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Abstract. We establish Pitt’s inequality and deduce Beckner’s logarithmic
uncertainty principle for the Dunkl transform on R. Also, we prove Stein–Weiss
inequality for the Dunkl–Bessel potentials.

1. Introduction

In the Euclidean case Pitt’s inequality for the Fourier transform [1,2], is
given for f ∈ S(Rn) (the Schwartz space) and 0 � β < n, by

∫
Rn

|y|−β∣∣ f̂(y)∣∣2 dy(1)

� πβ

[
Γ
(
n− β

4

)/
Γ
(
n+ β

4

)]2 ∫
Rn

|x|β∣∣f(x)∣∣2 dx.
This inequality plays an important role for which some uncertainty princi-
ples hold. One of these uncertainty principles is the well-known Beckner’s
logarithmic uncertainty principle [1], that is, for every f ∈ S(Rn),∫

Rn

ln
( |x|)∣∣f(x)∣∣2 dx+

∫
Rn

ln
( |y|)∣∣ f̂(y)∣∣2 dy(2)

�
(
ψ(n/4)− lnπ

) ∫
Rn

∣∣f(x)∣∣2 dx,
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where

ψ(t) =
d

dt

[
ln Γ(t)

]
.

Recently, Omri [9] has established an analogue of the Beckner logarith-
mic inequality for the Hankel transform.

In this paper, we consider α � −1/2 and denote by Lp
α(R), 1 � p �∞,

the space of measurable functions f on R such that

‖f‖Lp
α
:=

⎧⎪⎪⎨
⎪⎪⎩

(∫
R

∣∣f(y)∣∣p|y|2α+1 dy

)1/p

<∞, 1 � p <∞,

ess sup
y∈R

∣∣f(y)∣∣ <∞, p =∞.

For f ∈ L1
α(R) the Dunkl transform is defined (see [5]) by

Fα(f)(y) :=
1

2α+1Γ(α+ 1)

∫
R

Eα(−ixy)f(x)|y|2α+1 dy, y ∈ R,

where Eα(−ixy) denotes the Dunkl kernel (for more details see the next
section).

Many uncertainty principles have already been proved for the Dunkl
transform, namely by Rösler [11] and Shimeno [12] who established (by
two different methods) the Heisenberg–Pauli–Weyl inequality for the Dunkl
transform. Kawazoe and Mejjaoli [8] gave some related versions of the uncer-
tainty principle for the Dunkl transform (Cowling–Price’s theorem, Miyachi’s
theorem, Beurling’s theorem and Donoho-Stark’s theorem). The author [15]
proved a general form of the Heisenberg–Pauli–Weyl inequality for the Dunkl
transform.

Building on the ideas of Beckner [1] and Omri [9] we show a Pitt’s in-
equality for the Dunkl transform (Theorem 1) and we deduce logarithmic
uncertainty inequality for the Dunkl transform Fα (Theorem 2). This in-
equality generalizes the Beckner’s logarithmic uncertainty inequality given
by (2).

The Pitt’s inequality for the Dunkl transform also leads to a Stein–Weiss
inequality in the Dunkl setting (Theorem 5).

This paper is organized as follows. In Section 2, we give Pitt’s inequality
for the Dunkl transform Fα and deduce Beckner’s logarithmic uncertainty
inequality for Fα. The last section is devoted to prove Stein–Weiss inequality
in the Dunkl setting.
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2. Logarithmic uncertainty principle for the Dunkl transform

The Dunkl operator Λα, α � −1/2, associated with the reflection group
Z2 on R:

Λαf(x) :=
d

dx
f(x) +

2α+ 1
x

[
f(x)− f(−x)

2

]
,

is the operator devised by Dunkl in connection with a generalization of the
classical theory of spherical harmonics.

For α � −1/2 and y ∈ R, the initial problem:

Λαf(x) = iyf(x), f(0) = 1,

has a unique analytic solution Eα(ixy) called Dunkl kernel [4,10] given by

Eα(ixy) = jα(xy) +
ixy

2(α+ 1)
jα+1(xy), x ∈ R,

where

jα(xy) := Γ(α+ 1)
∞∑
n=0

(−1)n(xy)2n
22nn! Γ(n+ α+ 1)

,

is the spherical Bessel function of order α (see [19]).
For x, y ∈ R, the Dunkl kernel Eα(ixy) has the following Bochner-type

representation (see [4,10])

Eα(ixy) =
Γ(α+ 1)√
π Γ(α+ 1/2)

∫ 1

−1
eixyt

(
1− t2

)α−1/2(1 + t)dt.

In particular, we have

(3)
∣∣Eα(ixy)

∣∣ � 1, x, y ∈ R.

The Dunkl kernel gives rise to an integral transform, which is called
Dunkl transform on R, and was introduced by Dunkl in [5], where already
many basic properties were established. Dunkl’s results were completed and
extended later on by de Jeu [6]. The Dunkl transform of a function f in
L1
α(R), is

Fα(f)(y) :=
1

2α+1Γ(α+ 1)

∫
R

Eα(−ixy)f(x)|x|2α+1 dx, y ∈ R.

We notice that F−1/2 agrees with the Fourier transform F that is given by

F(f)(x) := (2π)−1/2
∫
R

e−ixyf(x) dx, y ∈ R.
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The Dunkl transform of a function f ∈ L1
α(R) could be computed via the

associated Hankel transform Hα that is

Fα(f)(y) = Hα(fe)
( |y|) − iyHα+1

(
fo
.

)( |y|) , y ∈ R,

where fe(x) = 1
2

(
f(x) + f(−x)) , fo(x) = 1

2

(
f(x)− f(−x)) and

Hα(fe)
( |y|) :=

1
2αΓ(α+ 1)

∫ ∞

0
fe(r)jα

( |y|r)r2α+1 dr.

More details for the Hankel transform are collected in [3,16].
Some of the properties of Dunkl transform Fα are collected below (see

[5,6]).
(a) The Dunkl transform Fα is a topological isomorphism from S(R) onto

itself, and from S ′(R) onto itself.
(b) For all f ∈ L1

α(R), we have Fα(f) ∈ L∞α (R), and

∥∥Fα(f)
∥∥
L∞

α

� 1
2α+1Γ(α+ 1)

‖f‖L1
α
.

(c) Inversion theorem: Let f ∈ L1
α(R) such that Fα(f) ∈ L1

α(R). Then

f(x) = Fα

(Fα(f)
)
(−x) a.e. x ∈ R.

(d) Plancherel theorem: The Dunkl transform Fα extends uniquely to an
isometric isomorphism of L2

α(R) onto itself. In particular, we have

(4) ‖f‖L2
α
=

∥∥Fα(f)
∥∥
L2

α

, f ∈ L2
α(R).

In [9], Omri proved the following Pitt’s inequality for the Hankel trans-
form, that is, for f ∈ Se(R) (the Schwartz space of even functions) and 0 � β
< 2α+ 2,

(5)
∫ ∞

0
y−β

∣∣Hα(f)(y)
∣∣ 2
y2α+1 dy � Aα,β

∫ ∞

0
xβ

∣∣f(x)∣∣ 2
x2α+1 dx,

where

(6) Aα,β = 2−β
[
Γ
(
2α+ 2− β

4

)/
Γ
(
2α+ 2 + β

4

)]2

.

In the following, we extend the Pitt’s inequalities (1) and (5) to a more
general case.
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Theorem 1 (Pitt’s inequality). Let 0 � β < 2α+ 2 and let f ∈ S(R),
then ∫

R

|y|−β∣∣Fα(f)(y)
∣∣ 2|y|2α+1 dy � Mα,β

∫
R

|x|β∣∣f(x)∣∣ 2|x|2α+1 dx,

with Mα,β = sup(Aα,β , Aα+1,β), where Aα,β is the constant given by (6).

Proof. Let 0 � β < 2α+ 2 and let f ∈ S(R), then∫
R

|y|−β∣∣Fα(f)(y)
∣∣2|y|2α+1 dy =

∫
R

|y|−β|Hα(fe)
( |y|) |2|y|2α+1 dy

+
∫
R

|y|−β
∣∣∣∣Hα+1

(
fo
.

)( |y|)
∣∣∣∣
2

|y|2α+3 dy � 2
∫ ∞

0
y−β

∣∣Hα(fe)(y)
∣∣2y2α+1 dy

+ 2
∫ ∞

0
y−β

∣∣∣∣Hα+1

(
fo
.

)
(y)

∣∣∣∣
2

y2α+3 dy.

Then by (5) we obtain
∫
R

|y|−β∣∣Fα(f)(y)
∣∣2|y|2α+1 dy � 2Aα,β

∫ ∞

0
xβ

∣∣fe(x)∣∣2x2α+1 dx

+ 2Aα+1,β

∫ ∞

0
xβ

∣∣∣∣fo(x)x

∣∣∣∣
2

x2α+3 dx

� 2 sup(Aα,β , Aα+1,β)
∫ ∞

0
xβ[

∣∣fe(x)∣∣2 + ∣∣fo(x)∣∣2]x2α+1 dx.

Since∫ ∞

0
xβ[

∣∣fe(x)∣∣ 2 +
∣∣fo(x)∣∣ 2

]x2α+1 dx =
1
2

∫
R

|x|β∣∣f(x)∣∣ 2|x|2α+1 dx,

we obtain∫
R

|y|−β∣∣Fα(f)(y)
∣∣ 2|y|2α+1 dy � sup(Aα,β , Aα+1,β)

∫
R

|x|β∣∣f(x)∣∣ 2|x|2α+1 dx,

which completes the proof. �
In [9], Omri proved the following logarithmic uncertainty principle for

the Hankel transform, that is, for f ∈ Se(R),∫ ∞

0
ln(x)

∣∣f(x)∣∣2x2α+1 dx+
∫ ∞

0
ln(y)

∣∣Hα(f)(y)
∣∣2y2α+1 dy(7)
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�
[
ψ

(
α+ 1
2

)
+ ln 2

] ∫ ∞

0
|f(x)|2x2α+1 dx.

In the next, we extend the logarithmic uncertainty principles (2) and (7)
to a more general case.

Theorem 2 (logarithmic uncertainty inequality). For every f ∈ S(R),
∫
R

ln |x|∣∣f(x)∣∣2|x|2α+1 dx+
∫
R

ln |y|∣∣Fα(f)(y)
∣∣2|y|2α+1 dy � Dα‖f‖2L2

α
,

Dα =
1
2

[
ψ

(
α+ 1
2

)
+ ψ

(
α+ 2
2

)
+ 2 ln 2

]

− 1
2

∣∣∣∣ψ
(
α+ 1
2

)
− ψ

(
α+ 2
2

)∣∣∣∣ .

Proof. Let ϕ(x, β) = |x|β+2α+1∣∣f(x)∣∣ 2, then for every

β ∈ ]−α− 1, α+ 1[

and 0 < |x| < 1, we have
∣∣∣∣ ∂

∂β
ϕ(x, β)

∣∣∣∣ � |x|α
∣∣ ln |x|∣∣ ∣∣f(x)∣∣ 2

.

However, for every real number σ such that 0 < σ < α+ 1, the function
x→ |x|σ∣∣ ln |x|∣∣ is bounded for 0 < |x| < 1 so that

∫ 1

−1
|x|α∣∣ ln |x|∣∣ ∣∣f(x)∣∣ 2

dx <∞.

In the same way, for every β ∈ ]−α− 1, α+ 1[ and |x| > 1, we have
∣∣∣∣ ∂

∂β
ϕ(x, β)

∣∣∣∣ � |x|3α+2∣∣ ln |x|∣∣ ∣∣f(x)∣∣ 2
,

and since f ∈ S(R), then the function x→ |x|3α+2∣∣ ln |x|∣∣ ∣∣f(x)∣∣ 2 is also in-
tegrable over |x| � 1. This justifies the differentiation under the integral sign
and shows that for every β ∈ ]−α− 1, α+ 1[

∂

∂β

(∫
R

|x|β∣∣f(x)∣∣ 2|x|2α+1 dx

)
=

∫
R

|x|β ln |x|∣∣f(x)∣∣ 2|x|2α+1 dx.
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By the same way, one can easily see that for every β ∈ ]−α− 1, α+ 1[

∂

∂β

(∫
R

|y|−β∣∣Fα(f)(y)
∣∣2|y|2α+1 dy

)

= −
∫
R

|y|−β ln |y|∣∣Fα(f)(y)
∣∣2|y|2α+1 dy.

Now let φ be the function defined on ]−α− 1, α+ 1[ by

φ(β) =
∫
R

|y|−β∣∣Fα(f)(y)
∣∣ 2|y|2α+1 dy −Mα,β

∫
R

|x|β∣∣f(x)∣∣ 2|x|2α+1 dx.

Then φ is well defined on ]−α− 1, α+ 1[, however Pitt’s inequality implies
that φ(β) � 0 for every 0 � β < α+ 1, and according to Plancherel’s theo-
rem, φ(0) = 0. Since φ is differentiable at 0+, then it follows that φ′(0+) � 0,
and by a basic calculus, we get

∫
R

ln |x|∣∣f(x)∣∣2|x|2α+1 dx+
∫
R

ln |y|∣∣Fα(f)(y)
∣∣2|y|2α+1 dy

� −∂Mα,β

∂β

∣∣∣∣
β=0+

‖f‖2L2
α
.

But

∂Mα,β

∂β

∣∣∣∣
β=0+

=
1
2

lim
β→0+

Aα,β +Aα+1,β − 2
β

+
1
2

lim
β→0+

∣∣∣∣Aα,β −Aα+1,β

β

∣∣∣∣

=
1
2

(
∂Aα,β

∂β
+

∂Aα+1,β

∂β

)
β=0+

+
1
2

∣∣∣∣∂Aα,β

∂β
− ∂Aα+1,β

∂β

∣∣∣∣
β=0+

= −1
2

[
ψ

(
α+ 1
2

)
+ ψ

(
α+ 2
2

)
+ 2 ln 2

]
+

1
2

∣∣∣∣ψ
(
α+ 1
2

)
− ψ

(
α+ 2
2

)∣∣∣∣ ,
which completes the proof. �

3. Stein–Weiss inequality for the Dunkl–Bessel potentials

The Dunkl transform allows us to define a generalized translation oper-
ators on L2

α(R) by setting

Fα(τxf)(y) = Eα(ixy)Fα(f)(y), y ∈ R
d.
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This is the definition of Thangavelu and Xu given in [17].
Note that from (3) and (4), the definition makes sense, and we have

‖τxf‖L2
α
� ‖f‖L2

α
, f ∈ L2

α(R).

Rösler [10] introduced the Dunkl translation operators for f in L1
α(R),

by

τxf(y) =

⎧⎪⎨
⎪⎩

∫ π

0

[
fe
(
(x, y)θ

)
+ fo

(
(x, y)θ

) x+ y

(x, y)θ

]
dνx,y(θ), (x, y) �= (0, 0)

f(y), x = 0,

where (x, y)θ =
√

x2 + y2 − 2|xy| cos θ and

dνx,y(θ) =
Γ(α+ 1)√
π Γ(α+ 1

2)

[
1− sgn(xy) cos θ

]
sin2α θ dθ.

More details for the Dunkl translation operators are collected in [13,14].
Let β be a real number such that 0 < β < 2α+2. The Dunkl-type Riesz

potentials Iα,βf are defined by (see [18]):

Iα,βf(x) := (dα,β)
−1

∫
R

τx
( |.|β−2α−2) (−y)f(y)|y|2α+1 dy, f ∈ S(R), x ∈ R,

where

dα,β := 2−α−1+β Γ(β/2)
Γ(α+ 1− β

2 )
.

Thangavelu and Xu established the following relation between the Dunkl-
type Riesz potentials Iα,β and the Dunkl transform Fα.

Theorem 3 ([18], Proposition 4.1). Let 0 < β < 2α+ 2. The identity

(8) Fα(Iα,βf)(y) = |y|−βFα(f)(y)

holds in the sense that∫
R

Iα,βf(x)g(x)|x|2α+1 dx =
∫
R

Fα(f)(y)|y|−βFα(g)(y)|y|2α+1 dy,

whenever f, g ∈ S(R).
Corollary 1. Let β, γ > 0 such that β + γ < 2α+ 2. Then for every

f ∈ S(R), the Dunkl-type Riesz potential Iα,β satisfies the semigroup property

(9) Iα,β(Iα,γf) = Iα,β+γ(f).
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Theorem 4 ([7], Theorem 1.1). Let 0 < β < 2α+ 2 and let 1 < p <
2α+2
β . Then the Dunkl-type Riesz potential Iα,β is bounded from Lp

α(R) into

Lq
α(R) if and only if

1
p
− 1

q
=

β

2α+ 2
.

Corollary 2. Let f, g ∈ S(R) and let 0 < β < 2α+ 2. The Dunkl-type
Riesz potential Iα,β satisfies the duality property

(10)
∫
R

Iα,βf(x)g(x)|x|2α+1 dx =
∫
R

f(x)Iα,βg(x)|x|2α+1 dx.

In particular, for every f ∈ S(R),

(11)
∫
R

f(x)Iα,βf(x)|x|2α+1 dx =
∫
R

∣∣Iα,β/2f(x)∣∣ 2|x|2α+1 dx.

Proof. Since f ∈ S(R) then f belongs to L2
α(R) ∩ L

2α+2

α+1+β
α (R), so that

according to Theorem 4, Iα,βf belongs to L2
α(R). Therefore by Plancherel

formula (4), we deduce that
∫
R

Iα,βf(x)g(x)|x|2α+1 dx =
∫
R

|y|−βFα(f)(y)Fα(g)(y)|y|2α+1 dy

=
∫
R

Fα(f)(y)Fα(Iα,βg)(y)|y|2α+1 dy =
∫
R

f(x)Iα,βg(x)|x|2α+1 dx.

The relation (11) is an immediate consequence of the semigroup and
duality properties given by (9) and (10). �

In the Euclidean case [1] and in the Hankel setting [9], Pitt’s inequality is
derived from Stein–Weiss inequality. In the following we show the opposite.

Theorem 5 (Stein–Weiss inequality). Let 0 < β < 2α+2. Then for ev-
ery f ∈ S(R) we have

∫
R

∫
R

f(x)τx
( |.|β−2α−2) (−y)f(y)( |x| |y|)−β/2+2α+1

dx dy � Bα,β‖f‖2L2
α
,

where

Bα,β =
Γ(β/2)Mα,β

2α−β+1Γ(α+ 1− β
2 )

.
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Proof. According to (8) and Plancherel formula (4), we have
∫
R

|y|−β∣∣Fα(f)(y)
∣∣ 2|y|2α+1 dy =

∫
R

∣∣Iα,β/2f(x)∣∣ 2|x|2α+1 dx.

By using relation (11) we deduce that
∫
R

|y|−β∣∣Fα(f)(y)
∣∣2|y|2α+1 dy =

∫
R

f(x)Iα,βf(x)|x|2α+1 dx

= (dα,β)
−1

∫
R

f(x)
[ ∫

R

τx
( |.|β−2α−2)(−y)f(y)|y|2α+1 dy

]
|x|2α+1 dx.

However, since f ∈ S(R) then f and Iα,βf belong to L2
α(R). Therefore by

Hölder’s inequality, we deduce that
∫
R

∫
R

|f(x)τx( |.|β−2α−2)(−y)f(y)|( |x| |y|)2α+1
dy dx

� dα,β‖f‖L2
α

∥∥Iα,β |f |∥∥L2
α

<∞.

Hence, by Fubini’s theorem and Theorem 1, we deduce that
∫
R

∫
R

f(x)τx
( |.|β−2γ−2)(−y)f(y)( |x| |y|)2α+1

dx dy

� Γ(β/2)Mα,β

2α−β+1Γ(α+ 1− β
2 )

∫
R

|x|β∣∣f(x)∣∣2|x|2α+1 dx.

Replacing f by |x|−β/2f in the preceding inequality we obtain the desired
result. �
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[16] K. Stempak, La théorie de Littlewood–Paley pour la transformation de Fourier–Bessel,
C.R. Acad. Sci. Paris, 303 Serie I (1) (1986), 15–18.

[17] S. Thangavelu and Y. Xu, Convolution operator and maximal function for the Dunkl
transform, J. Anal. Math., 97 (2005), 25–56.

[18] S. Thangavelu and Y. Xu, Riesz transform and Riesz potentials for Dunkl transform,
J. Comput. Appl. Math., 199 (2007), 181–195.

[19] G. N. Watson, A Treatise on Theory of Bessel Functions, Cambridge University Press
(Cambridge, 1966).

F. SOLTANI: PITT’S INEQUALITY AND LOGARITHMIC . . .490


	PITT’S INEQUALITY AND LOGARITHMIC UNCERTAINTY PRINCIPLE FOR THE DUNKL TRANSFORM ON R
	Abstract
	1. Introduction
	2. Logarithmic uncertainty principle for the Dunkl transform
	3. Stein–Weiss inequality for the Dunkl–Bessel potentials
	References




