A GENERALIZATION OF THE UNIT AND UNITARY CAYLEY GRAPHS OF A COMMUTATIVE RING

K. KHASHYARMANESH* and M. R. KHORSANDI

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran e-mails: khashyar@ipm.ir, khorsandi@stu-mail.um.ac.ir

(Received August 24, 2011; accepted December 9, 2011)

Abstract. Let R be a commutative ring with non-zero identity and G be a multiplicative subgroup of U(R), where U(R) is the multiplicative group of unit elements of R. Also, suppose that S is a non-empty subset of G such that $S^{-1} = \{s^{-1} \mid s \in S\} \subseteq S$. Then we define $\Gamma(R, G, S)$ to be the graph with vertex set R and two distinct elements $x, y \in R$ are adjacent if and only if there exists $s \in S$ such that $x + sy \in G$. This graph provides a generalization of the unit and unitary Cayley graphs. In fact, $\Gamma(R, U(R), S)$ is the unit graph or the unitary Cayley graph, whenever $S = \{1\}$ or $S = \{-1\}$, respectively. In this paper, we study the properties of the graph $\Gamma(R, G, S)$ and extend some results in the unit and unitary Cayley graphs.

1. Introduction

The Cayley graph introduced by Arthur Cayley in 1878 is a useful tool for connection between group theory and the theory of algebraic graphs. Let A be an abelian group and C be a subset of A. Then the Cayley sum graph Cay⁺ (A, C) is the graph with vertex set A and edge set $\{\{a,b\} \mid a+b \in C\}$. Furthermore, whenever $0 \notin C$ and $-C = \{-c \mid c \in C\}$ $\subseteq C$, then the Cayley graph Cay (A, C) is the graph with vertex set A and edge set $\{\{a,b\} \mid a-b \in C\}$. We refer the reader to [8] for general properties of Cayley graphs. Unlike Cayley graphs, there are only a few appearances of Cayley sum graphs in the literature (see [9] and references therein). It seems that Cayley sum graphs are rather difficult to study (cf. [5] and [9]).

In recent years, for a ring R, Cayley (sum) graphs of the abelian group (R, +) with respect to subsets of R have received much attention in the literature. Suppose that Z(R) and U(R) are the sets of zero-divisors and units

0236-5294/\$20.00 © 2012 Akadémiai Kiadó, Budapest, Hungary

^{*} Corresponding author.

 $Key\ words\ and\ phrases:$ unit graph, unitary Cayley graph, Cayley sum graph, diameter, girth, planarity.

Mathematics Subject Classification: 05C25, 13E10.

of R, respectively. In [2], the authors defined the *total graph* of a commutative ring that is the graph Cay⁺ (R, Z(R)) without loops. Also, in [12], the authors studied the chromatic number of Cay $(R, Z(R) \setminus \{0\})$. Moreover, in [3], the authors defined the *unit graph* of a commutative ring that is Cay⁺ (R, U(R)) without loops. In [1] and [10], the authors obtained some basic properties of Cay (R, U(R)), which is usually called the *unitary Cayley* graph. When we compare the unit and unitary Cayley graphs, it seems that they have the same behavior, however in general, they are not isomorphic. This provides a motivation to introduce a generalization of these graphs.

Let R be a commutative ring with non-zero identity, G be a multiplicative subgroup of U(R) and S be a non-empty subset of G such that $S^{-1} = \{s^{-1} \mid s \in S\} \subseteq S$. Then $\Gamma(R, G, S)$ is the (simple) graph with vertex set R and two distinct elements $x, y \in R$ are adjacent if and only if there exists $s \in S$ such that $x + sy \in G$. If we omit the word "distinct", we obtain the graph $\overline{\Gamma}(R, G, S)$; this graph may have loops. The graph $\Gamma(R, G, S)$ provides an 'umbrella concept' which covers the unit graphs and the unitary Cayley graphs; indeed, if G = U(R) and $S = \{1\}$, then $\Gamma(R, G, S)$ is the unit graph, and if G = U(R) and $S = \{-1\}$, then $\Gamma(R, G, S)$ is the unitary Cayley graph. Note that the graph $\Gamma(R, G, S)$ is a subgraph of the *co-maximal graph* (cf. [13]). In this paper we study properties of the graph $\Gamma(R, G, S)$ and generalize some corresponding results in [1] and [3].

2. Some basic general properties

Throughout this article, all rings are assumed to be commutative with non-zero identity. We denote the ring of integers modulo n by \mathbb{Z}_n and the field with q elements by \mathbb{F}_q . Also, for a ring R, the Jacobson radical of R is denoted by J(R). We refer the reader to [4] for general references on ring theory.

For a graph Γ , $V(\Gamma)$ and $E(\Gamma)$ denote the vertex set and edge set of Γ respectively. The set of vertices adjacent to a vertex v in the graph Γ is denoted by $N_{\Gamma}(v)$, or briefly by N(v). The degree deg (v) of a vertex v in the graph Γ is the number of edges of Γ incident with v. The graph Γ is called *k*-regular if all vertices of Γ have degree k, where k is a fixed positive integer. A complete graph Γ is a simple graph such that all vertices of Γ are adjacent. In addition, K_n denotes a complete graph with n vertices. A graph Γ is called *bipartite* if $V(\Gamma)$ admits a partition into two classes such that vertices in the same partition class must not be adjacent. A simple bipartite graph in which every two vertices from different partition classes are adjacent is called a complete bipartite graph, denoted by $K_{m,n}$, where mand n are of size of the partition classes. Graphs of the form $K_{1,n}$ are called stars. A refinement of a star graph with center c is a simple graph such that all vertices are adjacent to c. A clique of a graph Γ is a complete subgraph of Γ . A coclique in a graph Γ is a set of pairwise nonadjacent vertices.

A walk (of length k) in a graph Γ between two vertices x, y is an alternating sequence $x = v_0, e_0, v_1, e_1, \ldots, e_{k-1}, v_k = y$ of vertices and edges in G, denoted by

$$v_0 - v_1 - \cdots - v_k,$$

such that $e_i = \{v_i, v_{i+1}\}$ for all i < k. If the vertices in a walk are all distinct, it defines a path in Γ , denoted by P_k . If $P = v_0 - v_1 - \cdots - v_{k-1}$ is a path, then the graph $C := P + v_{k-1}v_0$ is called a cycle of length k and is denoted by C_k . The minimum length of a cycle (contained) in a graph Γ is the girth gr (Γ) of Γ ; if Γ does not contain a cycle, we set gr (Γ) $:= \infty$. A graph Γ is called connected if any two of its vertices are linked by a walk in Γ . The distance d(x, y) in Γ of two vertices x, y is the length of a shortest path between x, y in G; if no such paths exists, we set $d(x, y) := \infty$. The greatest distance between any two vertices in Γ is the diameter of Γ , denoted by diam (Γ). Suppose that Γ_1 and Γ_2 are two simple graphs with disjoint vertex sets. Then the union $\Gamma = \Gamma_1 \cup \Gamma_2$ is a graph with vertex set $V(\Gamma) = V(\Gamma_1) \cup V(\Gamma_2)$ and edge set $E(\Gamma) = E(\Gamma_1) \cup E(\Gamma_2)$. Also, if a graph Γ consists of k (with $k \geq 2$) disjoint copies of a graph H, then we set $\Gamma := kH$. We refer the reader to [7] and [14] for general references on graph theory.

We begin with the following proposition.

PROPOSITION 2.1. The following statements hold. (a) If $G = \{1\}$, then

$$\Gamma(R,G,S) \cong \begin{cases} \frac{|R|}{2}K_2 & \text{if } 2 \notin U(R), \\ \frac{|R|-1}{2}K_2 \cup K_1 & \text{otherwise.} \end{cases}$$

(b) If $G = \{1, a\}$, for some $a \in R$ with $a \neq 1$, and $S = \{s\}$, then

(i) whenever $1 + s \notin U(R)$, the graph $\Gamma(R, G, S)$ is 2-regular; and,

(ii) whenever $1 + s \in U(R)$, all vertices in $\Gamma(R, G, S)$, except two vertices, have degree 2. In particular, if R is finite, then $\Gamma(R, G, S) \cong P_n \cup H$, where P_n is a path of length $n \ge 2$ and H is an empty graph or a 2-regular graph.

PROOF. (a) It follows from the fact that, for every vertex x of $\Gamma(R, \{1\}, \{1\})$, $N(x) = \{1 - x \mid 1 - x \neq x\}$.

(b) The first claim follows from the fact that, for every vertex x of $\Gamma(R, \{1, a\}, \{s\})$, $N(x) = \{a - sx, 1 - sx\}$. For the second one, note that

there exists a unique element z in R such that (1+s)z = 1. Hence $N(z) = \{a - sz\}$ and $N(az) = \{1 - saz\}$. Also, for a vertex x with $x \neq z$ and $x \neq az$, $N(x) = \{a - sx, 1 - sx\}$. The result now immediately follows from the fact that the two elements a - sz and 1 - saz do not belong to $\{z, az\}$. \Box

The following example shows that in the last part of Proposition 2.1, the graph H may be non-empty.

EXAMPLE 2.2. Let $R = \mathbb{Z}_{15}$. Put $G := \{1, 4\}$ and $S := \{1\}$. Then it is not hard to see that $\Gamma(R, G, S) \cong P_4 \cup C_{10}$.

In view of the Proposition 2.1(a), we obtain the following result.

COROLLARY 2.3. Let R be a finite ring. Then $2 \in U(R)$ if and only if |R| is odd.

Let Γ_1 and Γ_2 be two graphs without multiple edges. Recall that the tensor product $\Gamma = \Gamma_1 \otimes \Gamma_2$ is a graph with vertex set $V(\Gamma) = V(\Gamma_1) \times V(\Gamma_2)$ and two distinct vertices (u_1, u_2) and (v_1, v_2) of Γ are adjacent if and only if $\{u_1, v_1\} \in E(\Gamma_1)$ and $\{u_2, v_2\} \in E(\Gamma_2)$.

REMARKS 2.4. (a) For any vertex x of $\Gamma(R, G, S)$, we have the inequalities

(*)
$$|G| - 1 \leq \deg(x) \leq |G| |S|.$$

Furthermore, for any vertex x of $\overline{\Gamma}(R, G, S)$, deg $(x) \ge |G|$.

(b) In the light of Proposition 2.1(a), the above inequalities imply that the graph $\Gamma(R, G, S)$ has an isolated vertex if and only if $G = \{1\}$ and $2 \in U(R)$.

(c) Suppose that R_1 and R_2 are rings and, for each i with $i = 1, 2, G_i$ is a subgroup of $U(R_i)$. Also, assume that S_i is a non-empty subset of G_i with $S_i^{-1} \subseteq S_i$.

(i) Then $\Gamma(R_1 \times R_2, G_1 \times G_2, S_1 \times S_2) \cong \overline{\Gamma}(R_1, G_1, S_1) \otimes \overline{\Gamma}(R_2, G_2, S_2).$

(ii) Furthermore, whenever $R_1 = R_2$, $G_1 \subseteq G_2$ and $S_1 \subseteq S_2$, then $\Gamma(R_1, G_1, S_1)$ is a subgraph of $\Gamma(R_2, G_2, S_2)$.

The next example shows that the bound obtained in (*) is sharp.

EXAMPLE 2.5. Suppose that $R = \mathbb{Z}_8$ and $G = S = \{1, 3\}$. Then deg (2) = deg (6) = 4 (see Fig. 1).

THEOREM 2.6. Let R be a finite ring. Then the following statements hold.

(a) If (R, \mathfrak{m}) is a local ring of even order, then

$$\Gamma(R, U(R), \{1\}) \cong \Gamma(R, U(R), \{-1\}).$$

(b) If R is a ring of odd order, then $\Gamma(R, U(R), \{1\}) \cong \Gamma(R, U(R), \{-1\})$.

Fig. 1: $\Gamma(\mathbb{Z}_8, \{1,3\}, \{1,3\})$

PROOF. (a) Clearly, for every two elements x and y of R, (x+y) + (x-y) = 2x. Also, in view of Corollary 2.3, we have that $2 \in \mathfrak{m}$. Hence $x + y \in \mathfrak{m}$ if and only if $x - y \in \mathfrak{m}$. This implies that $x + y \in U(R)$ if and only if $x - y \in U(R)$, which completes the proof.

(b) By [1, Proposition 2.2], the unitary Cayley graph $\Gamma(R, U(R), \{-1\})$ is regular. On the other hand, since R has odd order, by Corollary 2.3 and [3, Proposition 2.4(b)], the unit graph $\Gamma(R, U(R), \{1\})$ is not regular. \Box

THEOREM 2.7. The graph $\Gamma(R, G, S)$ is a complete graph if and only if the following statements hold.

(a) R is a field;

- (b) G = U(R); and,
- (c) $|S| \ge 2$ or $S = \{-1\}$.

PROOF. First, assume that $\Gamma(R, G, S)$ is complete. Since every non-zero element x of R is adjacent to 0, there exists $s \in S$ such that $x + s0 = x \in G$, and so $G = R - \{0\}$. This means that R is a field with G = U(R). Now, assume to the contrary that $S = \{s\}$ with $s \neq -1$. Then, for every element x of R with $x \neq 1$, x is adjacent to 1, and hence 1 + sx is unit. On the other hand, since s is unit, $s \notin J(R)$. Thus 1 + s is not unit, and so s = -1 which is the required contradiction.

Conversely, assume that there exist two distinct non-adjacent elements x and y in $\Gamma(R, G, S)$. Without loss of generality, we may assume that $y \neq 0$. Thus, for every $s \in S$, x + sy = 0. Hence $s = -y^{-1}x$, and so |S| = 1. Therefore $S = \{-1\}$, and hence x = -sy = y, which is impossible. \Box

PROPOSITION 2.8. The graph $\Gamma(R, G, S)$ is a refinement of a star graph with center 0 if and only if R is a field with G = U(R).

PROOF. Let $\Gamma(R, G, S)$ be a refinement of a star graph with center 0. Then, every non-zero element x of R is adjacent to 0, and so $x \in G$. Hence $G = R - \{0\}$. The converse is obvious. \Box COROLLARY 2.9. $\Gamma(R, G, S)$ is a star graph with center 0 if and only if $R \cong \mathbb{Z}_2$ or $R \cong \mathbb{Z}_3$ with $S = \{1\}$.

PROOF. Let $\Gamma(R, G, S)$ be a star graph with center 0. Then, by Proposition 2.8, R is a field with G = U(R). If $|S| \ge 2$ or $S = \{-1\}$, then, by Theorem 2.7, $\Gamma(R, G, S)$ is a complete graph. This implies that $R \cong \mathbb{Z}_2$. Now, if $S = \{s\}$ with $s \ne -1$, then, for every non-zero element x of R, $N(x) = R - \{x, -sx\}$, and hence deg (x) = |R| - 2. Thus $R \cong \mathbb{Z}_3$ with $S = \{1\}$. The converse is obvious. \Box

PROPOSITION 2.10. Let R be a finite ring and $\Gamma(R, G, S)$ be a refinement of a star graph with non-zero center. If S is singleton, then $\Gamma(R, G, S)$ is complete.

PROOF. Put $S := \{s\}$ and consider the non-zero center c of $\Gamma(R, G, S)$. Then $c \in G$ and, for every element x of R with $x \neq 1$, xc is adjacent to c. Hence $c + csx \in G$, and so $1 + sx \in G$. This means that x is adjacent to 1, and thus 1 is a center of $\Gamma(R, G, S)$. Now, the map $f : R \setminus \{1\} \longrightarrow G$ given by f(x) = x + s, for all $x \in R \setminus \{1\}$, is injective. Hence, $|R| - 1 \leq |G|$ which implies that $G = R - \{0\}$. Since $s \notin J(R)$ and, for every x of R with $x \neq 1$, 1 + sx is unit, we have that 1 + s is not unit, and so s = -1. Hence, by Theorem 2.7, $\Gamma(R, G, S)$ is complete. \Box

THEOREM 2.11. Let R be ring and $-1 \in G$. Then $\Gamma(R, G, S)$ is connected if and only if every element of R can be written as a sum of elements of G.

PROOF. (\Rightarrow) For every non-zero element x of R there exists a walk

$$0 = x_0 - x_1 - x_2 - \dots - x_n = x$$

between 0 and x. Hence, for every i with $0 \leq i \leq n-1$, there exist $s_i \in S$ and $g_i \in G$ such that $x_{i+1} = g_i - s_i x_i$. Now an elementary inductive argument on i yields that for all i with $0 \leq i \leq n-1$, x_{i+1} can be written as a sum of elements of G.

 (\Leftarrow) Let $0 \neq x \in R$ and $s \in S$. Then, for each $1 \leq i \leq n$, there exists element g_i in G such that $sx = g_1 + g_2 + g_3 + \cdots + g_n$. So, we have the following walk between x and 0:

$$x - (-sx + g_1) - (x - s^{-1}g_1 - s^{-1}g_2) - (-sx + g_1 + g_2 + g_3)$$
$$- (x - s^{-1}g_1 - s^{-1}g_2 - s^{-1}g_3 - s^{-1}g_4) - \dots - 0.$$

Hence $\Gamma(R, G, S)$ is connected. \Box

3. The case G = U(R)

In this section we study the properties of $\Gamma(R, G, S)$ in the case that G = U(R). For simplicity of notation, we denote $\Gamma(R, U(R), S)$ by $\Gamma(R, S)$. Also, if we have no restriction on S, we denote $\Gamma(R, S)$ by $\Gamma(R)$.

REMARK 3.1. Suppose that $\{x_i + J(R)\}_{i \in I}$ is a complete set of coset representation of J(R). Note that if $x \in U(R)$ and $j \in J(R)$, then $x + j \in U(R)$. Hence, whenever x_i and x_j are adjacent vertices in $\Gamma(R, S)$, then every element of $x_i + J(R)$ is adjacent to every element of $x_j + J(R)$. Moreover, if there exists $s \in S$ with $(1 + s)x_i \in U(R)$ for some i, then $x_i + J(R)$ is a clique in $\Gamma(R, S)$. Otherwise $x_i + J(R)$ is a coclique in $\Gamma(R, S)$. For instance if $x_i \notin U(R)$, then $x_i + J(R)$ is a coclique in $\Gamma(R, S)$.

PROPOSITION 3.2. Let \mathfrak{m} be a maximal ideal of R such that $|R/\mathfrak{m}| = 2$. Then the graph $\Gamma(R, S)$ is bipartite. Furthermore, if R is a local ring, then $\Gamma(R, S)$ is a complete bipartite graph.

PROOF. Set $V_1 := \mathfrak{m}$ and $V_2 := 1 + \mathfrak{m}$. It is clear that V_1 is a coclique in $\Gamma(R, S)$. Since, for all $s \in S$, $V_2 = -s + \mathfrak{m}$, it is not hard to see that V_2 is another coclique in $\Gamma(R, S)$. Whenever R is local, then, by Remark 3.1, $\Gamma(R, S)$ is complete bipartite, because 0 is adjacent to 1. \Box

LEMMA 3.3 (cf. [3, Remark 2.5]). Let (R, \mathfrak{m}) be a local ring with maximal ideal \mathfrak{m} such that $|R/\mathfrak{m}| > 2$. Then, for every elements x and y in R, $N_{\overline{\Gamma}(R,S)}(x) \cap N_{\overline{\Gamma}(R,S)}(y) \neq \emptyset$.

PROOF. If $x, y \in \mathfrak{m} = J(R)$, then x and y are adjacent to 1. Now, suppose that $x, y \notin \mathfrak{m}$. Then $x, y \in U(R)$, and so x and y are adjacent to 0. Hence, we may assume that $x \in \mathfrak{m}$ and $y \notin \mathfrak{m}$. This implies that x is adjacent to y. Now, if there exists $s \in S$ such that $1 + s \in U(R)$, it is easy to see that $y \in N_{\overline{\Gamma}(R,S)}(x) \cap N_{\overline{\Gamma}(R,S)}(y)$. Thus we may also suppose that $1 + s \in \mathfrak{m}$ for every $s \in S$. Hence in the quotient ring $R/\mathfrak{m}, y + \mathfrak{m} = -sy + \mathfrak{m}$ for every $s \in S$. On the other hand, since $|R/\mathfrak{m}| > 2$, there exists $z \in R \setminus \mathfrak{m}$ such that $z + \mathfrak{m} \neq y + \mathfrak{m}$. Now, it is routine to check that $z \in N_{\overline{\Gamma}(R,S)}(x) \cap N_{\overline{\Gamma}(R,S)}(y)$. This completes the proof. \Box

LEMMA 3.4. Let R be an Artinian ring. Then the following statements hold:

(a) If R/J(R) does not contain a summand isomorphic to \mathbb{Z}_2 , then

diam
$$(\Gamma(R, S)) \leq 2.$$

(b) If R/J(R) contains exactly one summand isomorphic to \mathbb{Z}_2 , then

diam
$$(\Gamma(R, S)) \leq 3$$
.

Furthermore, if R is not local, then diam $(\Gamma(R, S)) = 3$.

(c) If R/J(R) has $\mathbb{Z}_2 \times \mathbb{Z}_2$ as a summand, then $\Gamma(R, S)$ is disconnected. Furthermore, diam $(\Gamma(R, S)) = \infty$.

(d) diam $(\Gamma(R, S)) \in \{1, 2, 3, \infty\}.$

PROOF. (a) By [10, Theorem 1.1], every element of R is a sum of two units. Now, suppose that x and y are distinct elements of R and $s \in S$. Then there exist two units u_1 and u_2 such that $sx - sy = u_1 + u_2$. Thus we have the walk $x - (-sx + u_1) - y$ between x and y. This shows that diam $(\Gamma(R, S)) \leq 2$.

(b) By [4, Theorem 8.7], we can write $R \cong R_1 \times R_2 \times \ldots \times R_n$, where each R_i is a local ring with maximal ideal \mathfrak{m}_i , for all i with $1 \leq i \leq n$. Without loss of generality we may assume that $R_1/\mathfrak{m}_1 \cong \mathbb{Z}_2$. Let $x := (x_1, x_2, \ldots, x_n)$ and $y := (y_1, y_2, \ldots, y_n)$ be two distinct arbitrary vertices in $\Gamma(R, S)$ and $s := (s_1, s_2, \ldots, s_n) \in S$. If either $x_1, y_1 \in \mathfrak{m}_1$ or $x_1, y_1 \notin \mathfrak{m}_1$, then, by Proposition 3.2, there exists $z_i \in R$ such that x_1 and y_1 are adjacent to z_1 . Now, by Lemma 3.3, there exists $z_i \in N_{\overline{\Gamma}(R,S)}(x_i) \cap N_{\overline{\Gamma}(R,S)}(y_i)$, because $|R_i/\mathfrak{m}_i| > 2$ for all $i \geq 2$. Set $z := (z_1, z_2, \ldots, z_n)$. Thus x - z - y is a path between x and y. Hence $d(x, y) \leq 2$. Otherwise, $s_1x_1 + y_1 \notin \mathfrak{m}_1$, and so, in view of the proof of [10, Lemma 4.1], sx + y is a sum of three units. Thus there exists u_1, u_2 and u_3 such that $sx + y = u_1 + u_2 + u_3$. So, we have the following walk between x and y:

$$x - (-sx + u_1) - (x - s^{-1}u_1 - s^{-1}u_2) - y$$

This means that $d(x, y) \leq 3$. Thus diam $(\Gamma(R, S)) \leq 3$. Furthermore, if R is not local, then, by Proposition 3.2, it is not hard to see that $(0, 0, \ldots, 0), (1, 0, \ldots, 0) \in R$ are neither adjacent nor have a common neighbor. Hence in this situation diam $(\Gamma(R, S)) = 3$.

(c) By Theorem 2.11, $\Gamma(R, S)$ is connected if and only if R can be generated by its units. Now, by [11, Corollary 7], this is equivalent to the quotient ring R/J(R) having at most one summand isomorphic to \mathbb{Z}_2 . So, if R/J(R)has $\mathbb{Z}_2 \times \mathbb{Z}_2$ as a summand, then $\Gamma(R, S)$ is disconnected. Furthermore, diam $(\Gamma(R, S)) = \infty$.

(d) It is an immediate consequence from (a), (b) and (c). \Box

THEOREM 3.5. Let R be an Artinian ring. Then the following statements are true.

(a) diam $(\Gamma(R,S)) = 1$ if and only if R is a field with $|S| \ge 2$ or $S = \{-1\}$.

(b) diam $(\Gamma(R, S)) = 2$ if and only if one of the following conditions hold.

- (i) R is a field with $S = \{s\}$, where $s \neq -1$.
- (ii) R is not a field and R/J(R) can not have \mathbb{Z}_2 as a summand.
- (iii) (R, \mathfrak{m}) is a local ring with $|R/\mathfrak{m}| = 2$ and $R \ncong \mathbb{Z}_2$.

(c) diam $(\Gamma(R, S)) = 3$ if and only if R/J(R) has exactly one summand isomorphic to \mathbb{Z}_2 and R is not local.

(d) diam $(\Gamma(R, S)) = \infty$ if and only if R/J(R) has $\mathbb{Z}_2 \times \mathbb{Z}_2$ as a summand.

PROOF. First assume that R is a field. Then, by Proposition 2.8, $\Gamma(R, S)$ is a refinement of a star graph, and hence diam $(\Gamma(R, S)) \leq 2$. Now, we consider the following cases:

Case 1: $|S| \ge 2$ or $S = \{-1\}$. Then, by Theorem 2.7, $\Gamma(R, S)$ is complete. This means that diam $(\Gamma(R, S)) = 1$.

Case 2: $S = \{s\}$ with $s \neq -1$. Then, in view of Theorem 2.7, diam $(\Gamma(R, S)) = 2$.

Now, assume that R is not a field. Again, by Theorem 2.7, diam $(\Gamma(R, S)) \geq 2$. We consider the following situations:

(α) The quotient ring R/J(R) does not contain a summand isomorphic to \mathbb{Z}_2 . Hence, by Lemma 3.4(a), diam ($\Gamma(R, S)$) = 2.

(β) Suppose that R/J(R) contains exactly one summand isomorphic to \mathbb{Z}_2 . Then, by Lemma 3.4(b), diam ($\Gamma(R, S)$) ≤ 3 . Moreover, Lemma 3.4(b) implies that, whenever R is not local, diam ($\Gamma(R, S)$) = 3. Also, if Ris local, in view of Proposition 3.2, diam ($\Gamma(R, S)$) = 2.

(γ) Finally, if R/J(R) has $\mathbb{Z}_2 \times \mathbb{Z}_2$ as a summand, then, by Lemma 3.4(c), diam $(\Gamma(R, S)) = \infty$. This completes the proof. \Box

REMARK 3.6. Let F be a field with $|F| \ge 4$. If $-1 \in S$, then $\Gamma(F, S)$ is complete. Otherwise, for all elements $s \in S$ and $y \in F - \{1, -s\}$, y is adjacent to 1 and -s. Thus, there always exists a path of length two with non-zero vertices in $\Gamma(F, S)$. Now, by slight modifications in the proof of [3, Proposition 5.10], one can conclude that, whenever R is an Artinian ring, gr $(\Gamma(R, S)) \in \{3, 4, 6, \infty\}$.

A graph is said to be planar if it can be drawn in the plane such that its edges intersect only at their ends. An elementary subdivision of a graph is a graph obtained from it by removing some edge $e = \{u, v\}$ and adding new vertex w and edges $\{u, w\}$ and $\{w, v\}$. A subdivision of a graph is a graph obtained from it by a succession of elementary subdivisions. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (cf. [14, Theorem 6.2.2]).

THEOREM 3.7. Let R be an Artinian ring. Then $\Gamma(R, S)$ is planar if and only if one of the following conditions hold.

(a) $R \cong (\mathbb{Z}_2)^{\ell} \times T$, where $\ell \ge 0$ and T is isomorphic to one of the following rings: $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4$ or $\mathbb{Z}_2[x]/(x^2)$.

- (b) $R \cong \mathbb{F}_4$.
- (c) $R \cong (\mathbb{Z}_2)^{\ell} \times \mathbb{F}_4$, where $\ell > 0$ with $S = \{1\}$.

(d)
$$R \cong \mathbb{Z}_5$$
 with $S = \{1\}$.
(e) $R \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ with $S = \{(1,1)\}, S = \{(1,-1)\}$ or $S = \{(-1,1)\}$.

PROOF. Assume that the graph $\Gamma(R, S)$ is planar. Hence $\Gamma(R, S)$ contains a vertex with degree at most five. By Remark 2.4(a), the degree of all vertices in $\Gamma(R, S)$ are at least |U(R)| - 1. Thus $|U(R)| \leq 6$. Now, by an argument similar to that used in the proof of [3, Theorem 5.14], $|J(R)| \leq 2$. Since R is Artinian, we can write $R \cong R_1 \times R_2 \times \ldots \times R_n$, where each R_i is local with maximal ideal \mathfrak{m}_i , for all i with $1 \leq i \leq n$. On the other hand, for all $1 \leq i \leq n$, $|U(R_i)| = |R_i \setminus \mathfrak{m}_i| \leq 6$ and $|\mathfrak{m}_i| \leq 2$. Hence we have that $|R_i| \leq 8$. Furthermore, if R_i is a field, then $|R_i| \leq 7$.

Now, suppose that R is local with maximal ideal \mathfrak{m} . In this case, since the number of elements of a finite local ring is a power of a prime number, |R| = 2, 3, 4, 5, 7 or 8. If $|R| \leq 4$, then $\Gamma(R, S)$ is planar. If R is a field with $|R| \geq 5$ and $|S| \geq 2$ or $S = \{-1\}$, then, by Theorem 2.7, $\Gamma(R, S)$ is complete, and so in these situations $\Gamma(R, S)$ are not planar. Furthermore, $\Gamma(\mathbb{Z}_7, \{1\})$ is not planar, because it contains a subdivision of K_5 . Also clearly $\Gamma(\mathbb{Z}_5, \{1\})$ is planar. If R is not a field and |R| = 8, then, in view of [6, p. 687], $|\mathfrak{m}| = 4$, which is impossible.

Now, assume that R is not local. Since $|U(R)| \leq 6$ and $|J(R)| \leq 2$, we obtain the following candidates for R:

(i) $(\mathbb{Z}_2)^{\ell} \times T$, where $\ell > 0$ and T is isomorphic to one of the following rings:

$$\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{F}_4, \mathbb{Z}_2[x]/(x^2), \mathbb{Z}_5 \text{ or } \mathbb{Z}_7.$$

(ii) $(\mathbb{Z}_2)^{\ell} \times \mathbb{Z}_3 \times T$, where $\ell \geq 0$ and T is isomorphic to one of the following rings:

 \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{F}_4 or $\mathbb{Z}_2[x]/(x^2)$.

(iii) $(\mathbb{Z}_2)^{\ell} \times \mathbb{F}_4 \times T$, where $\ell \geq 0$ and $T \cong \mathbb{Z}_4$ or $\mathbb{Z}_2[x]/(x^2)$.

Suppose that R is isomorphic to one of the rings in (i). Since $\Gamma(\mathbb{Z}_2) = \overline{\Gamma}(\mathbb{Z}_2) \cong K_2$, $\Gamma(\mathbb{Z}_2 \times T) = \overline{\Gamma}(\mathbb{Z}_2 \times T)$ and $\Gamma(\mathbb{Z}_2 \times T)$ is bipartite, by Remark 2.4(c)(i) and [1, Lemma 8.1], $\Gamma(R) \cong 2^{\ell-1}\Gamma(\mathbb{Z}_2 \times T)$. So it is sufficient to check the planarity of $\Gamma(\mathbb{Z}_2 \times T)$. By Proposition 2.1(a), $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong 2K_2$, and so it is planar. It is easy to check that $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_3, U(\mathbb{Z}_2 \times \mathbb{Z}_3))$ is planar, and hence, by Remark 2.4(c)(ii), $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_3, S)$ is planar. Moreover, it is routine to check that $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_4, S) \cong \Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2), S) \cong 2C_4$ which is planar. Also, if $R \cong \mathbb{Z}_2 \times \mathbb{F}_4$, then S is one of the following sets:

$$\{(1,1)\},\{(1,\alpha),(1,\alpha^2)\}$$
 or $U(R)$.

If $|S| \geq 2$, then, in view of the proof of Theorem 2.7, all vertices in $\overline{\Gamma}(\mathbb{F}_4 \setminus \{0\})$ are adjacent. Hence, by Remark 2.4(c)(i), $\Gamma(\mathbb{Z}_2 \times (\mathbb{F}_4 \setminus \{0\}), S)$ is isomor-

phic to the complete bipartite $K_{3,3}$. Thus in this case $\Gamma(\mathbb{Z}_2 \times \mathbb{F}_4, S)$ is not planar. Finally, by [3, Theorem 5.14], $\Gamma(\mathbb{Z}_2 \times \mathbb{F}_4, \{(1,1)\})$ is planar.

Now, whenever $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_5, S)$ is planar, in view of [14, Theorem 6.1.23], $|E(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_5, S))| \leq 2 |V(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_5, S))| - 4 = 16$, because $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_5, S)$ is bipartite. However, since all vertices in $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_5, S)$ have degree at least 4, then $|E(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_5, S))| \geq 20$, which is impossible. This means that $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_5, S)$ is not planar. Also, in the light of Remark 2.4(a) and the fact that $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_7, S) = \overline{\Gamma}(\mathbb{Z}_2 \times \mathbb{Z}_7, S)$ it is easy to see that the graph $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_7, S)$ has no vertices of degree at most 5. This implies that it is not planar.

Now, suppose that R is isomorphic to one of the rings in (ii). If $\ell > 0$, then the degree of all vertices in $\Gamma(R, S)$ is at least |U(R)|. Since in this case $\Gamma(R, S)$ is bipartite, thus planarity of $\Gamma(R, S)$ forces that $|E(\Gamma(R, S))| \leq 2|V(\Gamma(R, S))| - 4$. However, this does not happen. Thus in this case all these rings are ruled out.

Now, assume that $R \cong \mathbb{Z}_3 \times \mathbb{Z}_3$. Then |S| > 1 or S is one of the following sets:

 $\{(1,1)\}, \ \{(-1,-1)\}, \ \{(1,-1)\} \ \text{ or } \ \{(-1,1)\}.$

If $S = \{(1,1)\}$, then, by [3, Theorem 5.14], $\Gamma(R,S)$ is planar. Also, if $S = \{(-1,-1)\}$, then $\Gamma(R,S)$ contains a subdivision of $K_{3,3}$, and so it is not planar. Moreover, in the case that $S = \{(1,-1)\}$, $\Gamma(R,S)$ is

Fig. 2: $\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1, -1)\})$

planar (see Fig. 2). Since, by Remark 2.4(c)(i), $\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(-1,1)\}) \cong \Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1,-1)\}), \Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(-1,1)\})$ is also planar. Now suppose that |S| > 1. If $(-1,-1) \in S$, then, by Remark 2.4(c)(ii), $\Gamma(R,S)$ is not planar. Otherwise $|E(\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, S))| \ge 3 |V(\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, S))| - 6$, which implies that $\Gamma(R, S)$ is not planar (cf. [14, Theorem 6.1.23]).

Whenever $R \cong \mathbb{Z}_3 \times \mathbb{Z}_4$, since $\Gamma(\mathbb{Z}_4) = \overline{\Gamma}(\mathbb{Z}_4) \cong C_4$ and C_4 is bipartite, the graph $\Gamma(R, S)$ is also bipartite. Now, by Remark 2.4(a), all vertices in $\Gamma(R, S)$ have degree at least 4, and so it is not planar. Also, in the case that $R \cong \mathbb{Z}_3 \times \mathbb{F}_4$, it is not hard to see that $\Gamma(R, S)$ has no vertex of degree at most 5, and hence it is not planar.

Finally, suppose that R is isomorphic to one of the rings in (iii). Since $\Gamma(T) = \overline{\Gamma}(T) \cong C_4$, by Remark 2.4(a), the degree of every vertex of $\Gamma(R, S)$ is at least 6. Hence in this situation $\Gamma(R, S)$ is not planar. This completes the proof. \Box

Acknowledgement. The authors would like to thank the referee for careful reading of the manuscript and helpful comments.

References

- R. Akhtar, M. Boggess, T. Jackson-Henderson, R. Karpman, M. Boggess, I. Jimnez, A. Kinzel and D. Pritikin, On the unitary Cayley graph of a finite ring, *Electron. J. Combin.*, 16 (2009), #R117.
- [2] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706–2719.
- [3] N. Ashrafi, H. R. Maimani, M. R. Pournaki and S. Yassemi, Unit graphs associated with rings, Comm. Algebra, 38 (2010), 2851–2871.
- [4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley (Reading, MA, 1969).
- [5] B. Cheyne, V. Gupta and C. Wheeler, Hamilton cycles in addition graphs, Rose-Hulman Undergraduate Math. Journal, 1 (2003) (electronic).
- [6] B. Corbas and G. D. Williams, Rings of order p⁵. Part I. Nonlocal rings, J. Algebra, 231 (2000), 677–690.
- [7] R. Diestel, Graph Theory, Springer-Verlag (New York, 2005).
- [8] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag (New York, 2001).
- [9] D. Grynkiewicz, V. F. Lev and O. Serra, The connectivity of addition Cayley graphs, Electron. Notes Discrete Math., 29 (2007), 135–139.
- [10] C. Lanski and A. Maróti, Rings elements as sums of units, Cent. Eur. J. Math., 7 (2009), 395–399.
- [11] R. Raphael, Rings which are generated by their units, J. Algebra, 28 (1974), 199–205.
- [12] J. Sato and K. Baba, The chromatic number of the simple graph associated with a commutative ring, Sci. Math. Jpn., 71 (2010), 187–194.
- [13] P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, 176 (1995), 124–127.
- [14] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall (2001).