CozS N,U CozS N) is a uniform S-frame.

Proof. The members of U CozS N are clearly chosen to be S-covers of
CozS N . Since the members of VN and the designated subsets of CozS N
are closed under binary meets, so is U CozS N . If C ∈ U CozS N and D is
an S-cover of CozS N with C � D, then D ∈ VN and so D ∈ U CozS N .

Next we show that, for A ∈ VN , there existsD ∈ U CozS N withD <∗ A.
This is sufficient to show that every member of U CozS N has a star-
refinement in U CozS N . To this end, begin with A ∈ VN . Since (N,VN)
is S-separable there exists an S-cover B ∈ VN with B <∗ A. Repeat this
to get an S-cover C ∈ VN with C <∗ B. For c ∈ C, there exists bc ∈ B
such that c▹ bc (using Cc � bc). So c ≺≺ bc in N (see Definition 2.5). By
Corollary 5.9 of [9], there exists zc ∈ CozS N such that c ≺≺ zc ≺≺ bc in N .
By (SRef), there exists D a designated subset of N , D � {zc : c ∈ C} and
C � D. By (S5), D is a designated subset of CozS N . So D ∈ U CozS N and
D � B <∗ A, so D <∗ A.

The fact that every member of U CozS N has a star-refinement in
U CozS N follows directly from the result above.

For the compatibility condition, begin with x ∈ CozS N . Since (N,VN)
is a uniform frame, x =

∨{
y ∈ N : y▹x in (N,VN)

}
. By Proposition 5.13

of [9], x, being a S-cozero element of N is also an S-Lindelöf element of N .
So there exists T �

{
y ∈ N : y ▹ x in (N,VN)

}
, T a designated subset of

N with x =
∨

T .
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For each t ∈ T there exists st ∈ N with t▹ st ▹ x in (N,VN), because ▹
interpolates in (N,VN). Use Corollary 5.9 of [9] again to obtain zt ∈ CozS N
with t � zt � st. Then T � {zt : t ∈ T}, so by (SRef) there exists Z � {zt :
t ∈ T}, Z a designated subset of N and T � Z. Note that

∨
Z = x and that

Z is a designated subset of CozS N , by (S5).
For each z ∈ Z, z ▹ x in (N,VN). So there exists A ∈ VN with

Az � x. Applying the second paragraph of this proof gives D ∈ U CozS N
with D <∗ A. Then, in particular, Dz � x. This shows that z ▹ x in
(CozS N,U CozS N) which concludes the proof of the compatibility con-
dition. �

Lemma 3.9. Taking S-cozero elements provides a functor

CozS : SLindSsep UniFrm → UniSFrm.

Proof. Let f : (K,VK) → (N,VN) be a morphism in SLindSsep
UniFrm. By Corollary 5.4 of [9], CozS f = f : CozS K → CozS N is an
S-frame map. To see that the map is uniform, begin with C ∈ U CozS K.
Then C ∈ VK, C � CozS K and C is a designated subset of CozS K. So
f [C] ∈ VN , f [C] � CozS N and f [C] is a designated subset of CozS N ; so
f [C] ∈ U CozS N , as required. �

In Theorem 5.14 of [9], it was shown that the category of completely reg-
ular S-frames is equivalent to the category of completely regular S-Lindelöf
frames. In the process these results were proved:

• For any completely regular S-frame L, the map ↓L : L → CozS HSL
is an isomorphism.

• For any S-frame map h : L → M between completely regular S-frames,
(CozS HSh)◦ ↓L =↓M ◦ h.

• For any completely regular S-Lindelöf frame K, the map

jK : HS CozS K → K

given by join, is an isomorphism.
• For any frame map f : N → P between completely regular S-Lindelöf

frames, f ◦ jN = jP ◦ (HS CozS f).
These results will be used in the proof of the next proposition in which

we lift the category equivalence mentioned above to the uniform level.

Proposition 3.10. The category of uniform S-frames is equivalent to
the category of S-Lindelöf, S-separable uniform frames.

Proof. We show that, for any uniform S-frame (L,UL), the map ↓L :
(L,UL) → CozS HS(L,UL) is an isomorphism. We already have that the un-

derlying S-frame map is an isomorphism. So take C ∈ UL. Then ↓L[C] = Ĉ

∈ VHSL (see Lemma 3.5). Further, Ĉ is a designated subset of CozS HSL,

Acta Mathematica Hungarica 0, 0

J. FRITH and A. SCHAUERTE122



Acta Mathematica Hungarica 147, 2015

8 J. FRITH and A. SCHAUERTE

For each t ∈ T there exists st ∈ N with t▹ st ▹ x in (N,VN), because ▹
interpolates in (N,VN). Use Corollary 5.9 of [9] again to obtain zt ∈ CozS N
with t � zt � st. Then T � {zt : t ∈ T}, so by (SRef) there exists Z � {zt :
t ∈ T}, Z a designated subset of N and T � Z. Note that

∨
Z = x and that

Z is a designated subset of CozS N , by (S5).
For each z ∈ Z, z ▹ x in (N,VN). So there exists A ∈ VN with

Az � x. Applying the second paragraph of this proof gives D ∈ U CozS N
with D <∗ A. Then, in particular, Dz � x. This shows that z ▹ x in
(CozS N,U CozS N) which concludes the proof of the compatibility con-
dition. �

Lemma 3.9. Taking S-cozero elements provides a functor

CozS : SLindSsep UniFrm → UniSFrm.

Proof. Let f : (K,VK) → (N,VN) be a morphism in SLindSsep
UniFrm. By Corollary 5.4 of [9], CozS f = f : CozS K → CozS N is an
S-frame map. To see that the map is uniform, begin with C ∈ U CozS K.
Then C ∈ VK, C � CozS K and C is a designated subset of CozS K. So
f [C] ∈ VN , f [C] � CozS N and f [C] is a designated subset of CozS N ; so
f [C] ∈ U CozS N , as required. �

In Theorem 5.14 of [9], it was shown that the category of completely reg-
ular S-frames is equivalent to the category of completely regular S-Lindelöf
frames. In the process these results were proved:

• For any completely regular S-frame L, the map ↓L : L → CozS HSL
is an isomorphism.

• For any S-frame map h : L → M between completely regular S-frames,
(CozS HSh)◦ ↓L =↓M ◦ h.

• For any completely regular S-Lindelöf frame K, the map

jK : HS CozS K → K

given by join, is an isomorphism.
• For any frame map f : N → P between completely regular S-Lindelöf

frames, f ◦ jN = jP ◦ (HS CozS f).
These results will be used in the proof of the next proposition in which

we lift the category equivalence mentioned above to the uniform level.

Proposition 3.10. The category of uniform S-frames is equivalent to
the category of S-Lindelöf, S-separable uniform frames.

Proof. We show that, for any uniform S-frame (L,UL), the map ↓L :
(L,UL) → CozS HS(L,UL) is an isomorphism. We already have that the un-

derlying S-frame map is an isomorphism. So take C ∈ UL. Then ↓L[C] = Ĉ

∈ VHSL (see Lemma 3.5). Further, Ĉ is a designated subset of CozS HSL,
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so Ĉ ∈ U CozS HSL. Moreover, the S-uniformity on CozS HSL consists pre-
cisely of {Ĉ : C ∈ UL} which establishes the desired isomorphism.

For any uniform S-frame map h : (L,UL) → (M,UM), the following di-
agram commutes, since the underlying S-frame maps are already known to
commute:

(L,UL)
↓L

��

h
��

CozS HS(L,UL)

CozS HSh
��

(M,UM)
↓M

�� CozS HS(M,UM)

Next we show that, for any S-Lindelöf, S-separable uniform frame (K,VK),
the join map jK : HS CozS(K,VK) → (K,VK) is an isomorphism. Again,
the underlying frame map is already known to be an isomorphism. To
show that jK is uniform, begin with Ĉ, for some C ∈ U CozS K. Then
C ∈ VK, C � CozS K and C is a designated subset of CozS K. Now

jK [Ĉ] =
{
jK(↓c) : c ∈ C

}
=

{ ∨
↓c : c ∈ C

}
= C which is a member of VK

as required. Finally use the second paragraph of the proof of Lemma 3.8 to
obtain, for any A ∈ VK, D ∈ U CozS K with D <∗ A; in particular D � A.

Then jK [D̂] = D � A which concludes the proof that jK is an isomorphism.
For any uniform frame map f : (N,VN) → (P,VP ) between S-Lindelöf,

S-separable uniform frames, the following diagram commutes, since the un-
derlying frame maps are already known to commute:

HS CozS(N,VN)
jN

��

HS CozS f
��

(N,VN)

f
��

HS CozS(P,VP )
jP

�� (P,VP ) �

4. The strategy

The main aim of this paper is to construct a completion for uniform S-
frames; we use the category equivalence between the uniform S-frames and
the S-Lindelöf, S-separable uniform frames for this purpose.

Starting with a uniform S-frame, we apply the functor HS to obtain
an S-Lindelöf, S-separable uniform frame; this has a completion. We then
apply the functor CozS to this completion, thus providing the required com-
pletion of the original uniform S-frame.
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In order for this to work, we need to show that the completion of an
S-Lindelöf, S-separable uniform frame is again S-Lindelöf and S-separable.
We do this in Section 5.

In Section 6 we define completeness for uniform S-frames and investigate
the properties of the functors HS and CozS that are needed to enable the
transfer of completions.

In Section 7 we show that this procedure does indeed give the required
completion and a coreflection to complete uniform S-frames.

5. Completions of S-Lindelöf S-separable uniform frames

The main result in this section is that the completion of an S-Lindelöf,
S-separable uniform frame is again S-Lindelöf and S-separable. The bulk
of the work goes into proving that a complete, S-separable uniform frame is
S-Lindelöf, which we do in Proposition 5.1. The special case of this result,
where S selects countable sets, appeared in [6]; our proof is modelled on
theirs.

The proof of Proposition 5.1 below requires the following technique:
Given a preuniformity on a frame, one can define a uniformity on a sub-
frame in such a way that the uniformity on the subframe generates the
original preuniformity on the frame. This is the content of Lemma 2 of [4]:

Let K be a frame and PK a preuniformity on K. Define i : K → K by
i(x) =

∨{
y ∈ K : y ▹ x in (K,PK)

}
where y ▹ x in (K,PK) means that

there exists C ∈ PK with Cy � x. Then i satisfies these conditions for all
x, y ∈ K:

i(x) � x, i(x) = i2(x), i(x ∧ y) = i(x) ∧ i(y) and i(1) = 1.

Further Fix i =
{
x ∈ K : i(x) = x

}
is a subframe of K. The set

{
i[C] :

C ∈ PK
}

generates a uniformity, denoted V Fix i, on Fix i, and generates
PK on K.

Proposition 5.1. If (N,VN) is a complete, S-separable uniform frame,
then N is an S-Lindelöf frame.

Proof. Let (N,VN) be a complete, S-separable uniform frame. Con-
sider HSN , the frame of all S-ideals of N . (We note that earlier in this
paper, we considered S-ideals of an S-frame, but since any frame is an S-
frame, the same construction applies here.)

For C ∈ VN , define Ĉ = {↓c : c ∈ C}. Then {Ĉ : C ∈ VN and C is an
S-cover of N} is a basis for a preuniformity, denoted PHSN , on HSN ; an
argument like that of Lemma 3.5 applies, with the omission of the compati-
bility criterion.
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In order for this to work, we need to show that the completion of an
S-Lindelöf, S-separable uniform frame is again S-Lindelöf and S-separable.
We do this in Section 5.

In Section 6 we define completeness for uniform S-frames and investigate
the properties of the functors HS and CozS that are needed to enable the
transfer of completions.

In Section 7 we show that this procedure does indeed give the required
completion and a coreflection to complete uniform S-frames.

5. Completions of S-Lindelöf S-separable uniform frames

The main result in this section is that the completion of an S-Lindelöf,
S-separable uniform frame is again S-Lindelöf and S-separable. The bulk
of the work goes into proving that a complete, S-separable uniform frame is
S-Lindelöf, which we do in Proposition 5.1. The special case of this result,
where S selects countable sets, appeared in [6]; our proof is modelled on
theirs.

The proof of Proposition 5.1 below requires the following technique:
Given a preuniformity on a frame, one can define a uniformity on a sub-
frame in such a way that the uniformity on the subframe generates the
original preuniformity on the frame. This is the content of Lemma 2 of [4]:

Let K be a frame and PK a preuniformity on K. Define i : K → K by
i(x) =

∨{
y ∈ K : y ▹ x in (K,PK)

}
where y ▹ x in (K,PK) means that

there exists C ∈ PK with Cy � x. Then i satisfies these conditions for all
x, y ∈ K:

i(x) � x, i(x) = i2(x), i(x ∧ y) = i(x) ∧ i(y) and i(1) = 1.

Further Fix i =
{
x ∈ K : i(x) = x

}
is a subframe of K. The set

{
i[C] :

C ∈ PK
}

generates a uniformity, denoted V Fix i, on Fix i, and generates
PK on K.

Proposition 5.1. If (N,VN) is a complete, S-separable uniform frame,
then N is an S-Lindelöf frame.

Proof. Let (N,VN) be a complete, S-separable uniform frame. Con-
sider HSN , the frame of all S-ideals of N . (We note that earlier in this
paper, we considered S-ideals of an S-frame, but since any frame is an S-
frame, the same construction applies here.)

For C ∈ VN , define Ĉ = {↓c : c ∈ C}. Then {Ĉ : C ∈ VN and C is an
S-cover of N} is a basis for a preuniformity, denoted PHSN , on HSN ; an
argument like that of Lemma 3.5 applies, with the omission of the compati-
bility criterion.
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Let i : HSN → HSN be defined by

i(J) =
∨{

I ∈ HSN : I ▹ J in (HSN,PHSN)
}
.

By the method outlined above, Fix i is a subframe of HSN and
{
i[Ĉ] :

C ∈ VN and C is an S-cover of N
}

generates a uniformity, denoted V Fix i
on Fix i.

A routine calculation shows that the join map
∨

: HSN → N is a frame
map, so its restriction jN : Fix i → N , is also a frame map, which is clearly
dense.

For a ∈ N , we have ↓a ∈ HSN and so i(↓a) ∈ Fix i. Now, if x ∈ N
with x▹ a in (N,VN), then there exists C ∈ VN with C an S-cover of

N and Cx � a by the S-separability of N . Then Ĉ(↓x) �↓a, so ↓x▹ ↓a in
(HSN,PHSN). So x ∈ i(↓a). Since a =

∨{
x ∈ N : x▹ a in (N,VN)

}
, we

obtain a =
∨
i(↓a). It now follows that the join map jN : (Fix i,V Fix i)

→ (N,VN) is uniform, because jN i[Ĉ] =
{ ∨

i(↓c) : c ∈ C
}
= C, for all

C ∈ VN , C an S-cover of N .
The map jN : (Fix i,V Fix i) → (N,VN) is onto, again because a =∨

i(↓a) for all a ∈ N . Further, jN is a surjection, again using S-separability
of (N,VN) and jN i[Ĉ] = C for all C ∈ VN , C an S-cover of N . This makes
jN a dense surjection onto a complete uniform frame, and hence an isomor-
phism.

Now HSN is S-Lindelöf, so Fix i, since it is a subframe of HSN , is also
S-Lindelöf. But Fix i is isomorphic to N , and so N is S-Lindelöf. �

Dense surjections preserve and reflect S-separability:
Lemma 5.2. Let f : (N,VN) → (P,VP ) be a dense surjection between

uniform frames. Then (N,VN) is S-separable if and only if (P,VP ) is S-
separable.

Proof. (⇒) Given A ∈ VP , there exists B ∈ VN such that f [B] � A.
Take C ∈ VN with C an S-cover of N and C � B, by S-separability. Then
f [C] � A, f [C] ∈ VP and f [C] is an S-cover of P , as required.

(⇐) We denote the right adjoint of f by r. Give A ∈ VN , there exists
B ∈ VP with r[B] � A and r[B] ∈ VN . (See [2] for more details.) Now r
is, in particular, a meet-semilattice map (it preserves 0 because f is dense)
and so r[B] is a designated subset of N , as required. �

We refer the reader to the preliminaries (Section 2) for references con-
cerning completions of uniform frames.

Corollary 5.3. Let γK : C(K,VK) → (K,VK) be the completion of
the uniform frame (K,VK). Then C(K,VK) is S-separable if and only if
(K,VK) is S-separable.
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Corollary 5.4. If (K,VK) an S-separable uniform frame, then CK
is an S-Lindelöf frame.

Proof. Here C(K,VK) = (CK,VCK) is again the completion of
(K,VK). By Lemma 5.2, C(K,VK) is S-separable, so by Proposition 5.1,
CK is S-Lindelöf. �

It is now clear that the completion of an S-Lindelöf, S-separable uniform
frame is again S-Lindelöf and S-separable.

6. Completeness for uniform S-frames

We begin this section with the definition of completeness for uniform S-
frames; it is clearly a generalization of the corresponding concept for uniform
frames.

Definition 6.1. (1) A uniform map h : (M,UM) → (L,UL) is called
a surjection if, for each D ∈ UL, there exists C ∈ UM such that h[C] � D.

(2) An S-frame map h is dense if h(a) = 0 implies a = 0; it is codense if
h(a) = 1 implies a = 1.

(3) A uniform S-frame (L,UL) is called complete if every dense surjec-
tion h : (M,UM) → (L,UL) from a uniform S-frame (M,UM) is an isomor-
phism.

(4) A completion of a uniform S-frame (L,UL) is a dense surjection h :
(M,UM) → (L,UL) with (M,UM) a complete uniform S-frame.

The next result shows that surjections are indeed onto:

Lemma 6.2. Suppose that h : (L,UL) → (M,UM) is a uniform map be-
tween uniform S-frames such that, for each D ∈ UM , there exists C ∈ UL
with h[C] � D. Then h : L → M is onto.

Proof. Let b ∈ M and write b =
∨
T for some designated subset T of

M with t ∈ T ⇒ t▹ b in (M,UM). Let t ∈ T . Then there exists D ∈ UM
with Dt � b. By assumption, there exists C ∈ UL with h[C] � D. Since
t � h[C]t � b, we obtain b =

∨{
h[C]t : t ∈ T

}
.

Since C ∈ UL, C is a designated subset of L, so by (SCov), K =
{
c ∈ C :

h(c) ∧ t ̸= 0
}

is also designated. Since h is an S-frame map,
∨
h[K] =

h
( ∨

K
)
. But

∨
h[K] = h[C]t, so we have shown that h[C]t is in the image

of h.
Since T �

{
h[C]t : t ∈ T

}
, by (SRef) there exists a designated subset S

of
{
h[C]t : t ∈ T

}
such that T � S. Then b =

∨
S. Since S is a designated

subset of M and is contained in the image of h, there exists a designated
subset W of L such that h[W ] = S. Then b =

∨
S =

∨
h[W ] = h

( ∨
W

)
,

showing that b is in the image of h. �

Acta Mathematica Hungarica 0, 0

J. FRITH and A. SCHAUERTE126



Acta Mathematica Hungarica 147, 2015

12 J. FRITH and A. SCHAUERTE

Corollary 5.4. If (K,VK) an S-separable uniform frame, then CK
is an S-Lindelöf frame.

Proof. Here C(K,VK) = (CK,VCK) is again the completion of
(K,VK). By Lemma 5.2, C(K,VK) is S-separable, so by Proposition 5.1,
CK is S-Lindelöf. �

It is now clear that the completion of an S-Lindelöf, S-separable uniform
frame is again S-Lindelöf and S-separable.

6. Completeness for uniform S-frames

We begin this section with the definition of completeness for uniform S-
frames; it is clearly a generalization of the corresponding concept for uniform
frames.

Definition 6.1. (1) A uniform map h : (M,UM) → (L,UL) is called
a surjection if, for each D ∈ UL, there exists C ∈ UM such that h[C] � D.

(2) An S-frame map h is dense if h(a) = 0 implies a = 0; it is codense if
h(a) = 1 implies a = 1.

(3) A uniform S-frame (L,UL) is called complete if every dense surjec-
tion h : (M,UM) → (L,UL) from a uniform S-frame (M,UM) is an isomor-
phism.

(4) A completion of a uniform S-frame (L,UL) is a dense surjection h :
(M,UM) → (L,UL) with (M,UM) a complete uniform S-frame.

The next result shows that surjections are indeed onto:

Lemma 6.2. Suppose that h : (L,UL) → (M,UM) is a uniform map be-
tween uniform S-frames such that, for each D ∈ UM , there exists C ∈ UL
with h[C] � D. Then h : L → M is onto.

Proof. Let b ∈ M and write b =
∨
T for some designated subset T of

M with t ∈ T ⇒ t▹ b in (M,UM). Let t ∈ T . Then there exists D ∈ UM
with Dt � b. By assumption, there exists C ∈ UL with h[C] � D. Since
t � h[C]t � b, we obtain b =

∨{
h[C]t : t ∈ T

}
.

Since C ∈ UL, C is a designated subset of L, so by (SCov), K =
{
c ∈ C :

h(c) ∧ t ̸= 0
}

is also designated. Since h is an S-frame map,
∨
h[K] =

h
( ∨

K
)
. But

∨
h[K] = h[C]t, so we have shown that h[C]t is in the image

of h.
Since T �

{
h[C]t : t ∈ T

}
, by (SRef) there exists a designated subset S

of
{
h[C]t : t ∈ T

}
such that T � S. Then b =

∨
S. Since S is a designated

subset of M and is contained in the image of h, there exists a designated
subset W of L such that h[W ] = S. Then b =

∨
S =

∨
h[W ] = h

( ∨
W

)
,

showing that b is in the image of h. �
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The remaining results in this section concern the preservation of relevant
properties by the functors HS and CozS :

Lemma 6.3. The functor HS : UniSFrm → SLindSsep UniFrm tak-
ing S-ideals preserves dense surjections.

Proof. Take h : (L,UL) → (M,UM) a dense surjection between uni-
form S-frames; we show that HSh : (HSL,VHSL) → (HSM,VHSM) is
a dense surjection. Now HSh is dense, because HSh(J) =↓0 for some
J ∈ HSL implies that h[J ] = {0}, giving J =↓0 by the density of h.

Next, take D ∈ UM , and C ∈ UL with h[C] � D. Then HSh[Ĉ] = ĥ[C]

(see Lemma 3.6) so HSh[Ĉ] � D̂. The result follows, since {D̂ : D ∈ UM}
generates the uniformity VHSM . �

Lemma 6.4. The functor CozS : SLindSsep UniFrm → UniSFrm
taking S-cozero elements, preserves dense surjections.

Proof. Take f : (K,VK) → (N,VN) a dense surjection between S-
Lindelöf, S-separable uniform frames; we show that

CozS f : (CozS K,U CozS K) → (CozS N,U CozS N)

is a dense surjection.
Certainly CozS f is dense, since it acts by restriction of f . Now take

A ∈ U CozS N , that is, A ∈ VN , A � CozS N and A is a designated sub-
set of CozS N . There exists B ∈ VK such that f [B] � A. By the proof
of Lemma 3.8, there exists D ∈ U CozS K such that D <∗ B; in particular
D � B. Then f [D] � A. �

Corollary 6.5. The functor CozS preserves completeness.

Proof. Let (K,VK) be a complete S-Lindelöf, S-separable uniform
frame, and h : (L,UL) → CozS(K,VK) a dense surjection from the uni-
form S-frame (L,UL). Since HS preserves dense surjections (Lemma 6.3),
HSh is a dense surjection. So the composite HS(L,UL) → HS CozS(K,VK)
∼ (K,VK) is a dense surjection to a complete uniform frame, so an isomor-
phism. Since HS provides a category equivalence, it reflects isomorphisms,
so h is an isomorphism. �

Corollary 6.6. The functor HS preserves completeness.

Proof. Let (L,UL) be a complete uniform S-frame, and f : (K,VK)
→ HS(L,UL) a dense surjection from the uniform frame (K,VK). Since
HS(L,UL) is S-separable, so is (K,VK) by Lemma 5.2. So the completion
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C(K,VK) is S-Lindelöf and S-separable using Corollary 5.4 and Lemma 5.2.
So the composite

C(K,VK) −−−−→
γK

(K,VK) −−−−−−→
f

HS(L,UL)

is a dense surjection between S-Lindelöf, S-separable uniform frames. Since
CozS preserves dense surjections, CozS(f ◦ γK) is a dense surjection. So the
composite

CozS C(K,VK) −−−−−−−→
CozS(f◦γK)

CozS HS(L,UL) ∼ (L,UL)

is a dense surjection to a complete uniform S-frame and so is an isomor-
phism. Since CozS provides a category equivalence, it relects isomorphisms,
so f ◦ γK is an isomorphism. Since C(K,VK) is complete, so is HS(L,UL).
�

7. The construction of the completion of a uniform S-frame

Let (L,UL) be a uniform S-frame. Let

γHSL : CHS(L,UL) → HS(L,UL)

be the uniform frame completion of HS(L,UL). Apply the functor CozS to
obtain:

CozS CHS(L,UL) −−−−−−−→
CozS(γHSL)

CozS HS(L,UL) ∼ (L,UL).

We use the notation CS(L,UL)
(L,UL)−−−−→

τL
for this composite, which is the de-

sired completion of (L,UL).
We note that CS(L,UL) is complete by Corollary 6.5 and τL is a dense

surjection by Lemma 6.4. The lemma below shows that the completion is
unique.

Lemma 7.1. The completion of a uniform S-frame is unique up to iso-
morphism.

Proof. Let h : (M,UM) → (L,UL) be a dense surjection from a com-
plete uniform S-frame (M,UM) to a uniform S-frame (L,UL). Apply the
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C(K,VK) is S-Lindelöf and S-separable using Corollary 5.4 and Lemma 5.2.
So the composite

C(K,VK) −−−−→
γK

(K,VK) −−−−−−→
f

HS(L,UL)

is a dense surjection between S-Lindelöf, S-separable uniform frames. Since
CozS preserves dense surjections, CozS(f ◦ γK) is a dense surjection. So the
composite

CozS C(K,VK) −−−−−−−→
CozS(f◦γK)

CozS HS(L,UL) ∼ (L,UL)

is a dense surjection to a complete uniform S-frame and so is an isomor-
phism. Since CozS provides a category equivalence, it relects isomorphisms,
so f ◦ γK is an isomorphism. Since C(K,VK) is complete, so is HS(L,UL).
�

7. The construction of the completion of a uniform S-frame

Let (L,UL) be a uniform S-frame. Let

γHSL : CHS(L,UL) → HS(L,UL)

be the uniform frame completion of HS(L,UL). Apply the functor CozS to
obtain:

CozS CHS(L,UL) −−−−−−−→
CozS(γHSL)

CozS HS(L,UL) ∼ (L,UL).

We use the notation CS(L,UL)
(L,UL)−−−−→

τL
for this composite, which is the de-

sired completion of (L,UL).
We note that CS(L,UL) is complete by Corollary 6.5 and τL is a dense

surjection by Lemma 6.4. The lemma below shows that the completion is
unique.

Lemma 7.1. The completion of a uniform S-frame is unique up to iso-
morphism.

Proof. Let h : (M,UM) → (L,UL) be a dense surjection from a com-
plete uniform S-frame (M,UM) to a uniform S-frame (L,UL). Apply the
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functor HS and consider the following diagram:

HS(M,UM)
HSh

�� HS(L,UL)

CHS(M,UM)

∼γHSM

��

∼
�� CHS(L,UL)

γHSL

��

For the isomorphism CHS(M,UM) → CHS(L,UL) see [5], Corollary, p. 69.
The map γHSM is an isomorphism because HS(M,UM) is complete, by
Corollary 6.6. Then HS(M,UM) ∼ CHS(L,UL). Applying CozS gives
(M,UM) ∼ CozS HS(M,UM) ∼ CS(L,UL). �

Our method for constructing the completion provides a very straightfor-
ward proof of the coreflectivity of completeness for uniform S-frames:

Proposition 7.2. The complete uniform S-frames form a coreflective
subcategory of the category of uniform S-frames, with the coreflection map
given by the completion map τL : CS(L,UL) → (L,UL).

Proof. Let (L,UL) be a uniform S-frame, and h : (M,UM) → (L,UL)
be a uniform map from a complete uniform S-frame (M,UM). We show that
there exists a unique uniform map g : (M,UM) → CS(L,UL) such that τL
◦ g = h, i.e. making the following diagram commute:

CS(L,UL)
τL

�� (L,UL)

(M,UM)

∃!g
���
�
�
� h

�������������������

Now HSCS(L,UL) = HS CozS CHS(L,UL) ∼ CHS(L,UL), so applying HS
to the diagram above gives the diagram below:

CHS(L,UL) ∼ HSCS(L,UL)
HSτL

�� HS(L,UL)

HS(M,UM)

k

��� � � � � � � � HSh

�������������
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SinceHS(M,UM) is complete by Corollary 6.6, there exists a unique uniform
map k : HS(M,UM) → CHS(L,UL) making the diagram above commute.
Then g = CozS k makes the first diagram above commute.

Uniqueness of this g follows because τL is dense, and so monic (see
Proposition 8.10 of [8]). �

Remark 7.3. In the case where S selects all countable collections, we
obtain a construction of the completion of uniform σ-frames. An alterna-
tive construction for this case was provided in [23], but the method we use
has some substantially different features. In the case where S selects all col-
lections with cardinality less than some fixed regular cardinal κ, we obtain
a completion for uniform κ-frames.

8. The construction of the Samuel compactification of a uniform
S-frame

We view the Samuel compactification as the coreflection of uniform S-
frames to compact uniform S-frames, which is the approach taken in, for
instance, [5], [17], [7] and [23], as well as the original [21]. Our construction
mirrors closely the construction of the completion in the previous section;
we use the functors HS and CozS to transfer the Samuel compactification of
uniform frames to uniform S-frames. Before doing this we relate the notions
of compactness, total boundedness and completeness in the expected way:

Definition 8.1. (1) We call an S-frame compact if any S-cover has
a finite sub S-cover.

(2) We call a uniform S-frame totally bounded if every uniform S-cover
is refined by a finite uniform S-cover.

Proposition 8.2. A uniform S-frame is complete and totally bounded
if and only if it is compact.

Proof. (⇒) Suppose that (L,UL) is a complete, totally bounded uni-
form S-frame. Then HS(L,UL) is totally bounded, since its uniformity is

generated by {Ĉ : C ∈ UL}, where Ĉ = {↓c : c ∈ C}. Then the completion
CHS(L,UL) is a complete totally bounded uniform frame and so is compact.
(See [2].) This makes CS(L,UL) = CozS CHS(L,UL) a compact S-frame.

(⇐) Let (L,UL) be a compact uniform S-frame. That (L,UL) is totally
bounded is clear. To show completeness, begin with a dense surjection h :
(M,UM) → (L,UL) between uniform S-frames. We show that h is codense
which suffices to show that that h is 1− 1 (see Proposition 8.10 of [8]). So
suppose that h(a) = 1 for some a ∈ M . Write a =

∨
T for some designated

subset T of M with t ∈ T ⇒ t▹ a in (M,UM). Then 1 =
∨
h[T ], making

h[T ] an S-cover of L. Now L, being compact, has a unique S-nearness (and
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SinceHS(M,UM) is complete by Corollary 6.6, there exists a unique uniform
map k : HS(M,UM) → CHS(L,UL) making the diagram above commute.
Then g = CozS k makes the first diagram above commute.

Uniqueness of this g follows because τL is dense, and so monic (see
Proposition 8.10 of [8]). �

Remark 7.3. In the case where S selects all countable collections, we
obtain a construction of the completion of uniform σ-frames. An alterna-
tive construction for this case was provided in [23], but the method we use
has some substantially different features. In the case where S selects all col-
lections with cardinality less than some fixed regular cardinal κ, we obtain
a completion for uniform κ-frames.

8. The construction of the Samuel compactification of a uniform
S-frame

We view the Samuel compactification as the coreflection of uniform S-
frames to compact uniform S-frames, which is the approach taken in, for
instance, [5], [17], [7] and [23], as well as the original [21]. Our construction
mirrors closely the construction of the completion in the previous section;
we use the functors HS and CozS to transfer the Samuel compactification of
uniform frames to uniform S-frames. Before doing this we relate the notions
of compactness, total boundedness and completeness in the expected way:

Definition 8.1. (1) We call an S-frame compact if any S-cover has
a finite sub S-cover.

(2) We call a uniform S-frame totally bounded if every uniform S-cover
is refined by a finite uniform S-cover.

Proposition 8.2. A uniform S-frame is complete and totally bounded
if and only if it is compact.

Proof. (⇒) Suppose that (L,UL) is a complete, totally bounded uni-
form S-frame. Then HS(L,UL) is totally bounded, since its uniformity is

generated by {Ĉ : C ∈ UL}, where Ĉ = {↓c : c ∈ C}. Then the completion
CHS(L,UL) is a complete totally bounded uniform frame and so is compact.
(See [2].) This makes CS(L,UL) = CozS CHS(L,UL) a compact S-frame.

(⇐) Let (L,UL) be a compact uniform S-frame. That (L,UL) is totally
bounded is clear. To show completeness, begin with a dense surjection h :
(M,UM) → (L,UL) between uniform S-frames. We show that h is codense
which suffices to show that that h is 1− 1 (see Proposition 8.10 of [8]). So
suppose that h(a) = 1 for some a ∈ M . Write a =

∨
T for some designated

subset T of M with t ∈ T ⇒ t▹ a in (M,UM). Then 1 =
∨
h[T ], making

h[T ] an S-cover of L. Now L, being compact, has a unique S-nearness (and
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hence S-uniform) structure, consisting of all S-covers of L (see Proposition
10.7 of [8]). So h[T ] ∈ UL. Then there exists C ∈ UM with h[C] � h[T ]. Let
c ∈ C; there exists t ∈ T with h(c) � h(t). Since t▹ a in (M,UM), t ≺ a.
So there exists s ∈ M with s ∧ t = 0, a ∨ s = 1. Then h(c ∧ s) = h(c) ∧ h(s)
� h(t) ∧ h(s) = h(t ∧ s) = 0; by density of h, we obtain c ∧ s = 0. So c =
c ∧ (a ∨ s) = c ∧ a, so c � a. So

∨
C � a, making a = 1. �

The construction of the Samuel compactification of a uniform S-frame.
Let (L,UL) be a uniform S-frame. Let ρHSL : SamHS(L,UL) → HS(L,UL)
be the Samuel compactification of the uniform frame HS(L,UL). Apply the
functor CozS to obtain:

CozS ρHSL : CozS SamHS(L,UL) → CozS HS(L,UL) ∼ (L,UL)

We use the notation ξL : SamS(L,UL) → (L,UL) for this composite, which
is the desired Samuel compactification of (L,UL).

We note that SamS(L,UL) is a compact uniform S-frame by Lemma 6.1
of [9]. Further, ξL is a dense onto uniform S-frame map by Proposition 6.2
of [9].

We now prove the required coreflection property:

Theorem 8.3. For any uniform S-frame (L,UL), the map

ξL : SamS(L,UL) → (L,UL)

is the Samuel compactification of (L,UL).

Proof. Let h : (M,UM) → (L,UL) be a uniform map from a com-
pact uniform S-frame (M,UM) to a uniform S-frame (L,UL). Since M
is compact, so is HSM by Lemma 6.1 of [9] and so SamHS(M,UM)
∼ HS(M,UM). This gives

SamS(M,UM) = CozS SamHS(M,UM) ∼ CozS HS(M,UM) ∼ (M,UM),

as illustrated in the diagram below:

CozS SamHS(L,UL) �� CozS HS(L,UL) ∼ (L,UL)

CozS SamHS(M,UM) ∼
ξM

��

��

(M,UM)

h
�����������������

So, by functoriality, there exists a uniform map

g : (M,UM) → CozS SamHS(L,UL)
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such that ξL ◦ g = h. Uniqueness of g follows, since ξL is dense and hence
monic. (See Proposition 8.10 of [8].) �

We now provide an explicit construction of the totally bounded coreflec-
tion of a uniform S-frame, which is preparatory to providing an alternative
description of the Samuel compactification:

Proposition 8.4. Let (L,UL) be a uniform S-frame. Define tbUL =
{C ∈ UL : F � C for some finite F ∈ UL}. Then (L, tbUL) is a totally
bounded uniform S-frame, and the identity map i : (L, tbUL) → (L,UL) is
the totally bounded coreflection of (L,UL) in the category of uniform S-
frames.

Proof. The proof of this result is in all essentials the same as the proof
of the equivalent result for uniform frames appearing in [5]. We therefore
only sketch the method.

The main ingredient is that tbUL should have the star-refinement prop-
erty. To see this, begin with a finite A ∈ UL and take B ∈ UL with B <∗ A.
Define an equivalence relation ∼ on B by x ∼ y iff A∩ ↑ x = A∩ ↑ y and
A∩ ↑ (Bx) = A∩ ↑ (By). Since A is finite, this gives a finite partition of B.

For each b ∈ B, define b =
∨
{x ∈ B : x ∼ b} which exists by (SCov). Fi-

nally let B = {b : b ∈ B}. It is immediate that B is finite and since B � B,
we have B ∈ UL. One then checks that if Bb � a then B b � a, all required
joins existing by application of (SCov).

For compatibility, one shows that x▹ y in (L,UL) iff x▹ y in (L, tbUL).
The coreflection property is then clear (since the image of a finite cover is
finite). �

Remark 8.5. We note that the technique for constructing coreflections
provided in [8] would suffice to provide the coreflection result of Proposition
8.4, but the explicit description of the totally bounded coreflection provided
above would then not be available.

Corollary 8.6. The Samuel compactification of a uniform S-frame
(L,UL) can equivalently be given by the composite:

CS(L, tbUL) −−−−−−→
τ

(L, tbUL) −−−−−→
i

(L,UL)

that is, by the completion of its totally bounded coreflection.

Proof. This is a routine application of Propositions 7.2, 8.2 and 8.4.
�
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such that ξL ◦ g = h. Uniqueness of g follows, since ξL is dense and hence
monic. (See Proposition 8.10 of [8].) �

We now provide an explicit construction of the totally bounded coreflec-
tion of a uniform S-frame, which is preparatory to providing an alternative
description of the Samuel compactification:

Proposition 8.4. Let (L,UL) be a uniform S-frame. Define tbUL =
{C ∈ UL : F � C for some finite F ∈ UL}. Then (L, tbUL) is a totally
bounded uniform S-frame, and the identity map i : (L, tbUL) → (L,UL) is
the totally bounded coreflection of (L,UL) in the category of uniform S-
frames.

Proof. The proof of this result is in all essentials the same as the proof
of the equivalent result for uniform frames appearing in [5]. We therefore
only sketch the method.

The main ingredient is that tbUL should have the star-refinement prop-
erty. To see this, begin with a finite A ∈ UL and take B ∈ UL with B <∗ A.
Define an equivalence relation ∼ on B by x ∼ y iff A∩ ↑ x = A∩ ↑ y and
A∩ ↑ (Bx) = A∩ ↑ (By). Since A is finite, this gives a finite partition of B.

For each b ∈ B, define b =
∨
{x ∈ B : x ∼ b} which exists by (SCov). Fi-

nally let B = {b : b ∈ B}. It is immediate that B is finite and since B � B,
we have B ∈ UL. One then checks that if Bb � a then B b � a, all required
joins existing by application of (SCov).

For compatibility, one shows that x▹ y in (L,UL) iff x▹ y in (L, tbUL).
The coreflection property is then clear (since the image of a finite cover is
finite). �

Remark 8.5. We note that the technique for constructing coreflections
provided in [8] would suffice to provide the coreflection result of Proposition
8.4, but the explicit description of the totally bounded coreflection provided
above would then not be available.

Corollary 8.6. The Samuel compactification of a uniform S-frame
(L,UL) can equivalently be given by the composite:

CS(L, tbUL) −−−−−−→
τ

(L, tbUL) −−−−−→
i

(L,UL)

that is, by the completion of its totally bounded coreflection.

Proof. This is a routine application of Propositions 7.2, 8.2 and 8.4.
�
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