Acta Math. Hungar., **127 (4)** (2010), 391–396. DOI: 10.1007/s10474-010-9147-1 First published online April 15, 2010

ON ASCENDING GENERALIZED NEIGHBORHOOD SYSTEMS

W. K. MIN

Department of Mathematics, Kangwon National University, Chuncheon 200-701, Korea e-mail: wkmin@kangwon.ac.kr

(Received June 25, 2009; accepted November 30, 2009)

Abstract. Császár introduced the notions of ascending operation, ascending hull of operation and ascending generalized neighborhood system in [2]. In this paper, we introduce the notions of interior and closure operators and (ψ, ψ') -continuity on ascending generalized neighborhood systems. We characterize some properties of such notions in terms of convergence of *p*-stacks.

1. Introduction

Császár introduced the notions of generalized neighborhood systems and generalized topological spaces [1]. He also introduced the notions of ascending operation, ascending hull of operation and ascending generalized neighborhood system [2]. In this paper, we introduce the notions of interior and closure operators and (ψ, ψ') -continuity on ascending generalized neighborhood systems. We characterize some properties of such notions in terms of convergence of *p*-stacks. In particular, we show that if $f(\mathcal{E}_{\psi}) \subseteq \mathcal{E}_{\psi'}$, then *f* is (ψ, ψ') -continuous on ascending generalized neighborhood systems ψ, ψ' iff $f(\mathcal{F}) \psi'$ -converges to f(x) whenever a *p*-stack $\mathcal{F} \psi$ -converges to *x*.

2. Preliminaries

We recall some notions and notations defined in [1]. Let X be a nonempty set and exp (X) the power set of X. Let $\psi : X \to \exp(\exp(X))$ satisfy $x \in V$ for $V \in \psi(x)$. Then $V \in \psi(x)$ is called a *generalized neighborhood* of $x \in X$ and ψ is called a *generalized neighborhood system* (briefly GNS) on X.

 $Key\ words\ and\ phrases:$ generalized neighborhood system, as cending generalized neighborhood system, generalized topology, $p\mbox{-stack}.$

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54C05.

W. K. MIN

Let us consider a map $\gamma : \exp X \to \exp X$. In [2], such a map is called an *operation* on X. If γ is an operation on X, we write γA for $\gamma(A)$. An operation γ is said to be *monotonic* iff $A \subseteq B \subseteq X$ implies $\gamma A \subseteq \gamma B$, enlarging iff $A \subseteq X$ implies $A \subseteq \gamma A$ and restricting iff $\gamma A \subseteq A$ for $A \subseteq X$. Let ψ and ψ' be GNS's on X and Y, respectively. Then a function $f: X \to Y$ is said to be (ψ, ψ') -continuous if for $x \in X$ and $V \in \psi'(f(x))$, there is $U \in \psi(x)$ such that $f(U) \subseteq V$. Let κ be a subset of $\exp(X)$. Then κ is said to be ascending [2] (or stack [3]) iff for $A \in \kappa$, and $A \subseteq B \subseteq X$ implies $B \in \kappa$. A GNS ψ on X is said to be ascending iff $\psi(x)$ is ascending whenever $x \in X$ [2]. For a subset κ of $\exp(X)$, the ascending $\kappa^+ = \{B \subseteq X: \text{ there is } A \in \kappa \text{ such that } A \subseteq B\}$ is called the ascending hull of κ [2].

An ascending set \mathcal{A} of exp(X) is called a *p*-stack [3] if it satisfies the condition $P, Q \in \mathcal{A}$ implies $P \cap Q \neq \emptyset$.

3. Results

DEFINITION 3.1. Let X be a nonempty set and $\psi : X \to \exp(\exp(X))$ an ascending generalized neighborhood system.

$$\iota_{\psi}(A) = \left\{ x \in A : A \in \psi(x) \right\};$$

$$\gamma_{\psi}(A) = \left\{ x \in X : A \cap V \neq \emptyset, \text{ for every } V \in \psi(x) \right\}$$

Theorem 3.2. Let ψ be an ascending generalized neighborhood system on X. Then

(1) $\gamma_{\psi}(X-A) = X - \iota_{\psi}(A).$

(2) $\iota_{\psi}(X-A) = X - \gamma_{\psi}(A).$

PROOF. (1) If $x \in \gamma_{\psi}(X - A)$ then $(X - A) \cap V \neq \emptyset$ for every $V \in \psi(x)$, say $\psi(x) \neq \emptyset$, hence there is no element $V \in \psi(x)$ such that $V \subseteq A$. This implies $A \notin \psi(x)$ and so $x \notin \iota_{\psi}(A)$. Hence $x \in X - \iota_{\psi}(A)$.

For the converse, let $x \notin \gamma_{\psi}(X - A)$. Then there is an element $V \in \psi(x)$ such that $(X - A) \cap V = \emptyset$. So $V \subseteq A$ and since $\psi(x)$ is ascending, $A \in \psi(x)$. From definition of the operation ι_{ψ} , we have $x \in \iota_{\psi}(A)$, hence $x \notin X - \iota_{\psi}(A)$.

(2) It is similar to the proof of (1). \Box

THEOREM 3.3. Let ψ be an ascending generalized neighborhood system on X. Then ι_{ψ} is monotonic and restricting.

PROOF. If $A \subseteq B$ and $x \in \iota_{\psi}(A)$, then $A \in \psi(x)$, since $\psi(x)$ is ascending, $B \in \psi(x)$ and so $x \in \iota_{\psi}(B)$. Hence ι_{ψ} is monotonic.

Let $x \in \iota_{\psi}(A)$ for $A \subseteq X$. Then $A \in \psi(x)$. Since ψ is a generalized neighborhood system, $x \in A$, so that ι_{ψ} is restricting. \Box

Acta Mathematica Hungarica 127, 2010

392

THEOREM 3.4. Let ψ be an ascending generalized neighborhood system on X. Then γ_{ψ} is monotonic and enlarging.

PROOF. If $A \subseteq B$ and $x \in \gamma_{\psi}(A)$, then from definition of γ_{ψ} , obviously γ_{ψ} is monotonic.

Let $x \notin \gamma_{\psi}(A)$ for $A \subseteq X$. Then there is a $V \in \psi(x)$ such that $V \cap A = \emptyset$. Since $x \in V$, $x \notin A$, so that γ_{ψ} is enlarging. \Box

For ascending sets κ and λ of $\exp(X)$, if there are $F \in \kappa$, $G \in \lambda$ such that $G \cap F = \emptyset$, we say that κ and λ are *disjoint*.

LEMMA 3.5. For ascending sets κ and λ of $\exp(X)$, if κ and λ are not disjoint, then $\kappa \lor \lambda = \{F \cap G : F \in \kappa, G \in \lambda\}^+$ is an ascending set containing κ, λ .

DEFINITION 3.6. Let ψ be an ascending generalized neighborhood system on X. A *p*-stack \mathcal{F} on X ψ -converges to x if $\psi(x) \subseteq \mathcal{F}$.

THEOREM 3.7. Let X be a nonempty set and $\psi : X \to \exp(\exp(X))$ an ascending generalized neighborhood system.

(1) $\iota_{\psi}(A) = \{x \in A : A \in \mathcal{F}, \text{ for every } p\text{-stack } \mathcal{F} \ \psi\text{-converging to } x\};$

(2) $\gamma_{\psi}(A) = \{x \in X : \text{ there is a } p\text{-stack } \mathcal{F} \text{ such that } \mathcal{F} \psi\text{-converges to } x \text{ and } A \in \mathcal{F}\}.$

PROOF. (1) If $x \in \iota_{\psi}(A)$ and a *p*-stack $\mathcal{F} \psi$ -converges to x, then $A \in \psi(x)$ and $\psi(x) \subseteq \mathcal{F}$, so $x \in A$ and $A \in \mathcal{F}$.

For the converse, let $\psi(x)$ be nonempty for $x \in X$. Then $\psi(x)$ is a *p*-stack and it ψ -converges to x. By hypothesis, $A \in \psi(x)$. Hence $x \in \iota_{\psi}(A)$.

(2) Let $x \in \gamma_{\psi}(A)$. Then $V \cap A \neq \emptyset$ for every $V \in \psi(x)$. Put

$$\mathcal{F} = \begin{cases} \{A\}^+, & \text{if } \psi(x) = \emptyset, \\ \psi(x) \lor \{A\}^+, & \text{if } \psi(x) \neq \emptyset, \end{cases}$$

then \mathcal{F} is a *p*-stack such that it ψ -converges to *x* and $A \in \mathcal{F}$.

Suppose there is a *p*-stack \mathcal{F} such that it ψ -converges to x and $A \in \mathcal{F}$. Since $\psi(x) \subseteq \mathcal{F}$ and \mathcal{F} is a *p*-stack, $V \cap A \neq \emptyset$ for every $V \in \psi(x)$, so this implies $x \in \gamma_{\psi}(A)$. \Box

DEFINITION 3.8. A function $f: (X, \psi) \to (Y, \psi')$ on ascending generalized neighborhood systems ψ, ψ' is said to be (ψ, ψ') -continuous if for $x \in X$ and for each $V \in \psi'(f(x)), f^{-1}(V) \in \psi(x)$.

THEOREM 3.9. Let $f: (X, \psi) \to (Y, \psi')$ be a function on ascending generalized neighborhood systems ψ, ψ' . Then the following are equivalent:

(1) f is (ψ, ψ') -continuous.

(2) For $x \in X$ and for each $V \in \psi'(f(x))$, there is $U \in \psi(x)$ such that $f(U) \subseteq V$.

Acta Mathematica Hungarica 127, 2010

W. K. MIN

(3) $f^{-1}(\iota_{\psi'}(B)) \subseteq \iota_{\psi}(f^{-1}(B))$ for $B \subseteq Y$. (4) $\gamma_{\psi}(f^{-1}(B)) \subseteq f^{-1}(\gamma_{\psi'}(B))$ for $B \subseteq Y$.

(5) $f(\gamma_{\psi}(A)) \subseteq \gamma_{\psi'}(f(A))$ for $A \subseteq X$.

PROOF. (1) \Rightarrow (2). For $x \in X$, let $V \in \psi'(f(x))$. From (ψ, ψ') -continuity of $f, f^{-1}(V) \in \psi(x)$. Put $U = f^{-1}(V)$; then $U \in \psi(x)$ and $f(U) \subseteq V$. Thus (2) is obtained.

(2) \Rightarrow (3). For $B \subseteq Y$, let $x \in f^{-1}(\iota_{\psi'}(B))$. Then $f(x) \in \iota_{\psi'}(B)$ and so $B \in \psi'(f(x))$. By (2), there is $U \in \psi(x)$ such that $f(U) \subseteq B$, since $\psi(x)$ is ascending, it is $f^{-1}(B) \in \psi(x)$. Hence $x \in \iota_{\psi}(f^{-1}(B))$.

 $(3) \Rightarrow (1).$ For $x \in X$, let $V \in \psi'(f(x))$. Then we know that $f(x) \in \iota_{\psi'}(V)$ and so $x \in f^{-1}(\iota_{\psi'}(V))$. It follows $x \in \iota_{\psi}(f^{-1}(V))$ from (3). This implies $f^{-1}(V) \in \psi(x)$. Hence f is (ψ, ψ') -continuous.

(3) \Leftrightarrow (4). It is obtained from Theorem 3.2.

 $(4) \Leftrightarrow (5)$. Obvious.

Let $f: X \to Y$ be a function. For an ascending set \mathcal{F} of $\exp(X)$, let us define $f(\mathcal{F}) = \{f(K) : K \in \mathcal{F}\}^+$.

LEMMA 3.10. Let $f: X \to Y$ be a function and \mathcal{F} an ascending set of $\exp(X)$. Then $U \in f(\mathcal{F})$ iff there exists $K \in \mathcal{F}$ such that $f(K) \subseteq U$. PROOF. Obvious. \Box

THEOREM 3.11. Let $f : (X, \psi) \to (Y, \psi')$ be a function on ascending generalized neighborhood systems ψ , ψ' . Then if f is (ψ, ψ') -continuous, then $f(\mathcal{F}) \psi'$ -converges to f(x) whenever a p-stack $\mathcal{F} \psi$ -converges to x.

PROOF. Suppose f is (ψ, ψ') -continuous and a p-stack \mathcal{F} ψ -converges to x. Let $\psi'(f(x)) \neq \emptyset$. Then for each $V \in \psi'(f(x))$, by Theorem 3.9 (2), there is some $U \in \psi(x)$ such that $f(U) \subseteq V$. Since \mathcal{F} ψ -converges to x, we can say that there is $U \in \mathcal{F}$ such that $f(U) \subseteq V$. So by Lemma 3.10, V is an element in the ascending set $f(\mathcal{F})$. Hence $f(\mathcal{F})$ ψ' -converges to f(x). \Box

In Theorem 3.11, the converse is not always true as shown in the next example.

EXAMPLE 3.12. Let $X = \{a, b, c\}$. Consider two ascending generalized neighborhood systems ψ and ψ' defined as the following:

$$\psi(a) = \emptyset, \quad \psi(b) = \{X\}, \quad \psi(c) = \{X\};$$

$$\psi'(a) = \{X\}, \quad \psi'(b) = \{X\}, \quad \psi'(c) = \{X\}.$$

Let us consider the identity function $f: (X, \psi) \to (X, \psi')$. Then for every $x \in X$, $f(\mathcal{F}) \psi'$ -converges to f(x) whenever a *p*-stack $\mathcal{F} \psi$ -converges to *x*. But *f* is not (ψ, ψ') -continuous at *a*.

Acta Mathematica Hungarica 127, 2010

394

Let X be a nonempty set and $\psi : X \to \exp(\exp(X))$ an ascending generalized neighborhood system. Set $\mathcal{E}_{\psi} = \{x \in X : \psi(x) = \emptyset\}$.

THEOREM 3.13. Let $f: (X, \psi) \to (Y, \psi')$ be a function on ascending generalized neighborhood systems ψ , ψ' and $f(\mathcal{E}_{\psi}) \subseteq \mathcal{E}_{\psi'}$. Then f is (ψ, ψ') -continuous if and only if $f(\mathcal{F})$ ψ' -converges to f(x) whenever a p-stack \mathcal{F} ψ -converges to x.

PROOF. From Theorem 3.11, it is sufficient to show that if $f(\mathcal{F}) \psi'$ converges to f(x) whenever a *p*-stack $\mathcal{F} \psi$ -converges to *x*, then *f* is (ψ, ψ') continuous. For the proof, suppose $\psi'(f(x)) \neq \emptyset$ and $V \in \psi'(f(x))$. Then
from $f(\mathcal{E}_{\psi}) \subseteq \mathcal{E}_{\psi'}$, we can say $\psi(x) \neq \emptyset$. Since $\psi(x) \psi$ -converges to *x*, by
hypothesis, we have $V \in \psi'(f(x)) \subseteq f(\psi(x))$. Thus for $V \in f(\psi(x))$, by
Lemma 3.10, there is $U \in \psi(x)$ such that $f(U) \subseteq V$. Hence from Theorem
3.9 (2), *f* is (ψ, ψ') -continuous.

Let g be a collection of subsets of X. Then g is called a generalized topology [1] on X iff $\emptyset \in g$ and $G_i \in g$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in g$. The elements of g are called g-open sets and the complements are called gclosed sets. Let ψ be a GNS on X and $G \in g_{\psi}$ iff $G \subset X$ satisfies: if $x \in G$ then there is $V \in \psi(x)$ such that $V \subset G$. Let g and g' be generalized topologies on X and Y, respectively. Then a function $f: X \to Y$ is said to be (g, g')-continuous [1] if $G' \in g'$ implies that $f^{-1}(G') \in g$.

THEOREM 3.14. Let $f : (X, \psi) \to (Y, \psi')$ be a function on ascending generalized neighborhood systems ψ, ψ' . Then if f is (ψ, ψ') -continuous, then it is $(g_{\psi}, g_{\psi'})$ -continuous.

PROOF. If $V \in g_{\psi'}$, then for each $x \in f^{-1}(V)$, there is $U \in \psi'(f(x))$ such that $f(x) \in U \subseteq V$. Since f is (ψ, ψ') -continuous, $f^{-1}(U) \in \psi(x)$ and from $f^{-1}(U) \subseteq f^{-1}(V)$, we know that $f^{-1}(V) \in g_{\psi}$. Hence f is $(g_{\psi}, g_{\psi'})$ continuous. \Box

EXAMPLE 3.15. Let $X = \{a, b, c, d\}$. Consider two ascending generalized neighborhood systems ψ and ψ' defined as the following:

$$\psi(a) = \{X\}, \quad \psi(b) = \{X\}, \quad \psi(c) = \{X\}, \quad \psi(d) = \emptyset;$$

$$\psi'(a) = \{\{a, b\}, X\}, \quad \psi'(b) = \{X\}, \quad \psi'(c) = \{X\}, \quad \psi'(d) = \emptyset.$$

Then $g_{\psi} = g_{\psi'} = \{ \emptyset, \{a, b, c\} \}.$

Let us consider the identity function $f: (X, \psi) \to (X, \psi')$. Then f is $(g_{\psi}, g_{\psi'})$ -continuous but not (ψ, ψ') -continuous.

Acta Mathematica Hungarica 127, 2010

References

- Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.
- [2] Á. Császár, Generalized neighborhood systems, Acta Math. Hungar., 121 (2008), 395– 400.
- [3] D. C. Kent and W. K. Min, Neighborhood spaces, Int. J. Math. Math. Sci., 32 (2002), 387–399.

Acta Mathematica Hungarica 127, 2010