Acta Math. Hungar., 127 (4) (2010), 391–396. DOI: 10.1007/s10474-010-9147-1 First published online April 15, 2010

ON ASCENDING GENERALIZED NEIGHBORHOOD SYSTEMS

W. K. MIN

Department of Mathematics, Kangwon National University, Chuncheon 200-701, Korea e-mail: wkmin@kangwon.ac.kr

(Received June 25, 2009; accepted November 30, 2009)

Abstract. Császár introduced the notions of ascending operation, ascending hull of operation and ascending generalized neighborhood system in [2]. In this paper, we introduce the notions of interior and closure operators and (ψ, ψ') continuity on ascending generalized neighborhood systems. We characterize some properties of such notions in terms of convergence of p-stacks.

1. Introduction

Császár introduced the notions of generalized neighborhood systems and generalized topological spaces [1]. He also introduced the notions of ascending operation, ascending hull of operation and ascending generalized neighborhood system [2]. In this paper, we introduce the notions of interior and closure operators and (ψ, ψ') -continuity on ascending generalized neighborhood systems. We characterize some properties of such notions in terms of convergence of p-stacks. In particular, we show that if $f(\mathcal{E}_{\psi}) \subseteq \mathcal{E}_{\psi'}$, then f is (ψ, ψ') -continuous on ascending generalized neighborhood systems ψ, ψ' iff $f(\mathcal{F})$ ψ' -converges to $f(x)$ whenever a p-stack \mathcal{F} ψ -converges to x.

2. Preliminaries

We recall some notions and notations defined in [1]. Let X be a nonempty we recan some notions and notations defined in [1]. Let X be a nonempty
set and $\exp(X)$ the power set of X. Let $\psi: X \to \exp(\exp(X))$ satisfy $x \in V$ for $V \in \psi(x)$. Then $V \in \psi(x)$ is called a *generalized neighborhood* of $x \in X$ and ψ is called a *generalized neighborhood system* (briefly GNS) on X.

Key words and phrases: generalized neighborhood system, ascending generalized neighborhood system, generalized topology, p-stack.

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54C05.

392 W. K. MIN

Let us consider a map γ : $\exp X \to \exp X$. In [2], such a map is called an *operation* on X. If γ is an operation on X, we write γA for $\gamma(A)$. An operation γ is said to be *monotonic* iff $A \subseteq B \subseteq X$ implies $\gamma A \subseteq \gamma B$, enlarging iff $A \subseteq X$ implies $A \subseteq \gamma A$ and restricting iff $\gamma A \subseteq A$ for $A \subseteq X$. Let ψ and ψ' be GNS's on X and Y, respectively. Then a function $f: X \to Y$ is said to be (ψ, ψ') -continuous if for $x \in X$ and $V \in \psi'(f(x))$, there is $U \in \psi(x)$ such that $f(U) \subseteq V$. Let κ be a subset of $\exp(X)$. Then κ is said to be ascending [2] (or stack [3]) iff for $A \in \kappa$, and $A \subseteq B \subseteq X$ implies $B \in \kappa$. A GNS ψ on X is said to be ascending iff $\psi(x)$ is ascending whenever $x \in X$ [2]. For a subset κ of $\exp(X)$, the ascending $\kappa^+ = \{B \subseteq X: \text{ there is } A \in \kappa \text{ such that }$ $A \subseteq B$ is called the ascending hull of κ [2].

An ascending set A of $\exp(X)$ is called a p-stack [3] if it satisfies the condition $P, Q \in \mathcal{A}$ implies $P \cap Q \neq \emptyset$.

3. Results

DEFINITION 3.1. Let X be a nonempty set and $\psi : X \to \exp(\exp(X))$ ¢ an ascending generalized neighborhood system.

$$
\iota_{\psi}(A) = \{ x \in A : A \in \psi(x) \};
$$

$$
\gamma_{\psi}(A) = \{ x \in X : A \cap V \neq \emptyset, \text{ for every } V \in \psi(x) \}
$$

.

THEOREM 3.2. Let ψ be an ascending generalized neighborhood system on X. Then

(1) $\gamma_{\psi}(X - A) = X - \iota_{\psi}(A)$.

(2) $\iota_{\psi}(X-A) = X - \gamma_{\psi}(A).$

PROOF. (1) If $x \in \gamma_{\psi}(X - A)$ then $(X - A) \cap V \neq \emptyset$ for every $V \in \psi(x)$, say $\psi(x) \neq \emptyset$, hence there is no element $V \in \psi(x)$ such that $V \subseteq A$. This implies $A \notin \psi(x)$ and so $x \notin \iota_{\psi}(A)$. Hence $x \in X - \iota_{\psi}(A)$.

For the converse, let $x \notin \gamma_{\psi}(X - A)$. Then there is an element $V \in \psi(x)$ such that $(X - A) \cap V = \emptyset$. So $V \subseteq A$ and since $\psi(x)$ is ascending, $A \in \psi(x)$. From definition of the operation ι_{ψ} , we have $x \in \iota_{\psi}(A)$, hence $x \notin X - \iota_{\psi}(A)$.

(2) It is similar to the proof of (1). \Box

THEOREM 3.3. Let ψ be an ascending generalized neighborhood system on X. Then ι_{ψ} is monotonic and restricting.

PROOF. If $A \subseteq B$ and $x \in \iota_{\psi}(A)$, then $A \in \psi(x)$, since $\psi(x)$ is ascending, $B \in \psi(x)$ and so $x \in \iota_{\psi}(B)$. Hence ι_{ψ} is monotonic.

Let $x \in \iota_{\psi}(A)$ for $A \subseteq X$. Then $A \in \psi(x)$. Since ψ is a generalized neighborhood system, $x \in A$, so that ι_{ψ} is restricting.

THEOREM 3.4. Let ψ be an ascending generalized neighborhood system on X. Then γ_{ψ} is monotonic and enlarging.

PROOF. If $A \subseteq B$ and $x \in \gamma_{\psi}(A)$, then from definition of γ_{ψ} , obviously γ_{ψ} is monotonic.

Let $x \notin \gamma_{\psi}(A)$ for $A \subseteqq X$. Then there is a $V \in \psi(x)$ such that $V \cap A = \emptyset$. Since $x \in V$, $x \notin A$, so that γ_{ψ} is enlarging. \square

For ascending sets κ and λ of exp (X) , if there are $F \in \kappa$, $G \in \lambda$ such that $G \cap F = \emptyset$, we say that κ and λ are *disjoint*.

LEMMA 3.5. For ascending sets κ and λ of $\exp(X)$, if κ and λ are not disjoint, then $\kappa \vee \lambda = \{F \cap G : F \in \kappa, G \in \lambda\}^+$ is an ascending set containing κ , λ .

DEFINITION 3.6. Let ψ be an ascending generalized neighborhood system on X. A p-stack $\mathcal F$ on X ψ -converges to x if $\psi(x) \subseteq \mathcal F$. ¢

THEOREM 3.7. Let X be a nonempty set and $\psi : X \to \exp(\exp(X))$ an ascending generalized neighborhood system.

(1) $\iota_{\psi}(A) = \{x \in A : A \in \mathcal{F}, \text{ for every } p\text{-stack } \mathcal{F} \ \psi\text{-converging to } x\};$

(2) $\gamma_{\psi}(A) = \{x \in X : \text{ there is a } p\text{-stack } \mathcal{F} \text{ such that } \mathcal{F} \psi\text{-converges to } x\}$ and $A \in \mathcal{F}$.

PROOF. (1) If $x \in \iota_{\psi}(A)$ and a p-stack $\mathcal{F} \psi$ -converges to x, then $A \in \psi(x)$ and $\psi(x) \subseteq \mathcal{F}$, so $x \in A$ and $A \in \mathcal{F}$.

For the converse, let $\psi(x)$ be nonempty for $x \in X$. Then $\psi(x)$ is a p-stack and it ψ -converges to x. By hypothesis, $A \in \psi(x)$. Hence $x \in \iota_{\psi}(A)$.

(2) Let $x \in \gamma_{\psi}(A)$. Then $V \cap A \neq \emptyset$ for every $V \in \psi(x)$. Put

$$
\mathcal{F} = \begin{cases} \{A\}^+, & \text{if } \psi(x) = \emptyset, \\ \psi(x) \vee \{A\}^+, & \text{if } \psi(x) \neq \emptyset, \end{cases}
$$

then F is a p-stack such that it ψ -converges to x and $A \in \mathcal{F}$.

Suppose there is a p-stack F such that it ψ -converges to x and $A \in \mathcal{F}$. Since $\psi(x) \subseteq \mathcal{F}$ and \mathcal{F} is a p-stack, $V \cap A \neq \emptyset$ for every $V \in \psi(x)$, so this implies $x \in \gamma_{\psi}(A)$. \Box

DEFINITION 3.8. A function $f: (X, \psi) \to (Y, \psi')$ on ascending generalized neighborhood systems ψ , ψ' is said to be (ψ, ψ') -continuous if for $x \in X$ and for each $V \in \psi'(f(x)), f^{-1}(V) \in \psi(x)$.

THEOREM 3.9. Let $f: (X, \psi) \to (Y, \psi')$ be a function on ascending generalized neighborhood systems ψ, ψ' . Then the following are equivalent:

(1) f is (ψ, ψ') -continuous.

(1) f is (ψ, ψ) -continuous.

(2) For $x \in X$ and for each $V \in \psi'$ $f(x)$ ¢ , there is $U \in \psi(x)$ such that $f(U) \subseteq V$.

394 W. K. MIN

 $(3) f^{-1}$ $\iota_{\psi'}(B)$ ¢ $\subseteqq \iota_\psi$ ¡ $f^{-1}(B)$ ¢ $\iota^1(\iota_{\psi'}(B)) \subseteq \iota_{\psi}(f^{-1}(B))$ for $B \subseteq Y$.

(4) $\gamma_{\psi}\left(f^{-1}(B)\right) \subseteq f^{-1}\left(\gamma_{\psi'}(B)\right)$ for $B \subseteq Y$.

(5) $f(\gamma_{\psi}(A)) \subseteq \gamma_{\psi'}(f(A))$ for $A \subseteq X$.

PROOF. (1) \Rightarrow (2). For $x \in X$, let $V \in \psi'$ $f(x)$). From (ψ, ψ') -continuity of f, $f^{-1}(V) \in \psi(x)$. Put $U = f^{-1}(V)$; then $U \in \psi(x)$ and $f(U) \subseteq V$. Thus (2) is obtained. ¢

is obtained.

(2) \Rightarrow (3). For $B \subseteq Y$, let $x \in f^{-1}($ $\iota_{\psi'}(B)$ \Rightarrow (3). For $B \subseteq Y$, let $x \in f^{-1}(\iota_{\psi'}(B))$. Then $f(x) \in \iota_{\psi'}(B)$ and so $B \in \psi'(f(x))$. By (2), there is $U \in \psi(x)$ such that $f(U) \subseteq B$, since $\psi(x)$ is ascending, it is $f^{-1}(B) \in \psi(x)$. Hence $x \in \iota_{\psi}(f^{-1}(B))$.

(3) \Rightarrow (1). For $x \in X$, let $V \in \psi'(f(x))$. Then we know that $f(x) \in$ $\iota_{\psi}(V)$ and so $x \in f^{-1}(\iota_{\psi}(V))$. It follows $x \in \iota_{\psi}(f^{-1}(V))$ from (3). This implies $f^{-1}(V) \in \psi(x)$. Hence f is (ψ, ψ') -continuous.

 $(3) \Leftrightarrow (4)$. It is obtained from Theorem 3.2.

 $(4) \Leftrightarrow (5)$. Obvious. \square

Let $f: X \to Y$ be a function. For an ascending set F of $\exp(X)$, let us define $f(\mathcal{F}) = \{f(K) : K \in \mathcal{F}\}^+$.

LEMMA 3.10. Let $f: X \to Y$ be a function and $\mathcal F$ an ascending set of $\exp(X)$. Then $U \in f(\mathcal{F})$ iff there exists $K \in \mathcal{F}$ such that $f(K) \subseteq U$. PROOF. Obvious. \square

THEOREM 3.11. Let $f: (X, \psi) \to (Y, \psi')$ be a function on ascending generalized neighborhood systems ψ , ψ' . Then if f is (ψ, ψ') -continuous, then $f(\mathcal{F})$ ψ' -converges to $f(x)$ whenever a p-stack \mathcal{F} ψ -converges to x.

PROOF. Suppose f is (ψ, ψ') -continuous and a p-stack $\mathcal F$ ψ -converges to x. Let $\psi'(f(x)) \neq \emptyset$. Then for each $V \in \psi'(f(x))$, by Theorem 3.9 (2), there is some $U \in \psi(x)$ such that $f(U) \subseteq V$. Since $\mathcal F \psi$ -converges to x, we can say that there is $U \in \mathcal{F}$ such that $f(U) \subseteq V$. So by Lemma 3.10, V is an element in the ascending set $f(\mathcal{F})$. Hence $f(\mathcal{F})$ ψ' -converges to $f(x)$. \Box

In Theorem 3.11, the converse is not always true as shown in the next example.

EXAMPLE 3.12. Let $X = \{a, b, c\}$. Consider two ascending generalized neighborhood systems ψ and ψ' defined as the following:

$$
\psi(a) = \emptyset, \quad \psi(b) = \{X\}, \quad \psi(c) = \{X\};
$$

\n $\psi'(a) = \{X\}, \quad \psi'(b) = \{X\}, \quad \psi'(c) = \{X\}.$

Let us consider the identity function $f: (X, \psi) \to (X, \psi')$. Then for every $x \in X$, $f(\mathcal{F})$ ψ' -converges to $f(x)$ whenever a p-stack \mathcal{F} ψ -converges to x. But f is not (ψ, ψ') -continuous at a.

Let X be a nonempty set and $\psi: X \to \exp(\exp(X))$ ¢ $\rightarrow \exp(\exp(X))$ an ascending generalized neighborhood system. Set $\mathcal{E}_{\psi} = \{ x \in X : \psi(x) = \emptyset \}.$

THEOREM 3.13. Let $f: (X, \psi) \to (Y, \psi')$ be a function on ascending generalized neighborhood systems ψ , ψ' and $f(\mathcal{E}_{\psi}) \subseteq \mathcal{E}_{\psi'}$. Then f is (ψ, ψ') continuous if and only if $f(\mathcal{F})$ ψ' -converges to $f(x)$ whenever a p-stack $\mathcal F$ ψ -converges to x.

PROOF. From Theorem 3.11, it is sufficient to show that if $f(\mathcal{F})$ ψ' converges to $f(x)$ whenever a p-stack $\mathcal{F} \psi$ -converges to x, then f is (ψ, ψ') continuous. For the proof, suppose $\psi'(f(x)) \neq \emptyset$ and $V \in \psi'(f(x))$. Then from $f(\mathcal{E}_{\psi}) \subseteq \mathcal{E}_{\psi'}$, we can say $\psi(x) \neq \emptyset$. Since $\psi(x)$ ψ -converges to x, by hypothesis, we have $V \in \psi'(f(x)) \subseteq f(\psi(x))$. Thus for $V \in f(\psi(x))$, by Lemma 3.10, there is $U \in \psi(x)$ such that $f(U) \subseteq V$. Hence from Theorem 3.9 (2), f is (ψ, ψ') -continuous. \square

Let g be a collection of subsets of X. Then g is called a generalized topology [1] on X iff $\emptyset \in g$ and $G_i \in g$ for $i \in I \neq \emptyset$ implies $G = \cup_{i \in I} G_i \in g$. The elements of g are called g-open sets and the complements are called gclosed sets. Let ψ be a GNS on X and $G \in g_{\psi}$ iff $G \subset X$ satisfies: if $x \in G$ then there is $V \in \psi(x)$ such that $V \subset G$. Let g and g' be generalized topologies on X and Y, respectively. Then a function $f: X \to Y$ is said to be (g, g') -continuous [1] if $G' \in g'$ implies that $f^{-1}(G') \in g$.

THEOREM 3.14. Let $f: (X, \psi) \to (Y, \psi')$ be a function on ascending generalized neighborhood systems ψ , ψ' . Then if f is (ψ, ψ') -continuous, then it is $(g_{\psi}, g_{\psi'})$ -continuous. ¢

PROOF. If $V \in g_{\psi'}$, then for each $x \in f^{-1}(V)$, there is $U \in \psi'$ $f(x)$ such that $f(x) \in U \subseteq V$. Since f is (ψ, ψ') -continuous, $f^{-1}(U) \in \psi(x)$ and from $f^{-1}(U) \subseteqq f^{-1}(V)$, we know that $f^{-1}(V) \in g_{\psi}$. Hence f is $(g_{\psi}, g_{\psi'})$ continuous.

EXAMPLE 3.15. Let $X = \{a, b, c, d\}$. Consider two ascending generalized neighborhood systems ψ and ψ' defined as the following:

$$
\psi(a) = \{X\}, \quad \psi(b) = \{X\}, \quad \psi(c) = \{X\}, \quad \psi(d) = \emptyset;
$$

$$
\psi'(a) = \{\{a, b\}, X\}, \quad \psi'(b) = \{X\}, \quad \psi'(c) = \{X\}, \quad \psi'(d) = \emptyset.
$$

Then $g_{\psi} = g_{\psi'} =$ © $\emptyset, \{a, b, c\}$ ª .

Let us consider the identity function $f: (X, \psi) \to (X, \psi')$. Then f is (g_{ψ}, g_{ψ}) -continuous but not (ψ, ψ') -continuous.

References

- [1] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.
- [2] Á. Császár, Generalized neighborhood systems, Acta Math. Hungar., 121 (2008), 395– 400.
- [3] D. C. Kent and W. K. Min, Neighborhood spaces, Int. J. Math. Math. Sci., 32 (2002), 387–399.