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Abstract. We define and study complete generalized neighborhood systems,
and prove that a generalized neighborhood system is complete if and only if it
can be generated by a generalized topology. Also we obtain some applications of
complete generalized neighborhood systems.

1. Introduction

In [2], Császár introduced the notions of generalized neighborhood sys-
tems and generalized topologies. He proved that every generalized topology
can be generated by a generalized neighborhood system. Naturally, we are
interested in the question whether every generalized neighborhood system
can be generated by a generalized topology. It will be seen from Remark
2.2 in the present paper that the answer to this question is negative. This
leads us to study what kind of generalized neighborhood systems can be
generated by generalized topologies. In Section 2, we define complete gen-
eralized neighborhood systems and prove that a generalized neighborhood
system is complete if and only if it can be generated by a generalized topol-
ogy. Also we give some characterizations of complete generalized neighbor-
hood systems. In Section 3 and Section 4, we apply complete generalized
neighborhood systems into the theory of generalized interior operators and
generalized continuous maps.

We recall some basic definitions and notations. Let X be a set, and de-
note expX the power set of X. We call a class µ ⊂ expX a generalized
topology [2] (briefly GT) on X if ∅ ∈ µ and any union of elements of µ be-
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longs to µ. A set with a GT is said to be a generalized topological space
(briefly GTS). For a GTS (X,µ), the elements of µ are called µ-open sets
and the complements of µ-open sets are called µ-closed sets.

An important way for obtaining GT’s on a set X is to consider gener-
alized neighborhood systems. According to [2], a map ψ : X → exp (expX)
is called a generalized neighborhood system (briefly GNS) on X if for each
x ∈ X, V ∈ ψ(x) imply x ∈ V . If ψ is a GNS on X, let µψ denote the col-
lection of all subsets M ⊂ X such that x ∈M implies the existence of a set
V ∈ ψ(x) satisfying V ⊂M . By [2, 1.2], µψ is a GT on X. We call µψ the
GT generated by ψ [2]. Conversely, if µ is a GT on X, then we can define
a GNS ψµ on X by ψ(x) = {A : x ∈M ⊂ A for some M ∈ µ} (x ∈ X). We
call ψµ the GNS generated by µ [2].

2. Complete generalized neighborhood systems and generalized
topologies

A GNS ψ is called ascending [4] if for each x ∈ X and A ∈ ψ(x), A ⊂ B
⊂ X imply B ∈ ψ(x).

In [2, 2.3], Á. Császár proved that for each GT µ on X, µ = µψµ , and
then each GT on X can be generated by some GNS on X. However, we can
see from the following example that for a GNS ψ on a set X, ψ = ψµψ does
not always hold even when ψ is ascending.

Example 2.1 [4]. Let X = {a, b, c}, ψ(a) =
{
{a, b},X

}
, ψ(b) =

{
{b, c},

X
}

, ψ(c) =
{
{a, c}, X

}
. Then ψ is an ascending GNS and clearly µψ =

{∅, X}, ψµψ(a) = ψµψ(b) = ψµψ(c) = {X}. Therefore ψ 6= ψµψ .

Remark 2.2. For the GNS ψ on X defined in the above example, there
is no GT µ on X such that ψ is generated by µ. Otherwise, if ψ = ψµ, then
ψµψ = ψµψµ = ψµ = ψ, this is a contradiction.

Now we are going to define a class of GNS’s such that each member ψ of
which satisfies ψ = ψµψ , and then ψ can be generated by a GT.

Definition 2.3. A GNS ψ is called complete if ψ is ascending and sat-
isfies the following condition (∗):

(∗) for each x ∈ X and A ∈ ψ(x), there is a set O satisfying x ∈ O ⊂ A,
and y ∈ O implies the existence of a set B ∈ ψ(y) with B ⊂ O.

For special cases, each neighborhood system of a topological space is a
complete GNS, and we shall see from Theorem 2.4 that each GNS generated
by a GT is complete.

Theorem 2.4. For a GNS ψ on a set X, the following conditions are
equivalent.
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(1) ψ is complete.
(2) ψ = ψµψ .
(3) ψ = ψµ for some GT µ on X.
Proof. (1)⇒ (2). For each x ∈ X, if A ∈ ψ(x), by condition (∗), we can

find a set O satisfying x ∈ O ⊂ A, and y ∈ O implies the existence of a set
B ∈ ψ(y) with B ⊂ O. Then, by the definition of µψ, we know O ∈ µψ, and
thus A ∈ ψµψ(x). So ψ(x) ⊂ ψµψ(x). Conversely, if A ∈ ψµψ(x), then there is
M ∈ µψ such that x ∈M ⊂ A. M ∈ µψ implies that for each y ∈M , y ∈ V
⊂M for some V ∈ ψ(y). Then M ∈ ψ(x). Since ψ is ascending, A ∈ ψ(x),
which shows that ψ(x) ⊃ ψµψ(x). Therefore, ψ(x) = ψµψ(x) for each x ∈ X.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). It is easy to see that ψ is ascending. For each x ∈ X and A

⊂ ψ(x) = ψµ(x), by the definition of ψµ, there is an M ∈ µ such that x ∈M
⊂ A. Obviously, M ∈ ψµ(y) = ψ(y) for each y ∈M . Therefore ψ satisfies
(∗), and thus ψ is complete. �

The following Corollary 2.5 and Corollary 2.6 reveal the consistency of
complete GNS’s and GT’s. [4] proved that a GT may be generated by several
GNS’s. We shall see from Corollary 2.5 that among these GNS’s there is a
unique one which is complete.

Corollary 2.5. For each GT µ on a set X, there is a unique complete
GNS ψ such that µ = µψ.

Proof. The existence of ψ comes from [4, 2.3]. It suffices to show such ψ
is unique. In fact, if µ = µψ = µψ′ for complete GNS’s ψ and ψ′, by Theorem
2.4 [(1) ⇒ (2)], ψ = ψµψ = ψµ = ψµψ′ = ψ′. �

Corollary 2.6. For each complete GNS ψ on a set X, there is a unique
GT µ such that ψ = ψµ.

Proof. By Theorem 2.4 [(1) ⇒ (3)], ψ = ψµ for some GT µ on X. Sim-
ilar to the proof of Corollary 2.5, we know such µ is unique. �

3. On operation ιψ

Let us consider another way for obtaining GT’s. Let X be a set,
I : expX → expX be a map. If I satisfies (1) I(A) ⊂ A for all A ⊂ X and
(2) A ⊂ B implies I(A) ⊂ I(B) for all A,B ⊂ X, then we call I a generalized
interior operator [5] on X. A generalized interior operator I on X is called
strong [5] if I

(
I(A)

)
= I(A) for all A ⊂ X. For a generalized interior oper-

ator I on X, we denote µI =
{
A ⊂ X : A = I(A)

}
. According to [1, 1.1],

µI is a GT on X, which we call the GT generated by the generalized inte-
rior operator I. Conversely, for a GT µ on a set X, we denote by iµ(A) the
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union of all µ-open sets contained in A for each A ⊂ X. Then iµ is a gener-
alized interior operator on X, which we call the generalized interior operator
generated by the GT µ [2].

On the other hand, in [4] Á. Császár defined an operation ιψ : expX
→ expX for each GNS ψ on a set X as: x ∈ ιψ(A) if and only if there is
V ∈ ψ(x) such that V ⊂ A (A ⊂ X). By [4, 3.1], if ψ is a GNS on X, then
ιψ is a generalized interior operator, which we call the generalized interior
operator generated by the GNS ψ. [4, 3.8] proved that if ψ is a GNS on
X and A ⊂ X then iµψ(A) ⊂ ιψ(A). The subsequent Theorem 3.3 explains
when iµψ = ιψ hold. First we give two lemmas.

Lemma 3.1 [5, 3.3]. For each GT µ on a set X, iµ is strong.
Lemma 3.2. For each GNS ψ on a set X, µψ = µιψ .
Proof. For each A ∈ µψ and x ∈ A, there is a set V ∈ ψ(x) such that

V ⊂ A. By the definition of ιψ, x ∈ ιψ(A). So A = ιψ(A), thus A ∈ µιψ .
Therefore µψ ⊂ µιψ . Conversely, if A ∈ µιψ , then A ⊂ ιψ(A). For each x ∈ A,
we have x ∈ ιψ(A), that is, there is a set V ∈ ψ(x) such that V ⊂ A. So
A ∈ µψ. Therefore µψ = µιψ . �

Theorem 3.3. For an ascending GNS ψ on a set X, the following con-
ditions are equivalent.

(1) ψ is complete.
(2) ιψ is strong.
(3) ιψ = iµ for some GT µ on X.
(4) ιψ = iµψ .
(5) ιψ = iµιψ .

Proof. (4) ⇒ (3) is obvious. (3) ⇒ (2) comes from Lemma 3.1.
(4) ⇔ (5) comes from Lemma 3.2. So it suffices to show (2) ⇒ (1) ⇒ (4).

(2) ⇒ (1). For each x ∈ X and A ∈ ψ(x), put O = ιψ(A). By the defini-
tion of ιψ, x ∈ O. For each y ∈ O, y ∈ ιψ(A) = ιψ

(
ιψ(A)

)
. Then there is a set

V ∈ ψ(y) such that V ⊂ ιψ(A) = O. Therefore ψ satisfies the condition (∗).
(1) ⇒ (4). By [4, 3.8], it only needs to show ιψ(A) ⊂ iµψ(A) for each

A ⊂ X. Let x ∈ ιψ(A). By the definition of ιψ, there is a set V ∈ ψ(x) such
that V ⊂ A. By the condition (∗), there is a set O satisfying that x ∈ O ⊂ V
⊂ A, and y ∈ O implies the existence of a set B ∈ ψ(y) with B ⊂ O. Then
O ∈ µψ. So x ∈ iµψ(A), which shows ιψ(A) ⊂ iµψ(A). �

Remark 3.4. Since there exists a GNS ψ on a set X which is ascending
but not complete, iµψ = ιψ does not always hold in general.

To complete the relationship among GNS, GT and generalized interior
operator, we give a way for obtaining GNS’s generated by generalized interior
operators, which can be seen as the inverse operation of ι. In the following,
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all GNS’s are assumed to be ascending. For a generalized interior operator
I on a set X, we define ψI : X → exp (expX) as A ∈ ψI(x) if and only if
x ∈ I(A).

Theorem 3.5. For each generalized interior operator I and GNS ψ on
a set X, we have

(1) I = ιψI ;
(2) ψ = ψιI ;
(3) I is strong if and only if ψI is complete;
(4) µI = µψI ;
(5) ψI = ψµI if I is strong.
Proof. (1) and (2) come directly from the definitions of ιψ and ψI . (3)

comes from (1), (2) and Theorem 3.3.
(4) By (1) and Lemma 3.2, µI = µιψI = µψI .
(5) By (4), ψµI = ψµψI . Since I is strong, ψI is complete, so ψµψI = ψI

by Theorem 2.4, therefore ψI = ψµI . �

Corollary 3.6. For each GT µ on a set X, there is a unique strong
generalized interior operator I such that µ = µI .

Proof. Put I = ιψµ . Then by Lemma 3.2, µI = µιψµ = µψµ = µ. By
Theorem 2.4 and Theorem 3.3, I is strong. Let µ = µI = µ′I for strong gen-
eralized interior operators I and I ′ on X. Then by Theorem 3.5 (1) and (5),
I = ιψI = ιψµI = ιψµI′

= ιψI′ = I ′. �

In contrast to Corollary 2.6, we raise the following question.
Question 3.7. For each complete strong generalized interior operator I

on a set X, is there a unique GT ψ such that I = iµ?

4. On continuous maps

Let us consider a GNS ψ and a GT µ on a set X, a GNS ψ′ and a GT µ′

on a set X ′. A map f : X → X ′ is called to be (µ,µ′)-continuous [2] if U ∈ µ′
implies that f−1(U) ∈ µ. f : X → X ′ is called to be (ψ,ψ′)-continuous [2] if
given x ∈ X and V ′ ∈ ψ′

(
f(x)

)
, there is V ∈ ψ(x) with f(V ) ⊂ V ′. [2, 2.1]

proved that each (ψ,ψ′)-continuous map is (µψ, µ′ψ)-continuous, and inversely
not.

Theorem 4.1. For a GNS ψ on a set X, and a complete GNS ψ′ on a
set X ′, f : X → X ′, the following are equivalent.

(1) f is (ψ,ψ′)-continuous.
(2) f is (µψ, µψ′)-continuous.
(3) f−1(ιψ′B) ⊂ ιψ

(
f−1(B)

)
for each B ⊂ X.
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Proof. (1)⇔ (3) by [4, 4.1]. [2, 2.1] proved that (1)⇒ (2). Let us prove
(2) ⇒ (1).

Suppose that x ∈ X and V ′ ∈ ψ′
(
f(x)

)
. Since ψ′ is complete, then there

is a set O′ ⊂ X ′ satisfying f(x) ∈ O′ ⊂ V ′, and y′ ∈ O′ implies the existence
of a set B′ ∈ ψ′(y′) with B ⊂ O. So O′ ∈ µψ′ . Put V = f−1(O′), then x ∈ V
∈ µψ, and thus V ∈ ψ(x). It is easy to see that f(V ) = f

(
f−1(O′)

)
⊂ O′

⊂ V ′. Therefore f is (ψ,ψ′)-continuous. �
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[3] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106

(2005), 53–66.
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