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Abstract. We determine the maximum possible size of the qth moment of
a Dirichlet series, for 1 � q � 2.

1. Introduction

In order to bound the mean value of multiplicative functions, Halász [5]
introduced a majorant principle which (after a little refining) asserts that if
λ1, λ2, . . . are real numbers, if |an| � An for all n, and

∑
n�1 An < ∞, then

(1.1)
∫ T

−T

∣∣∣∣∑
n�1

aneiλnt

∣∣∣∣
2

dt � 3
∫ T

−T

∣∣∣∣∑
n�1

Aneiλnt

∣∣∣∣
2

dt.

For a proof of the principle in this form, see Montgomery [8, §7.3]. In Halász’s
theory, one needs bounds for integrals of the shape

(1.2) I(q) =
∫ 1

−1

∣∣∣∣∑
p

ap log p
pσ+it

∣∣∣∣
q

dt, J(q) =
∫ 1

−1

∣∣∣∣∑
n�1

bn
nσ+it

∣∣∣∣
q

dt,
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when |ap| � 1 for all p, and |bn| � 1 for all n. From (1.1) it is immediate
that

I(2) � 3
∫ 1

−1

∣∣∣∣∑
n�2

Λ(n)
nσ+it

∣∣∣∣
2

dt = 3
∫ 1

−1

∣∣∣∣ζ ′ζ (σ + it)
∣∣∣∣
2

dt

�
∫ 1

−1

dt
|σ + it− 1|2 � 1

σ − 1

uniformly for 1 < σ � 2. Similarly, J(2) � 1/(σ − 1) for σ in this range.
By applying the majorant principle to the squares of these Dirichlet series
we find that I(4) � (σ − 1)−3 and J(4) � (σ − 1)−3. Hence by Hölder’s
inequality,

I(q) � (σ − 1)1−q, J(q) � (σ − 1)1−q (2 � q � 4),(1.3)

I(q) � (σ − 1)−q/2, J(q) � (σ − 1)−q/2 (1 � q � 2)(1.4)

uniformly for 1 < σ � 2. The estimate (1.3) is best possible, as we see by
taking ap = 1 for all p and bn = 1 for all n. For purposes of Halász’s theory,
it would be helpful if (1.3) held also when 1 < q � 2. However, we construct
examples that show that the weaker estimate (1.4) is best possible.

Theorem 1.1. Let I(q) and J(q) be defined as in (1.2). There exist
numbers ap with ap = ±1 for all p, and bn with bn = ±1 for all n, such that

I(q) � (σ − 1)−q/2, J(q) � (σ − 1)−q/2

uniformly for 1 < σ � 2, 1 � q � 2.

This is analogous to the situation for Fourier series. For example, if
|bn| � 1 for −N � n � N and e(ϑ) = e2πiϑ, then

(1.5)
∫ 1

0

∣∣∣∣ ∑
|n|�N

bne(nx)
∣∣∣∣
q

dx � N q−1

uniformly for 2 � q � 4, and

(1.6)
∫ 1

0

∣∣∣∣ ∑
|n|�N

bne(nx)
∣∣∣∣
q

dx � N q/2
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for 1 � q � 2, but there exists a choice of the bn with bn = ±1 for all n such
that

(1.7)
∫ 1

0

∣∣∣∣ ∑
|n|�N

bne(nx)
∣∣∣∣
q

dx � N q/2

uniformly for 1 � q � 2. Indeed, we use such bn in our construction.
Antecedents of Halász’s majorant principle (1.1) are found in Wiener

and Wintner [15] and in Erdős and Fuchs [3]. Logan [6] showed that the
constant 3 in (1.1) is best-possible.

2. Lemmas

We begin with a generalization of a result of H. S. Shapiro [12].
Let the sequence {rn}∞n=0 be defined by the relations r0 = 1, r2n = rn

and r2n+1 = (−1)nrn. The sequence {rn}∞n=0 is the classical Rudin–Shapiro
sequence. Suppose that the binary expansion of n is n =

∑
j�0 ej(n)2

j where
ej(n) = 0 or 1. A well-known alternative definition is

rn = (−1)H(n), where H(n) :=
∑
j�0

ej(n)ej+1(n) (n � 0).

Let pm(z), qm(z) denote polynomials defined recursively by the relations
p0(z) = 1, q0(z) = 1 and

(2.1) pm+1(z) = pm(z) + z2m

qm(z), qm+1(z) = pm(z)− z2m

qm(z).

One can easily check that

pm(z) =
∑

0�n�2m−1

rnz
n (m � 0).

The Rudin–Shapiro sequence may be generalized by the so-called paper-
folding twist. This amounts to introducing a sequence {εm}∞m=0 ∈ {±1}N
and replacing (2.1) by

(2.2) pm+1(z) = pm(z) + εmz2m

qm(z), qm+1(z) = pm(z)− εmz2m

qm(z).

We then obtain

pm(z) =
∑

0�n�2m−1

cnz
n (m = 0, 1, . . .)
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with

(2.3) cn = rn
∏
j�0

ε
ej(n)
j (n � 0),

a formula for which we did not find a reference in the literature and which
B. Saffari kindly pointed out to us.

Lemma 2.1. Let the sequence cm be defined as above. Put

(2.4) PM (ϑ) =
∑

0�m<M

cme(mϑ).

Then ∣∣PM (ϑ)
∣∣ � (

2 +
√
2
)√

M

for all positive integers M and all real ϑ.

Shapiro proved this in the case cm = rm (m � 0) but never published
his work. The coefficients rm were independently discovered by Golay [4].
Rudin [11] published an account of Shapiro’s argument in the case M = 2k,
but obtained an inferior constant in the general case. The above lemma is
proved in [7, théorème 2].

We note in passing that it follows from the proof of theorem 2 of [7] that,
given an arbitrary sequence {ηj}∞j=0 ∈ {±1}N, a generalized Rudin–Shapiro
sequence may alternatively be written as

(2.5) cm = (−1)vm

where vm equals 0 or 1 according to whether
∑

j�0 ηj
∣∣ej(m)− ej+1(m)

∣∣ be-
longs to {0, 1} or to {2, 3} modulo 4. In this setting, we recover rm by
selecting ηj = (−1)j (j � 0). Also, this easily enables retrieving (2.3).

Lemma 2.2. For |z| < 1, let f(z) =
∑

m�0 cmzm where cm is defined as

in (2.3). Then

|f(re(ϑ)) | � 2 +
√
2√

1− r
·

Numerical studies suggest that, at least in the case cj = rj (j � 0),

(2.6) max
ϑ

|f(re(ϑ)) | = f(r).
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Moreover, it is easy to show that, in the above circumstance, f(r)
√
1− r

does not tend to a limit as r → 1−. Indeed, it is proved in Brillhart, Erdős
and Morton [1] that

(2.7)
∑
m<n

rm =
√
nG

(
log n
log 4

)
(n � 0)

where G is 1-periodic and continuous. Moreover, Dumont and Thomas [2]
showed that G is nowhere differentiable and Tenenbaum [13] obtained the
oscillation result

G(x+ h)−G(x) = Ω
(√

h
)

(h � 0)

for any given real number x.
By partial summation it is readily derived from (2.7) that f(r)

√
1− r

oscillates as r → 1−: indeed, as y → ∞,

(2.8) 2yf
(
exp(−4−y)

)
tends to a 1-periodic, nowhere differentiable function of y.

It is noteworthy that

(2.9) f(z) = f
(
z2) + f

( − z2) , f(−z) = f
(
z2) − f

( − z2) .
Kumiko Nishioka [10] showed that f(z) and f(−z) are algebraically inde-
pendent, and then used these recurrences and Mahler’s method to show that
if α is algebraic with 0 < |α| < 1, then f(α) and f(−α) are algebraically in-
dependent.

Proof. Clearly

f
(
re(ϑ)

)
1− r

=
∑
m�0

Pm+1(ϑ)rm.

Hence by Lemma 2.1 and the triangle inequality it follows that

(2.10)

∣∣∣∣∣f
(
re(ϑ)

)
1− r

∣∣∣∣∣ � (
2 +

√
2
) ∑

m�0

√
m+ 1rm.

But

(2.11)
√
m+ 1 �

(
m+ 1/2

m

)
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for all non-negative integers m. Hence the right hand side of (2.10) is

�
(
2 +

√
2
) ∑

m�0

(
m+ 1/2

m

)
rm =

2 +
√
2

(1− r)3/2
,

which gives the stated result.
To prove (2.11), let am =

(
m+1/2

m

)
/
√
m+ 1. To show that am � 1, it

suffices to note that a0 = 1, and to show that the am are increasing. As to
this latter point, we observe that

am
am−1

=
m+ 1/2√
m(m+ 1)

=
2m+ 1√

(2m+ 1)2 − 1
> 1. �

Lemma 2.3. Let f be defined as in Lemma 2.2. For each r, 0 < r < 1,
there is a measurable set Ar � T with Lebesgue measure λ(Ar) � 1/50 such
that

(2.12) |f(re(ϑ)) | � 1
2
√
1− r

for all ϑ ∈ Ar.

Proof. Let Br = T�Ar be the complementary set of those ϑ on which
|f | is small; precisely |f(re(ϑ)) | < 1/

(
2
√
1− r

)
. By Parseval’s identity we

know that

(2.13)
∫ 1

0
|f(re(ϑ)) |2 dϑ =

∑
m�0

r2m =
1

1− r2 >
1

2(1− r)
·

By Lemma 2.2, the left hand side above equals∫
Ar

|f(re(ϑ)) |2 dϑ+
∫
Br

|f(re(ϑ)) |2 dϑ �
(
2 +

√
2
) 2

1− r
λ(Ar) +

1− λ(Ar)
4(1− r)

·

On combining this with (2.13), we find that

1
4
�

((
2 +

√
2
) 2 − 1

4

)
λ(Ar),

which gives the stated result. �
Lemma 2.4. Write s = σ + it. Then

∑
n�x

Λ(n)
ns

= −ζ ′

ζ
(s) +

x1−s

1− s
+O

(
x1−σ

exp
(√

log x
)
)
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for x � 2, 1 < σ � 2, −1 � t � 1.

This is included in equation (III.5.72) of [14] and is proved by Perron’s
summation formula (see Montgomery–Vaughan [9, Theorem 5.2] or Tenen-
baum [14, Corollary II.2.4]) appealing to the classical zero-free region and
estimates for ζ ′(s)/ζ(s) in the zero-free region.

Lemma 2.5. For x � 2, 1 < σ � 2, and −1 � t � 1, we have

∑
n�x

1
ns

= ζ(s) +
x1−s

1− s
+O

(
1
xσ

)
.

This is immediate by partial summation; see Montgomery–Vaughan [9,
Theorem 1.12] or Tenenbaum [14, Theorem II.3.5] for the details.

3. Proof of the Theorem

In view of the upper bounds of (1.4), it suffices to establish lower bounds.
For I(q) we let cm be defined as in (2.3), and take ap := cm for eπm < p <

eπ(m+1). Then, for s = σ + it, 1 < σ � 2, |t| � 1,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
p

ap log p
ps

=
∑
m�0

cm
∑

eπm<p<eπ(m+1)

log p
ps

=
∑
m�0

cm

( ∑
eπm<n<eπ(m+1)

Λ(n)
ns

+O(eπm(1−2σ))

)
.

(3.1)

By Lemma 2.4 this is

=
∑
m�0

cm

(
eπ(m+1)(1−s)

1− s
− eπm(1−s)

1− s

)
+O

( ∑
m�0

eπm(1−σ)

exp
(
c
√
m

)
)

+O(1).

Here the first error term is also O(1), uniformly for σ � 1. The main
term is

(3.2) F (s)f(eπ(1−s))

where f is defined in Lemma 2.2, and

(3.3) F (s) =
eπ(1−s) − 1

1− s
·

The zeros of this entire function are the numbers 1+ 2im where m runs over
non-zero integers. Thus

∣∣F (s)
∣∣ is bounded away from 0 uniformly on the
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rectangle 1 � σ � 2, −1 � t � 1. With a little computation one can in fact
show that the minimum of

∣∣F (s)
∣∣ in this rectangle is

∣∣F (2± i)
∣∣ ≈ 0.73766.

By Lemma 2.3 it follows that if σ is fixed, 1 < σ � 2, then∣∣∣∣∑
p

ap log p
pσ+it

∣∣∣∣ 	 1√
1− eπ(σ−1)

� 1√
σ − 1

when t/2 ∈ Aeπ(σ−1) , i.e. on a subset of −1 � t � 1 of measure > 1/25. Hence
I(q) 	 (σ − 1)−q/2.

The proof for J(q) is the same, except that now the passage from log p to
Λ(n) in (3.1) is unnecessary, and instead of Lemma 2.4 we use Lemma 2.5,
in which the error term is smaller.
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