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Abstract. We establish Pitt’s inequality and deduce Beckner’s logarithmic
uncertainty principle for the Dunkl transform on R. Also, we prove Stein—Weiss
inequality for the Dunkl-Bessel potentials.

1. Introduction

In the Euclidean case Pitt’s inequality for the Fourier transform [1,2], is
given for f € S(R™) (the Schwartz space) and 0 < 3 < n, by

1) [ 1wl f) dy

<[ () (] e

This inequality plays an important role for which some uncertainty princi-
ples hold. One of these uncertainty principles is the well-known Beckner’s
logarithmic uncertainty principle [1], that is, for every f € S(R™),

®) [ (i | @) o+ [ (il 7 dy

> (1/1(n/4)—1n7r)/ ’f(x)’de,

n
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where

w(t) = %[mr(t)} .

Recently, Omri [9] has established an analogue of the Beckner logarith-
mic inequality for the Hankel transform.

In this paper, we consider o = —1/2 and denote by L5L(R), 1 < p < oo,
the space of measurable functions f on R such that

1/p
</\f(y)\plyl2““dy> <00, 1£p< oo,
1l =4 e

esssup}f(y)} < 00, p = 0.
yeR

For f € LL(R) the Dunkl transform is defined (see [5]) by

FulH)y) = wr}aﬂ) / Eul(—izy) f(@) g+ dy, yeR,

where E,(—izy) denotes the Dunkl kernel (for more details see the next
section).

Many uncertainty principles have already been proved for the Dunkl
transform, namely by Rosler [11] and Shimeno [12] who established (by
two different methods) the Heisenberg—Pauli-Weyl inequality for the Dunkl
transform. Kawazoe and Mejjaoli [8] gave some related versions of the uncer-
tainty principle for the Dunkl transform (Cowling—Price’s theorem, Miyachi’s
theorem, Beurling’s theorem and Donoho-Stark’s theorem). The author [15]
proved a general form of the Heisenberg—Pauli-Weyl inequality for the Dunkl
transform.

Building on the ideas of Beckner [1] and Omri [9] we show a Pitt’s in-
equality for the Dunkl transform (Theorem 1) and we deduce logarithmic
uncertainty inequality for the Dunkl transform F, (Theorem 2). This in-
equality generalizes the Beckner’s logarithmic uncertainty inequality given
by (2).

The Pitt’s inequality for the Dunkl transform also leads to a Stein—Weiss
inequality in the Dunkl setting (Theorem 5).

This paper is organized as follows. In Section 2, we give Pitt’s inequality
for the Dunkl transform F, and deduce Beckner’s logarithmic uncertainty
inequality for F,. The last section is devoted to prove Stein—Weiss inequality
in the Dunkl setting.
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2. Logarithmic uncertainty principle for the Dunkl transform

The Dunkl operator A,, a = —1/2, associated with the reflection group
Zo on R:

Aaf(@) i= (o) + 220 [,

is the operator devised by Dunkl in connection with a generalization of the
classical theory of spherical harmonics.
For « 2 —1/2 and y € R, the initial problem:

Aaf(x) = ny(ﬂj), f(O) =1,
has a unique analytic solution E, (ixy) called Dunkl kernel [4,10] given by

Eo(izy) = ja(zy) + )Ja+1(f0y), r R,

2(a+1
where

' o —1)(z 2n
Jolzy) =Tla+ 1)) 22n§L! F)(n(+yc)y 1)

n=0

is the spherical Bessel function of order «a (see [19]).
For z,y € R, the Dunkl kernel E, (izy) has the following Bochner-type
representation (see [4,10])

« L a—
Eq(izy) = \/;;@;11)/2)/1 ¢t (1 —2) (1 4 t)dt.

In particular, we have
(3) |Ealizy)] €1, zycR

The Dunkl kernel gives rise to an integral transform, which is called
Dunkl transform on R, and was introduced by Dunkl in [5], where already
many basic properties were established. Dunkl’s results were completed and
e:ﬁtended later on by de Jeu [6]. The Dunkl transform of a function f in
L, (R), is

FalF)w) !

o . 2041
= g L e @l ye R

We notice that F_,/; agrees with the Fourier transform F that is given by

F(f)(x) = (2m) "/ / e (2)de, y e R

R
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The Dunkl transform of a function f € LL(R) could be computed via the
associated Hankel transform #, that is

FalH) ) = Ha(£)(19]) = iyHass (f ) (W), ver,
where f,(z) = 3(f(z) + f<—:c>) - fol@) = L(f(2) — f(~2)) and

Ha(fe) (lyl) = / fo (Yo (lylr) r2+ dr.

2aT a+1

More details for the Hankel transform are collected in [3,16].

Some of the properties of Dunkl transform F, are collected below (see
[5,6]).

(a) The Dunkl transform F, is a topological isomorphism from S(R) onto
itself, and from S’(R) onto itself.

(b) For all f € LL(R), we have F,(f) € L(R), and

1
Hfa(f)HLgo g manL}l
(¢) Inversion theorem: Let f € LL(R) such that F,(f) € LL(R). Then

f@) = Fa(Falf)) (~z) ae. zeR,

(d) Plancherel theorem: The Dunkl transform F, extends uniquely to an
isometric isomorphism of L2 (R) onto itself. In particular, we have

(4) IFllze = | FalH)]l 20 f € LAR).

n [9], Omri proved the following Pitt’s inequality for the Hankel trans-
form, that is, for f € Sc(R) (the Schwartz space of even functions) and 0 < /3
<20+ 2,

2 /o y [ Ha(D W)y dy < Aaﬁ/o 2?| f(z)|*2?H da,

where

© P [F <2a+42—,3> /F (204—1—424-5)]2

In the following, we extend the Pitt’s inequalities (1) and (5) to a more
general case.
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THEOREM 1 (Pitt’s inequality). Let 0 £ 8 < 2a+ 2 and let f € S(R),
then

/\yl‘ﬂlfa(ﬂ(y)ﬁylm“ dyéMa,ﬁ/ 2|?] £(2)| 222 da,
R R

with My g = sup(Aa,g, Aa+1,8), where Ay g is the constant given by (6).
PROOF. Let 0 < 5 < 2a+ 2 and let f € S(R), then

/Iyl/EIJTa(f)(y)!2|:y|2a“dy=/!yl’BI’I'%Q(fe)(IyI)IQIyQO“+1 dy
R R

+/R|y’_ﬁ‘7'la+1( )
e [ b () o

Then by (5) we obtain

2 90 o0 -
/‘y| *| FalH) )|yl dy§2Aa,5/0 2P| fe()| "2t da

o R 2 94
2 +3dy<2/0 y | Ha(feo) ()] "y dy

y2a+3 dy

fo(@)|*

xT

(e.0)
+ 2Aa+175/ 2P 2203 dy
0

S 2sup(Aa,s, Aat1,5) /O T @)+ | fol)| et d
Since
/OOO P[] + | fole)|Ja> dr = /R o] 1) e+ da,
we obtain
/R Wl Fal D)1y dy < sup(Aap, Aas) / [21°) £ (@)|*|al*** da,

which completes the proof. [J

In [9], Omri proved the following logarithmic uncertainty principle for
the Hankel transform, that is, for f € S.(R),

(7) /0 " ln(a)| f(@)| 22 do + /0 ()| Ha(£) ()] 27 dy
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> [w (“;1) +ln2} /Ooo\f(:v)|2:v2a+1 da.

In the next, we extend the logarithmic uncertainty principles (2) and (7)

to a more general case.
THEOREM 2 (logarithmic uncertainty inequality). For every f € S(R),

[ wlell f@) 1P o+ [ 1lal| Za(0)0)
Da:% [¢ (a;1> +w<a;2> —|—21n2}

k() ()

2, then for every

2
*lyl* > dy = Da| 1172

B+2a+1 ’ f(l')

PRrROOF. Let ¢(z, () = |z|
Be]l-a—1l,a+1]

and 0 < |z| < 1, we have

59t 8| < laf ol 1)

However, for every real number o such that 0 < 0 < a4+ 1, the function
x — |:L'|0’1n |x|‘ is bounded for 0 < |z| < 1 so that

1
/_1\x|a‘ln|a:|} ‘f(x)‘2dx < 00.

In the same way, for every 5 € |-a —1,a + 1] and |z| > 1, we have

55w 8| < 1al el | 1)

and since f € S(R), then the function =z — \x\go‘”‘ In|z|| | f
tegrable over |x| = 1. This justifies the differentiation under the integral sign

and shows that for every f € |-a — 1,a + 1]

2 8 2, 2041 >_ B 2| 12a+1
oo [l @ ) = [ fal el o) Pl

Acta Mathematica Hungarica 143, 2014

2. .
:U)| is also in-



486 F. SOLTANI

By the same way, one can easily see that for every § € |—a — 1,a + 1]

55 (LW 7] P )

_ / 1yl Iyl Fu(F) ()] 2l dy.

Now let ¢ be the function defined on |—a — 1, + 1] by

60 = [ 17| Zal D dy = Moy [ Jal?| )| o2

Then ¢ is well defined on |—a — 1, + 1], however Pitt’s inequality implies
that ¢(8) < 0 for every 0 < 5 < a+ 1, and according to Plancherel’s theo-
rem, ¢(0) = 0. Since ¢ is differentiable at 0T, then it follows that ¢'(07) < 0,

and by a basic calculus, we get

/ln‘fo(x)‘Q’x\QaH dw—i—/ln]y\‘fa(f)(y)}Q‘y’2a+1dy
R R

oM, ,
I
B=0+
But
OMap| L AesFAarny=2 1 [ Aas = Aatrs
op g—o+ 260t I53 2 =0+ I3

op op 2| 0B op ' B0+

Al e () g (5 o (:52)]

which completes the proof. [J

1 (0A, 0A. 1|04, 0A.
= — < P —+ +1’B> + = ' 8 _ +1,8

3. Stein—Weiss inequality for the Dunkl-Bessel potentials

The Dunkl transform allows us to define a generalized translation oper-
ators on L2(R) by setting

]:a(Tmf)(y) = Ecx(ixy)fOz(f)(y)? Yy e Rd-
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This is the definition of Thangavelu and Xu given in [17].
Note that from (3) and (4), the definition makes sense, and we have

172 flle S 1fllz, € L (R).

Rosler [10] introduced the Dunkl translation operators for f in LL(R),
by

2 A [0 e ] i, w200
f(), z =0,
where (z,9), = /22 + y% — 2|zy[cos§ and
Avyy(0) = \/m [1 — sgn(zy) cos 0] sin* 6 do.

More details for the Dunkl translation operators are collected in [13,14].
Let 5 be a real number such that 0 < § < 2a+ 2. The Dunkl-type Riesz
potentials I, gf are defined by (see [18]):

T s (2) = (dap) " / o (11P7272) (Cy) )l dy, f e S(R), R,

where
2—04—1—{-[‘3 F(5/2) .
I'(a+1-1%)

Thangavelu and Xu established the following relation between the Dunkl-
type Riesz potentials I, g and the Dunkl transform F,.

THEOREM 3 ([18], Proposition 4.1). Let 0 < 5 < 2ac+ 2. The identity

(8) Follasf)w) =yl Fal£) )
holds in the sense that

/I‘“ﬁf(x)g(x)ISCIQQHdg”:/Fa(f)(y)!yl5fa(g)(y)|y|2a“dy,
R R

deg =

whenever f,g € S(R).

COROLLARY 1. Let 8,y > 0 such that 8+ v < 2a+ 2. Then for every
f € S(R), the Dunkl-type Riesz potential 1, g satisfies the semigroup property

(9) Ioz,ﬁ(Ia,vf) = Ia,ﬁ+’y(f)'
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THEOREM 4 ([7], Theorem 1.1). Let 0 < S <2a+2 and let 1 <p <
2‘16‘*' 2 Then the Dunkl-type Riesz potential 1, is bounded from LE(R) into

LL(R) if and only if

1 1 8

p q¢ 20+2

COROLLARY 2. Let f,g € S(R) and let 0 < 5 < 2ac+ 2. The Dunkl-type
Riesz potential 1, g satisfies the duality property

(10) / a,pf(2)g(z )‘$|2a+1dx_/f m’x‘%ﬁ-l .

In particular, for every f € S(R),

(11) / F@)Tap @2+ do = / | L g2 f (2)| a2 do.

200+2

PROOF. Since f € S(R) then f belongs to L2(R) N La™ " (R), so that
according to Theorem 4, I, zf belongs to L2(R). Therefore by Plancherel
formula (4), we deduce that

[ Tast@a@@e de = [ W F D@ F @I dy

/f Lo,59)(y )\ylz““dy—/f Va9 (@)|z* ! da.

The relation (11) is an immediate consequence of the semigroup and
duality properties given by (9) and (10). O

In the Euclidean case [1] and in the Hankel setting [9], Pitt’s inequality is
derived from Stein—Weiss inequality. In the following we show the opposite.

THEOREM 5 (Stein—Weiss inequality). Let 0 < 8 < 2a.+ 2. Then for ev-
ery f € S(R) we have

/R / F@)me (11°72072) (=) F ) (el [yl) /272 dwdy < Bosllf112%,.

where

_ TB2)M,
20-FHT (a+1-5)

@,
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PRrROOF. According to (8) and Plancherel formula (4), we have

LI F D@ dy = [ | af @)
R R

By using relation (11) we deduce that

/R 8| Fa(F) )| 2 dy = / F@) g F@) e da

~ (o) [ 10 [ [ >f<y>\y|2a“dy]rxrm“dx.

However, since f € S(R) then f and I, gf belong to L2(R). Therefore by
Holder’s inequality, we deduce that

[ [ 15 (1772 ol el ) ay e

= da,ﬁHfHL@HIaﬁ

Hence, by Fubini’s theorem and Theorem 1, we deduce that

/R / @) (11P7272) (=) F @) (I 19]) 2 d dy

(/8/2 B 2a+1
<
S st /\ Pl @) P do.

f\HLi < 00.

Replacing f by |.r]_ﬂ /2 f in the preceding inequality we obtain the desired
result. U
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