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Abstract. Local convergence of bounded degree graphs was introduced by
Benjamini and Schramm. This result was extended further by Lyons to bounded
average degree graphs. In this paper we study the convergence of random tree
sequences with given degree distributions. Denote by Dn the set of possible degree
sequences of a labeled tree on n nodes. Let Dn be a random variable on Dn and
T(Dn) be a uniform random labeled tree with degree sequence Dn. We show that
the sequence T(Dn) converges in probability if and only if Dn → D = (D(i))∞i=1,

where D(i) ∼ D(j), E(D(1)) = 2 and D(1) is a random variable on N
+.

1. Introduction

In recent years the study of the structure and behavior of real world
networks has received wide attention. The degree sequence of these net-
works appear to have special properties (like power law degree distribution).
Classical random graph models (like the Erdős–Rényi model) have very dif-
ferent degree sequences. An obvious solution is to study a random graph
with given degree sequence. More generally generate a random graph with
a degree sequence from a family of degree sequences. In [7] Chatterjee, Dia-
conis and Sly studied random dense graphs (graphs whose number of edges
is comparable to the square of the number of vertices) with a given degree
sequence.

It is not always easy to generate a truly random graph with a given de-
gree sequence. There is a fairly large literature on the configuration model
(for the exact definition of the model see [5]), where for a given degree se-
quence for each node i we consider di stubs and take a random pairing of the
stubs and connect the corresponding nodes with an edge. This model cre-
ates the required degree distribution, but gives a graph with possible loops
and parallel edges.
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2 A. DEÁK

A notion of convergence for (dense) graph sequences was developed by
Borgs, Chayes, Lovász, Sós and Vesztergombi in [6]. The limit objects were
described by Lovász and Szegedy in [12]. Using this limit theory, the au-
thors in [7] described the structure of random (dense) graphs from the con-
figuration model. They defined the convergence of degree sequences and
for convergent degree sequences they gave a sufficient condition on the de-
gree sequence, which implies the convergence of the random graph sequence
(taken from the configuration model).

What can we say if the graphs we want to study are sparse (the number
of edges is comparable to the number of vertices) and not dense? Is there a
similar characterization for sparse graphs with given degree sequence? We
establish a characterization for random trees with given (possibly random)
degree sequence. There are various limit theories and convergence notions
for trees introduced by Aldous [1] and by Elek and Tardos [10]. We use
the notion of convergence introduced for bounded degree graphs (that is the
degree of each vertex is bounded above by some uniform constant d) first
introduced by Benjamini and Schramm [3]. This notion was extended by
Lyons [13] to bounded average degree graphs.

In [8] the author described the behavior of a random tree sequence with
a given degree distribution. In this paper we extend this result and prove
a similar characterization as in [7] for random trees with given degree se-
quence. We define the convergence of degree sequences and give a necessary
and sufficient condition on the degree sequence, which implies the conver-
gence of the tree sequence T(Dn) in the sense of Lyons [13]. In the case of
convergence we describe the limit object.

This paper is organized as follows: In Section 2, we give the basic defini-
tions and notations. In Section 3, we describe the basic properties and the
limit of a sequence of random degree sequences. At the end of the section we
state our main theorem. In Section 4, we deal with labeled homomorphisms
and in Section 5, we describe the limit object.

2. Basic definitions and notations

2.1. Random weak limit of graph sequences. Let G = G(V,E)
be a finite simple graph on n nodes. For S � V (G) denote by G[S] the
subgraph of G spanned by the vertices v ∈ S. For a finite simple graph G
on n nodes, let BG(v,R) be the rooted R-ball around the node v, also called
as the R-neighborhood of v, that is the subgraph induced by the nodes at
distance at most R from v:

BG(v,R) = G[
{
u ∈ V (G) : distG(u, v) � R

}
].

Two rooted graphs G1, G2 are rooted isomorphic if there is an isomorphism
between them which maps the root of G1 to the root of G2. Given a pos-
itive integer R, a finite rooted graph F and a probability distribution ρ
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LIMITS OF RANDOM TREES. II 3

on rooted graphs, let p(R,F, ρ) denote the probability that the graph F is
rooted isomorphic to the R-ball around the root of a rooted graph chosen
with distribution ρ. It is clear that p(R,F, ρ) depends only on the compo-
nent of the root of the graph chosen from ρ. So we will assume that ρ is
concentrated on rooted connected graphs. For a finite graph G, let U(G)
denote the distribution on rooted graphs obtained by choosing a uniform
random vertex of G as root of G. It is easy to see that for any finite graph G
we have

p
(
R,F, U(G)

)
=
|{v ∈ V (G) : BG(v,R) is rooted isomorhpic to F

} |∣∣V (G)
∣∣ .

Definition 1. Let (Gn) be a sequence of finite graphs on n nodes, ρ a
probability distribution on infinite rooted graphs. We say that the random
weak limit of Gn is ρ if for any positive integer R and finite rooted graph F
we have

(1) lim
n→∞ p

(
R,F, U(Gn)

)
= p(R,F, ρ).

If Gn is a sequence of random finite graphs, then p
(
R,F, U(Gn)

)
is a

random variable, so by convergence we mean convergence in probability.

Definition 2. Let (Gn) be a sequence of random finite graphs on n
nodes, ρ a probability distribution on infinite rooted graphs. We say that the
random weak limit of Gn is ρ if ∀ ε > 0, R ∈ N

+ and finite rooted graph F
we have

(2) lim
n→∞P(|p(R,F, U(Gn)

)
− p(R,F, ρ)| > ε) = 0.

The formal meaning of this formula is, that the statistics p
(
R,F,U(Gn)

)
as random variables are concentrated.

2.2. Other notations. We will denote random variables with bold
characters. For a probability space (Ω,B, μ) and A ∈ B denote by I(A) the
indicator variable of the event A. Denote by Dn the set of possible degree
sequences of a labeled tree on n nodes. Throughout the paper we con-
sider labeled trees on n nodes unless stated otherwise. Let Dn be a random
variable on Dn. Denote by T(Dn) the uniform random tree on n labeled
nodes, with degree sequence Dn. Denote the degree sequence of a tree T by
DT =

(
DT (i)

)n
i=1. For a given degree sequence D =

(
D(i)

)n
i=1 there are

(
n− 2

D(1)− 1, D(2)− 1, . . . , D(n)− 1

)
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4 A. DEÁK

labeled trees with degree sequence D. It follows that for an arbitrary tree T

P(T(Dn) = T ) =
P(Dn = DT )(

n− 2
DT (1)− 1, DT (2)− 1, . . . , DT (n)− 1

) .

If it does not cause any confusion, we will use D,Tn instead of DT ,T(Dn)
respectively.

A finite rooted graph G with root v is said to be l-deep if the largest
distance from the root is l, that is

l = max
u∈V (G)

dist(v, u).

Denote by U l the set of equivalence classes of finite unlabeled l-deep
rooted graphs with respect to root-preserving isomorphisms. Let T l

x be an
l-deep rooted tree on k nodes with root x. Denote the vertices at distance i
from the root by Ti, and let ti = |Ti| (t0 is 1, t1 is the degree of the root).
For every finite graph G, p

(
R,F, U(G)

)
induces a probability measure on

UR which we call the R-neighborhood statistics of G. If G is a tree then
p
(
R,F, U(G)

)
is concentrated on rooted trees.

Let T be the set of all countable, connected infinite rooted trees. For an
infinite rooted tree T ∈ T denote by T (R) the R-neighborhood of the root
of T . For an R-deep rooted tree F define the set

T (F ) = {T ∈ T : T (R) is rooted isomorphic to F}.

Let F be the sigma-algebra generated by the sets
(
T (F )

)
F
, where F

is an arbitrary finite rooted tree. (T ,F) is a probability field. We call a
probability measure μ on T an infinite rooted random tree.

Every infinite random tree μ has the property that for any F ∈ UR,

(3) p(R,F, μ) =
∑

H∈UR+1, H(R)∼=F

p(R+ 1, H, μ).

Actually every distribution on rooted infinite graphs has the above prop-
erty. Note that if we want to prove the convergence of a random tree sequence
to a certain limit distribution ρ, then we need to have the convergence of
the neighborhood densities and also (3), the consistency of these densities,
which ensures that ρ will be concentrated on infinite rooted trees. These
together will imply (2).
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LIMITS OF RANDOM TREES. II 5

3. Limits of degree sequences

Consider a random degree sequence Dn =
(
Dn(i)

)n
i=1 and construct a

labeled tree T(Dn) with uniform distribution given the degree sequence.
We want to describe the limit of T(Dn) as n → ∞. We give a characteri-
zation of the degree sequences for which T(Dn) has an infinite random tree
as a limit. To describe the model and the limit, we need to define and un-
derstand the limit of a random degree sequence Dn. Here we only deal with
degree sequences of trees. We further assume that Dn is an exchangeable
sequence, that is for any σ ∈ Sn we have(

Dn(i)
)n
i=1 ∼ (Dn

(
σ(i)

)
)
n

i=1
.

Exchangeability is a way to eliminate exceptional vertices and allows us to
use the limit theory of exchangeable sequences. For more on exchangeable
random variables we refer to [2].

Definition 3. We say that an exchangeable sequence Dn is convergent
and Dn → D where D is a random infinite sequence if for every k ∈ N we
have (

Dn(i)
)k
i=1

P→
(
D(i)

)k
i=1.

It is easy to see that if Dn is exchangeable and Dn → D then D is also
an exchangeable sequence. The following theorem of Hewitt and Savage [11],
which is a generalization of de Finetti’s theorem, describes the limits of ex-
changeable sequences.

Theorem 1. Let X be a random infinite exchangeable array. Then X
is a mixture of infinite dimensional IID distributions

X =
∫
IID

λ dp(λ),

where p is a distribution on infinite dimensional IID distributions λ.

As a result, the limit of an exchangeable degree sequence is an infinite
exchangeable sequence and so a mixture of IID distributions. Note that if
Dn is not exchangeable then we can take a random permutation σ ∈ Sn and
define the exchangeable degree sequence D̃n(i) = Dn

(
σ(i)

)
.

Lemma 1. Let X be an infinite exchangeable random sequence. Further
assume that we have

P
(
X(1) = i, X(2) = i

)
= P

(
X(1) = i

)
P
(
X(2) = i

)
.

Then X is an infinite IID distribution (p is concentrated on one distribution).
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6 A. DEÁK

Proof. From Jensen’s inequality we have that

(4)
∫
IID

λ(i)2 dp(λ) �
(∫

IID
λ(i) dp(λ)

)2

.

Also from Theorem 1 we have∫
IID

λ(i)2 dp(λ) = P
(
X(1) = i,X(2) = i

)

= P
(
X(1) = i

)
P
(
X(2) = i

)
=

(∫
IID

λ(i) dp(λ)
)2

It follows that in (4) equality holds which means that p is a degenerate
distribution and so it proves our lemma. �

We will see that if T(Dn) is convergent then Dn satisfies the assumptions
in Lemma 1. So for a convergent random tree sequence T(Dn) the limit of
the degree sequence Dn needs to be an infinite IID distribution.

Example 1. Let X be a uniform random element of [n]. Consider the
degree sequence

D(i) =

{
n− 1, if i = X

1, otherwise

Let Stn = T(Dn) be the star-graph on n nodes. The limit degree sequence is
just the constant 1 vector • = (1,1, . . . ). Obviously in the limit the expected
degree of a node is 1. It is not hard to see that if F is not a single edge, then
p(R,F,Stn) = 0 for every n >

∣∣V (F )
∣∣ . Thus there is no limit distribution

ρ on infinite graphs such that P(
∣∣p(R,F, U(Stn)− p(R,F, ρ)

∣∣ > ε) → 0 for
every F .

Example 1 shows that if only the average degree is bounded, too many
unbounded degree vertices destroy convergence. As the average degree of a
tree on n nodes is 2n−1

n , one would expect that in the limit distribution the
expected degree of a node is 2, that is E

(
D(i)

)
= 2 for every i.

It turns out that it is enough to have that the degree sequence converges
and E

(
D(i)

)
= 2 holds for all i. Now we are ready to state our main theorem

which describes the degree sequence of convergent random tree sequences.

Theorem 2. Let Dn be a sequence of random degree sequences
(Dn ∈ Dn). The random tree sequence T(Dn) is convergent and converges
to an infinite random tree if and only if Dn → D, where D = (D0,D0, . . . )
is an infinite IID sequence and E(D0) = 2.

A. DEÁK

Acta Mathematica Hungarica 145, 2015

210



LIMITS OF RANDOM TREES. II 7

4. Labeled subgraph densities

To prove convergence we need to understand the neighborhood statistics
of the random tree T(Dn). First we will count subgraph densities and then
relate them to neighborhood statistics. For fixed unlabeled graphs F and G
denote by

inj(F,G) =

∣∣{φ : φ is an injective homomorphism from F to G}
∣∣∣∣V (G)

∣∣
the normalized number of copies of F in G. We call F the test graph. We
call inj(F,G) the injective density of F in G. For bounded degree graphs
the convergence of injective densities for every F is equivalent to the con-
vergence of neighborhood densities for every H rooted finite graph. For
bounded average degree graphs, subgraph statistics may be unbounded. For
the random star tree Stn we have

inj( ,Stn) =
(n− 1)(n− 2)

n
.

To avoid unbounded subgraph statistics we add a further structure to the
test graph F . We call a pair (F, r) a numbered graph, where r = (ri)

V (F )
i=1

and ri ∈ N. We call ri the remainder degree of the node i ∈ V (F ). Let (F, r)
be a numbered graph and φ be a homomorphism from F to a graph G. We
say that φ is a labeled homomorphism if φ is a homomorphism and

DG

(
φ(v)

)
= DF (v) + rv, ∀ v ∈ V (F ).

Let

injlab
(
(F, r), G

)

=

∣∣{φ : φ is an injective labeled homomorphism from F to G}
∣∣∣∣V (G)

∣∣
be the normalized number of numbered copies of F in G. First we want
to derive properties of degree sequences Dn for which injlab

(
(F, r),T(Dn)

)
is convergent for every finite graph F and remainder degrees r. Then in
Section 5 we will turn to the convergence of neighborhood statistics.

Remark 1. The convergence of injlab(., Gn) for every (F, r) does not
imply the random weak convergence of Gn in general. injlab

(
(F,R),Stn

)
is convergent for every (F, r), but as we saw earlier Stn is not a convergent
tree sequence.
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8 A. DEÁK

Remark 2. Let (F, r) be an arbitrary numbered graph on k nodes. One
can easily see that injlab

(
(F, r), G

)
is uniformly bounded for every G.

Proof. To see this we will bound the number of ways we can construct
an injective labeled homomorphism ψ from (F, r) to G. Let R = max{ri}.
If we define ψ(1) = v ∈ V (G), then DG

(
ψ(1)

)
= r1. There are at most

DG

(
ψ(1)

)DF (1) = r
DF (1)
1 � Rk possibilities for ψ(u)’s

(
u ∈ NF (1)

)
, where

NF (1) is the set of neighbors of 1 in F . Following this idea we get that for
every v there are at most (Rk)k possible ways to extend ψ, given ψ(1) = v.
Hence there are at most nRk2

injective labeled homomorphisms from F to G
and the remark follows. �

For an arbitrary numbered tree (T, r), and φ : V (T ) �→ [n] let

In
(
(T, r), φ

)
= I

(
{φ is an injective labeled homomorphism of T to Tn}

)

(5) X(T,r)
n =

∑
φ:V (T ) �→[n]

In
(
(T, r), φ

)
= n · injlab

(
(T, r),T(Dn)

)
.

We define In
(
(F, r), φ

)
, X(F,r)

n similarly for a numbered forest (F, r). If it
does not cause any confusion, we will omit r from the formulas above and
use In(T, φ), XT

n , In(F,φ) and XF
n instead to simplify notation. For random

graph sequences Gn by the convergence of injlab(.,Gn) we mean convergence
in probability.

Let Dn be a random degree sequence and Tn = T(Dn) be the associated
random tree sequence. Let (T, r) be a numbered tree. As injlab

(
(T, r),Tn

)
is bounded, we have that injlab

(
(T, r),Tn

)
is convergent for every (T, r) if

and only if we have that

(6) D
2
(
XT

n

n

)
= D

2(injlab
(
(T, r),Tn

)
) → 0.

We will use this formula to prove properties of the degree sequence. We can
expand the above formula using (5):

D
2
(
XT

n

n

)
=

1
n2

( ∑
ψ,φ:V (T ) �→[n]

E
(
In(T, ψ)In(T, φ)

)
(7)

−
∑

ψ,φ:V (T )�→[n]

E
(
In(T, ψ)

)
E
(
In(T, φ)

))
→ 0.
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LIMITS OF RANDOM TREES. II 9

The following two lemmas will establish a connection between the degree
sequence and the probabilities P

(
In(T, φ) = 1

)
. Then we will use (7) to

prove that the degree sequence satisfies the conditions in Lemma 1.

Remark 3. As the degree sequence is exchangeable, for any ψ, φ :
V (T ) �→ [n] we have

P
(
In(T, φ) = 1

)
= P

(
In(T, ψ) = 1

)
.

Let T be an arbitrary tree on k nodes. For a random degree sequence
Dn and φ : V (T ) �→ [n] let Dφ = (Dn

(
φ(i)

)
)
k

i=1
.

Lemma 2. Let Dn ∈ Dn be a random degree sequence and Tn = T(Dn).
Let F be an arbitrary forest on m (m � n) nodes with remainder degrees
r = (r1, . . . , rm). Let R =

∑
i ri and denote by C1, C2, . . . , Cc the connected

components of F . The probability that an arbitrary φ : V (T ) �→ [n] is an
injective labeled homomorphism is

P
(
In(F, φ) = 1

)
=

(n−m+ c− 2)!
(n− 2)!

H(r, F )P(Dφ = DT ),

where H(r,F ) =
∏c

i=1 [(
∑

j∈Ci
rj)

∏
j∈Ci

(DF (j)+rj−1)!
(rj !) ] is a constant depend-

ing only on F and the remainder degrees r.

Proof. We may assume that φ(i) = i for all i ∈ V (F ). Let Ri =∑
j∈Ci

rj . Fix a degree sequence D =
(
D(i)

)n
i=1. It follows from the

Prűfer sequence that the number of trees realizing this degree sequence is(
n− 2

D(1)− 1, . . . , D(n)− 1

)
. We need to count the trees with degree sequence

D which have F spanned by the first m nodes and the remainder degree con-
dition holds. Contract every connected component Ci of F to a single vertex
ui. Also contract the images of these components in T(Dn). We get a tree
on n−m+ c nodes with degree sequence

D′ =
(
R1, R2, . . . , Rc, D(m+ 1), . . . , D(n)

)
.

There are(
n−m+ c

R1 − 1, R2 − 1, . . . , Rc − 1, D(m+ 1)− 1, . . . , D(n)− 1

)

trees realizing the degree sequence D′. For each connected component Ci

we can connect the Ri edges to the vertices in

Ri!∏
j∈Ci

rj !
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10 A. DEÁK

ways. It follows that the number of labeled trees realizing the degree se-
quence D and having F on the first m vertices is(

n−m+ c− 2
R1 − 1, . . . , Rc − 1, D(m+ 1)− 1, . . . , D(n)− 1

) c∏
i=1

[
Ri!∏

j∈Ci
rj !

]
.

From this it follows that

P
(
In(F, φ) = 1 | Dn = D

)
(8)

=

(
n−m+ c− 2

R1 − 1, . . . , Rc − 1, D(m+ 1)− 1, . . . , D(n)− 1

)
(

n− 2
D(1)− 1, . . . , D(n)− 1

) c∏
i=1

Ri!∏
j∈Ci

rj !
.

Note that the degree sequence D should be such that D(i) = DF (i) + ri,
i = 1, . . . ,m, holds for the first m degrees. We need to sum this probability
for all possible degree sequences. In our case we sum over degree sequences
for which D(i) = DF (i)+ ri, i = 1, . . . ,m, holds. As in equation (8) the right
hand side does not depend on D(i), i > m, we have

P
(
In(F, φ) = 1

)

=
(n−m+ c− 2)!

(n− 2)!

c∏
i=1

[
Ri

∏
j∈Ci

(DF (j) + rj − 1)!
(rj !)

]
P(Dφ = DT ).

If we take H(r, F ) =
∏c

i=1 [Ri
∏

j∈Ci

(DF (j)+rj−1)!
(rj !) ], we get the desired equa-

tion. �
Let (F1, r1), (F2, r2) be two labeled graphs, φ : V (F1) �→ [n] and ψ :

V (F2) �→ [n]. We denote by F1,2 the graph obtained by identifying nodes
i ∈ V (F1), j ∈ V (F2) if and only if φ(i) = ψ(j). We can define remainder
degrees r1,2 on F1,2 in a straightforward way if φ(i) = ψ(j) ⇒ r1(i) = r2(j).

Lemma 3. Let Dn ∈ Dn be a random degree sequence and Tn = T(Dn).
Let F1, F2 be two forests on m1 and m2 nodes (m1,m2 � n) with remainder
degrees r1, r2. Let φ : V (F1) �→ [n] and ψ : V (F2) �→ [n]. If F1,2 is a for-
est and we can define r1,2, then let m1,2 =

∣∣V (F1,2)
∣∣ , c1,2 = {the number of

components of F1,2} and R1,2 =
∑

V (F1,2) r1,2(i). We have

P
(
In(F1, φ) = 1 | In(F2, ψ) = 1

)
(9)

=
(n−m1,2 + c1,2 − 2)!
(n−m2 + c2 − 2)!

H(r1,2, F1,2)
H(r2, F2)

P(Dφ = DF1
| Dψ = DF2

).
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LIMITS OF RANDOM TREES. II 11

Proof. The proof follows immediately from the definition of conditional
probability. �

Let Dn be a degree sequence and Tn = T(Dn) be the associated random
tree. Assume that injlab

(
(T, r),Tn

)
is convergent. Then by (6), D2(XT

n/
n) → 0. For any tree T on k nodes we have

D
2
(
XT

n

n

)
=

1
n2

∑
φ,ψ:V (T )�→[n]

(E
(
In(T, φ)In(T, ψ)

)
(10)

− E
(
In(T, φ)

)
E
(
In(T, ψ)

)
).

Now if we split the sum by the size of the intersection of φ
(
V (T )

)
and

ψ
(
V (T )

)
and use Remark 3, we have

D
2
(
XT

n

n

)
=

1
n2

k∑
i=0

|φ(V (T ))∩ψ(V (T ))|=i

n(n− 1) · . . . · (n− 2k + i+ 1)(11)

· (E
(
In(T, φ)In(T, ψ)

)
− E

(
In(T, φ)

)
E
(
In(T, ψ)

)
)

From Lemmas 2 and 3 we can easily derive that the order of the terms cor-
responding to i 	= 0 is O( 1

n). It follows that the condition D
2(XT

n ) → 0 is
equivalent to

(n− 1) · . . . · (n− 2k + 1)
n

(P
(
In(T, φ)In(T, ψ)

)
− P

(
In(T, φ)

)
P
(
In(T, ψ)

)
)→ 0.

Using again Lemmas 2 and 3 we can easily derive the following:

∀T, D
2
(
XT

n

n

)
→ 0 ⇔ ∀φ, ψ : V (T ) �→ [n], φ

(
V (T )

)
∩ ψ

(
V (T )

)
= ∅

(12)

P(Dφ = DT ,Dψ = DT ) → P(Dφ = DT )P(Dψ = DT ).

The following corollary is an easy application of Lemma 1 and (12).

Corollary 1. The labeled subgraph densities of a random tree sequence
converge in probability if and only if the corresponding degree sequence con-
verges to an infinite IID sequence.

LIMITS OF RANDOM TREES. II

Acta Mathematica Hungarica 145, 2015

215



12 A. DEÁK

Remark 4. The formula in Lemma 2 yields an easy result on the prob-
ability that two vertices i, j with degrees di, dj are connected:

P(ij ∈ E
(
T(Dn)

)
| Dn(i) = di, Dn(j) = dj) =

di + dj − 2
n− 2

.

Similarly for a given edge ij ∈ E
(
T(Dn)

)
the degree distribution of the

vertices i and j can be expressed as

P(Dn(i) = di,Dn(j) = dj | ij ∈ E
(
T(Dn)

)
)

=
n

n− 2
di + dj − 2

2
P
(
Dn(i) = di, Dn(j) = dj

)
.

5. The limit of T(Dn)

In the last section we discussed tree sequences Tn for which
injlab

(
(T, r),Tn

)
was convergent for every (T, r). We now turn to neighbor-

hood statistics. First we want to relate them to labeled subgraph densities.
We will express the neighborhood statistics as functions of the labeled sub-
graph densities.

As before let U l denote the set of all finite l-deep rooted tree. Consider
an l-deep rooted tree with root x: T l

x ∈ U l, with |T l
x| = k. Let us denote

the nodes at distance i from the root by Ti, and |Ti| = ti (t0 is just 1, t1 is
the degree of the root). BG(v, l) is the rooted l-ball around v in G and
Tn = T(Dn) is a random labeled tree with degree distribution Dn.

Let σ, ρ ∈ Aut(T l
x) be two rooted automorphisms of the rooted tree T l

x.
We say that σ ∼ ρ if and only if there exists τ ∈ Aut(T l

x), such that τ fixes
every vertex not in Tl and σ ◦ τ = ρ. ∼ is an equivalence relation. The
equivalence classes have

∏
i∈Tl−1

(D(i)− 1)! elements, hence it follows

(13)
∣∣Aut(T l

x)
∣∣ = ∣∣Aut(T l

x)/ ∼
∣∣ ∏
i∈Tl

(
D(i)− 1

)
!.

It is easy to see that

p(l, T l
x,Tn) =

1
n

X

(
T ′,(r′i)

|T ′|
i=1

)

n∣∣Aut(T l
x)/ ∼

∣∣ ,(14)

where T ′ = T l
x \ Tl, and

r′i =

{
0 i 	∈ Tl ∪ Tl−1

DT l
x
(i)− 1 i ∈ Tl−1.

(15)
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If Tn is a convergent random tree sequence then from (2) and (14) we
have that for any T ′ defined above

(16) D
2
(
XT ′

n

n

)
→ 0.

For bounded degree graphs the convergence of the neighborhood densities
implies the convergence of the graph sequence in the sense of Benjamini and
Schramm. We saw earlier in Example 1 that for bounded average degree
graphs this is not the case. The convergence of the neighborhood densities
alone is not enough. We need also (3) to hold.

The reason is that for fixed k the k-neighborhood of the large degree
nodes is large (O(n)). In Example 1 even if k = 1, every node “sees” the
center node (e.g. every neighborhood with radius 1 contains the center node)
and so every 2 radius neighborhood contains O(n) vertices, which is un-
bounded.

Assign remainder degrees r (ri = 0, ∀ i 	∈ Tl) to the rooted tree T l
x and

forget the root, then using Lemma 2

E(XT
n ) = E

( ∑
φ:V (T )�→[n]

In(T, φ)
)

=
n!

(n− k)!
P
(
In(T, φ) = 1

)
(17)

= n
n− 1
n− k

P(Dn

(
{1, 2, . . . , k}

)
= DT )H(r, T ).

From (15) we have that

p(l, T l
x,Tn) =

1
n

XT ′
n∣∣Aut(T l
x)/ ∼

∣∣ .
We want to define an infinite random rooted tree which is the limit of Tn.
Let

μn(T l
x) =

1
n

E(XT ′
n )∣∣Aut(T l
x)/ ∼

∣∣ .
Assume we have a convergent sequence of random trees Tn with degree

sequence Dn. Further assume that Dn → D = (D0,D0, . . . ) and let γ =
E(D0)− 1. Define

p(T l
x) = lim

n→∞μn(T l
x)(18)

= lim
n→∞

1∣∣Aut(T l
x)/ ∼

∣∣ n− 1
n− k

P(Dn

(
{1, 2, . . . , k}

)
= DT ′)H(r, T ′)
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=

∏
i 
∈Tl

P(D0 = di)(di − 1)!∣∣Aut(T l
x)
∣∣ tl.

We can expand the formula

H(r, T ′) =
∑

i∈V (T ′)

ri
∏

i∈V (T ′)

(di + ri − 1)!
ri!

=
∑

i∈Tl−1

(di − 1)
∏

i 
∈Tl−1∪Tl

(di − 1)! = tl
∏

i 
∈Tl−1∪Tl

(di − 1)!.

Then the last equation in (18) follows using equation (13) and the expansion
of H(r, T ′).

Define μ
(
T (F )

)
= p(F ). As the sets T (F ) generate the σ-algebra, we

can extend μ to T if μ satisfies (3). If this is the case then μ is a random
infinite rooted tree.

Lemma 4. Let Dn be an exchangeable random degree sequence and as-
sume that Dn → D, where D is an infinite IID random sequence of the vari-
able D0. Let μ be the associated measure defined above. μ extends to a
probability measure on G if and only if E(D0) = 2 (or equivalently γ = 1).

Proof. We only need to show that μ satisfies (3):

(19) p(T l−1
x ) =

∑
T l
x : BT l

x
(x, l − 1) ∼= T l−1

x

p(T l
x) ⇔ γ = 1

We have

p(T l
x) =

∏
i 
∈Tl

P(D0 = di)(di − 1)!∣∣Aut(T l
x)
∣∣ tl.

Now rearranging the sum by the degrees of the leaves of T l−1
x in T l

x we have

∑
T l
x : BT l

x
(x, l − 1) ∼= T l−1

x

p(T l
x) =

∞∑
DTl

x
(i)=1, i∈Tl−1

p(T l−1
x ∪ (di)i∈Tl−1

)

=
∏

j 
∈Tl−1∪Tl

P(D0(j) = dj)(dj − 1)!

×
∞∑

DTl
x
(i)=1, i∈Tl−1

∏
i∈Tl−1

P(D0(j) = dj)(di − 1)!∣∣Aut(T l
x)
∣∣ tl
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=

∏
j 
∈Tl∪Tl−1

P(D0(j) = dj)(dj − 1)!∣∣Aut(T l
x \ Tl)

∣∣ tl−1γ,

where the last equation follows from the fact that for fixed di, i ∈ Tl−1 every
σ ∈ Aut(T l−1

x ) has only one extension in Aut(Tl)/ ∼. Now (19) will hold
only if γ = 1. It follows that (19) holds if and only if E(D0) = 2 (γ = 1). �

Proof of Theorem 2. Let Dn be a degree sequence and T(Dn) = Tn

be the associated random tree sequence. First assume, that the degree se-
quence converges to the distributionD = (D0,D0, . . . ) and E(D0) = 2. From
equation (12) we get that for an arbitrary tree T , D2(X

T
n

n ) → 0. Then by
equation (14) we have that for every T l

x l-deep rooted tree, the neighborhood
statistics converge in probability to a limiting distribution p(T l

x). As the as-
sumptions of Lemma 4 hold, p(T l

x) defines a measure μ on infinite rooted
trees and so Tn → μ.

On the other hand assume that Tn converges to a random infinite rooted
tree μ. Then by equation (14) we get that the number of degree d vertices
is concentrated. Using that our degree distribution is exchangeable we get
that Dn → D = (D0,D0, . . . ) and E(D0) = 2. �
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