
Acta Math. Hungar., 122 (3) (2009), 203�216.
DOI: 10.1007/s10474-008-7242-3

First published online December 12, 2008

A FIXED POINT RESULT IN MENGER SPACES
USING A REAL FUNCTION
B. S. CHOUDHURY1, K. DAS1 and P. N. DUTTA2

1 Department of Mathematics, Bengal Engineering and Science University,
P.O.- B. Garden, Shibpur, Howrah � 711103, West Bengal, India

e-mails: bsc@math.becs.ac.in, binayak12@yahoo.co.in and kestapm@yahoo.co.in
2 Department of Mathematics, Government College of Engineering and Ceramic Technology,

73 A.C. Banerjee Lane, Kolkata � 700010, West Bengal, India
e-mail: prasanta_dutta1@yahoo.co.in

(Received December 20, 2007; revised March 17, 2008; accepted July 10, 2008)

Abstract. The main result of this paper is a �xed point theorem of self-
mappings in Menger spaces which satisfy certain inequality. This inequality in-
volves a class of real functions which we call Φ-functions. As a corollary we obtain
a result in the corresponding metric spaces. The result is supported by an ex-
ample. The class of real functions we have used is the conceptual extension of
altering distance functions used in metric �xed point theory.

1. Introduction

The study of �xed point results in probabilistic metric spaces has been
extensively done in the last quarter of the twentieth century and is being con-
tinued in the present time. One of the earliest works in this line of research
is due to Sehgal and Bharucha-Reid [21] where they have introduced prob-
abilistic q-contraction and proved a corresponding unique �xed point result.
After that several types of contractions and associated �xed point theorems
have been established in probabilistic metric spaces, especially in Menger
spaces which is a special type of probabilistic metric spaces. Various aspects
of this theory have been elaborately discussed in the book due to Hadzic and
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Pap [9]. Some other recent references are noted in [2], [4], [8], [10], [13], [14],
[15] and [22].

A new class of �xed point problems in metric spaces was addressed by
Khan, Swaleh and Sessa in [12]. They introduced a control function called al-
tering distance function which alters the distance between any two points in
a given metric space. They proved �xed point theorems for mappings satisfy-
ing certain inequalities involving this altering distance function. Afterwards a
number of works have appeared in which altering distance functions and their
generalizations have been used in metric spaces for obtaining �xed point re-
sults. We note some of these in references [1], [3], [5], [11], [16], [17], [18] and
[19]. In [6] altering distances have also been used in the case of multi-valued
and fuzzy mappings.

With a view to extending this idea of altering distances to probabilistic
metric spaces in [7] a new contraction has been introduced in Menger spaces.
This contraction involves a class of real functions which we call Φ-functions
and generalizes the q-contraction introduced by Sehgal and Bharucha-Reid
[21]. The purpose of the present work is to de�ne new contractive inequalities
with the help of Φ-functions and then to establish that any self-mapping of a
complete Menger space with continuous t-norm satisfying this inequality will
have a unique �xed point.

We now state some de�nitions which are needed for the discussion of the
present topic.

Definition 1.1 (altering distance function [12]). The control function
ψ : [0,∞) → [0,∞) is called altering distance function if it has the following
properties.

(i) ψ is monotone increasing and continuous,
(ii) ψ(t) = 0 if and only if t = 0.
Definition 1.2. A mapping F : R → R+ is called a distribution func-

tion if it is non-decreasing and left continuous with inft∈R F (t) = 0 and
supt∈R F (t) = 1, where R+ denotes the set of non-negative real numbers.

Definition 1.3 (probabilistic metric space [20]). A probabilistic metric
space (PM space) is an ordered pair (S, F ), where S is a non-empty set and
F is a function de�ned on S × S to the set of distribution functions which
satis�es the following conditions:

(i) Fxy(0) = 0,
(ii) Fxy(t) = 1 for all t > 0 i� x = y,
(iii) Fxy(t) = Fyx(t) for all t ∈ R,
(iv) Fxy(t1) = 1 and Fyz(t2) = 1, imply Fxz(t1 + t2) = 1.
Definition 1.4 (t-norm [20]). A t-norm is a function T : [0, 1]× [0, 1]

→ [0, 1] which satis�es the following:
(i) T (1, a) = a, T (0, 0) = 0,
(ii) T (a, b) = T (b, a),
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(iii) T (c, d) = T (a, b) whenever c = a and d = b,
(iv) T

(
T (a, b), c

)
= T

(
a, T (b, c)

)
.

Definition 1.5 (Menger space [20]). A Menger space is a triplet
(S, F, T ), where S is a non-empty set, F is a function de�ned on S × S
to the set of distribution functions and T is a t-norm such that the following
are satis�ed:

(i) Fxy(0) = 0 for all x, y ∈ S,
(ii) Fxy(s) = 1 for all s > 0 i� x = y,
(iii) Fxy(s) = Fyx(s) for all x, y ∈ S,
(iv) Fxy(u + v) = T

(
Fxz(u), Fzy(v)

)
for all u, v = 0 and x, y, z ∈ S.

Menger spaces are generalizations of metric spaces through an introduc-
tion of a probabilistic metric F in place of deterministic metric. The following
are some de�nitions and concepts associated with Menger space.

Definition 1.6. A sequence {xn} ⊂ S is said to converge to some point
x ∈ S if given ε > 0, λ > 0 we can �nd a positive integer Nε,λ such that for
all n > Nε,λ, Fxnx(ε) > 1− λ.

Definition 1.7. A sequence {xn} is said to be a Cauchy sequence in S
if given ε > 0, λ > 0 there exists a positive integer Nε,λ, such that Fxnxm(ε)
> 1− λ for all m,n > Nε,λ.

Definition 1.8. A Menger space (S,F, T ) is said to be complete if every
Cauchy sequence in it is convergent.

Definition 1.9. If (S, F, T ) is a Menger space with continuous t-norm
then the topology induced by the family

{
Uε,λ(p) : p ∈ S, ε > 0, λ > 0

}
is

called the (ε−λ)-topology, where Uε,λ(p) =
{

q ∈ S : Fpq(ε) > 1−λ
}
is called

the (ε− λ)-neighborhood of p.
The following category of functions was introduced in [7].
Definition 1.10 (Φ-function [7]). A function ϕ : [0,∞) → [0,∞) is said

to be a Φ-function if it satis�es the following conditions:
(i) ϕ(t) = 0 if and only if t = 0,
(ii) ϕ(t) is strictly monotone increasing and ϕ(t) →∞ as t →∞,
(iii) ϕ is left continuous in (0,∞),
(iv) ϕ is continuous at 0.
Definition 1.11 [7]. Let (S, F, T ) be a Menger space. A self map

f : S → S is said to be ϕ-contractive if

(1.1) Ffxfy

(
ϕ(t)

)
= Fxy

(
ϕ

(
t

c

))

where 0 < c < 1, x, y ∈ S and t > 0 and the function ϕ is a Φ-function.
The following result was proved in [7].
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Theorem 1.1 [7]. Let (S, F, TM ) be a complete Menger space with t-
norm TM given by TM (a, b) = min (a, b). If f : S → S is ϕ-contractive then
f has a unique �xed point.

It may be seen that the inequality (1.1) reduces to Sehgal's q-contraction
when ϕ is assumed to be the identity function. It has also been shown in [7]
that Theorem 1.1 implies a result established in [12]. In fact the Φ-function
plays the role of altering distance function (De�nition 1.1) in probabilistic
metric spaces [7].

The purpose of the present work is to establish a �xed point theorem
in Menger spaces by use of Φ-functions. We also deduce a result in metric
spaces as a corollary of our main theorem. Lastly we have supported our
theorem by an example.

2. Main results

Theorem 2.1. Let (S,F, T ) be a complete Menger space with continuous
t-norm T and let f : S → S satisfy the following inequality:

Ffxfy

(
ϕ(t)

)
= min

{
Fxy

(
ϕ

(
t1
a

))
, Fxfx

(
ϕ

(
t2
b

))
, Fyfy

(
ϕ

(
t3
c

))}(2.1)

where a, b, c are positive numbers such that 0 < a + b + c < 1, t1, t2, t3 > 0,
t1 + t2 + t3 = t and ϕ is a Φ-function (De�nition 1.10). Then f has a unique
�xed point.

Proof. Let x0 ∈ S. We construct a sequence xn in S as follows:
xn+1 = fxn, n = 0, 1, 2, 3, . . . .

We have 0 < a + b + c < 1, hence we can take ε′ > 0 such that a + b + c + 3ε′
= 1. Let t1 = (a + ε′)t, t2 = (b + ε′)t and t3 = (c + ε′)t. Then t1 + t2 + t3 = t.

We next prove that Fxn+1xn(s) → 1 as n →∞ for all s > 0.
Fxn+1xn

(
ϕ(t)

)
= Ffxnfxn−1

(
ϕ(t)

)
(2.2)

= min
{

Fxn−1xn

(
ϕ

(
(a + ε′)t

a

))
, Fxnxn+1

(
ϕ

(
(b + ε′)t

b

))
,

Fxn−1xn

(
ϕ

(
(c + ε′)t

c

))}

= min
{

Fxn−1xn

(
ϕ

(
t

a/(a + ε′)

))
, Fxnxn+1

(
ϕ

(
t

b/(b + ε′)

))
,

Fxn−1xn

(
ϕ

(
t

c/(c + ε′)

))}
.
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Now we have a
a+ε′ < 1, b

b+ε′ < 1, c
c+ε′ < 1, hence we can choose k such that

0 < k < 1 and

max
{

a

a + ε′
,

b

b + ε′
,

c

c + ε′

}
< k.

Therefore

(2.3) t

a/(a + ε′)
,

t

b/(b + ε′)
,

t

c/(c + ε′)
>

t

k
.

Hence, we have from (2.2) and (2.3) for all t > 0,

Fxn+1xn

(
ϕ(t)

)
(2.4)

= min
{

Fxnxn−1

(
ϕ

(
t

k

))
, Fxn+1xn

(
ϕ

(
t

k

))
, Fxnxn−1

(
ϕ

(
t

k

))}

[since ϕ is monotone increasing]

= min
{

Fxnxn−1

(
ϕ

(
t

k

))
, Fxn+1xn

(
ϕ

(
t

k

))}
.

Now we claim that

(2.5) min
{

Fxnxn−1

(
ϕ

(
t

k

))
, Fxn+1xn

(
ϕ

(
t

k

))}
= Fxnxn−1

(
ϕ

(
t

k

))

for all t > 0. If otherwise, there exists s > 0 such that

(2.6) Fxnxn−1

(
ϕ

( s

k

))
> Fxn+1xn

(
ϕ

( s

k

))
.

By (2.4) and (2.6)

Fxn+1xn

(
ϕ(s)

)
= min

{
Fxnxn−1

(
ϕ

( s

k

))
, Fxn+1xn

(
ϕ

( s

k

))}
(2.7)

= Fxn+1xn

(
ϕ

( s

k

))
= min

{
Fxnxn−1

(
ϕ

( s

k2

))
, Fxn+1xn

(
ϕ

( s

k2

))}
.

If

min
{

Fxnxn−1

(
ϕ

( s

k2

))
, Fxn+1xn

(
ϕ

( s

k2

))}
= Fxnxn−1

(
ϕ

( s

k2

))
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then by (2.6) and (2.7) we have

Fxnxn−1

(
ϕ

( s

k

))
> Fxn+1xn

(
ϕ

( s

k

))
= Fxnxn−1

(
ϕ

( s

k2

))

= Fxnxn−1

(
ϕ

( s

k

))
,

which is a contradiction.
Therefore

(2.8) Fxnxn−1

(
ϕ

( s

k2

))
> Fxn+1xn

(
ϕ

( s

k2

))
.

Hence from (2.7) we have

(2.9) Fxn+1xn

(
ϕ

( s

k

))
= Fxn+1xn

(
ϕ

( s

k2

))
.

Further from (2.4) we get,

(2.10) Fxn+1xn

(
ϕ

( s

k2

))
= min

{
Fxnxn−1

(
ϕ

( s

k3

))
, Fxn+1xn

(
ϕ

( s

k3

))}
.

If

min
{

Fxnxn−1

(
ϕ

( s

k3

))
, Fxn+1xn

(
ϕ

( s

k3

))}
= Fxnxn−1

(
ϕ

( s

k3

))

then by (2.8) and (2.10) we get

Fxnxn−1

(
ϕ

( s

k2

))
> Fxnxn−1

(
ϕ

( s

k3

))

which is a contradiction. Hence

min
{

Fxnxn−1

(
ϕ

( s

k3

))
, Fxn+1xn

(
ϕ

( s

k3

))}
= Fxn+1xn

(
ϕ

( s

k3

))
,

which implies

Fxn+1xn

(
ϕ

( s

k2

))
= Fxn+1xn

(
ϕ

( s

k3

))
.

Therefore from (2.9) we have

Fxn+1xn

(
ϕ

( s

k

))
= Fxn+1xn

(
ϕ

( s

k2

))
= Fxn+1xn

(
ϕ

( s

k3

))
.
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Continuing in this way we obtain

Fxn+1xn

(
ϕ

( s

k

))
= Fxn+1xn

(
ϕ

(
t

kp′

))
→ 1 as p′ →∞

that is, Fxn+1xn(ϕ( s
k)) = 1. But by our assumption (2.6), Fxnxn−1(ϕ( s

k))
> Fxn+1xn(ϕ( s

k)) that is, Fxnxn−1(ϕ( s
k)) > 1, which is impossible.

Therefore (2.5) holds.
Then from (2.4) we have for all t > 0,

(2.11) Fxn+1xn

(
ϕ(t)

)
= Fxnxn−1

(
ϕ

(
t

k

))
.

Applying successively,

Fxn+1xn

(
ϕ(t)

)
= Fxnxn−1

(
ϕ

(
t

k

))
= Fxn−1xn−2

(
ϕ

(
t

k2

))
= · · ·

= Fx1x0

(
ϕ

(
t

kn

))
→ 1

as n →∞. Thus we have proved that for all t > 0, Fxn+1xn

(
ϕ(t)

) → 1 as
n →∞.

By property of ϕ, given s > 0 there exists t > 0 such that s > ϕ(t), so
that

(2.12) Fxn+1xn(s) → 1 as n →∞ for all s > 0.

We now claim that {xn} is a Cauchy sequence. If not, then there exist
ε > 0 and λ > 0 and subsequences {xm(k)} and {xn(k)} such that m(k) <

n(k) and

Fxm(k)xn(k)
(ε) < 1− λ,(2.13)

Fxm(k)xn(k)−1
(ε) = 1− λ.(2.14)

Since

(2.15)
{

x : Fxp(ε′′) = 1− λ
}

j
{

x : Fxp(ε) = 1− λ
}

for all p ∈ S, λ > 0 and 0 < ε′′ < ε, it follows that whenever the above con-
struction is possible for ε > 0, λ > 0, it is also possible to construct {xm(k)}
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and {xn(k)} satisfying (2.13) and (2.14) corresponding to ε′′ > 0, λ > 0 when-
ever ε′′ < ε.

Again ϕ is continuous at the origin and strictly monotone increasing with
ϕ(0) = 0, so it is possible to obtain ε1 > 0 such that ϕ(ε1) < ε.

Then by the above argument it is possible to obtain increasing sequences
of integers m(k) and n(k) with m(k) < n(k) such that

(2.16) Fxm(k)xn(k)

(
ϕ(ε1)

)
< 1− λ,

and

(2.17) Fxm(k)xn(k)−1

(
ϕ(ε1)

)
= 1− λ.

As a < 1 it is possible to �nd a v > 0 such that a + v < 1. It is also possible
to choose η1 > 0, η2 > 0 such that





v

a + v
ε1 > η1 + η2,

ε1

a
− ε1

a + v
>

η1 + η2

a
,

ε1

a
− η1 + η2

a
>

ε1

a + v
,

ε1 − η1 − η2

a
>

ε1

a + v
.

(2.18)

Also we can choose η > 0 such that

0 < η < ϕ

(
ε1

a + v

)
− ϕ(ε1)

(since ϕ is strictly increasing), that is,

(2.19) ϕ

(
ε1

a + v

)
− η > ϕ(ε1).

By (2.12) for λ1 < λ < 1 it is possible to �nd a positive integer N1 such that
for all k > N1

Fxm(k)xm(k)−1

(
ϕ

(η1

b

))
= 1− λ1,(2.20)

Fxn(k)xn(k)−1

(
ϕ

(η2

c

))
= 1− λ1.(2.21)

Again by (2.17)�(2.19),

Fxm(k)xn(k)−1

(
ϕ

(
ε1 − η1 − η2

a

)
− η

)
(2.22)

= Fxm(k)xn(k)−1

(
ϕ

(
ε1

a + v

))
− η) = Fxm(k)xn(k)−1

(
ϕ(ε1)

)
= 1− λ.
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Now,

Fxm(k)−1xn(k)−1

(
ϕ

(
ε1 − η1 − η2

a

))
(2.23)

= T

{
Fxm(k)−1xm(k)

(η), Fxm(k)xn(k)−1

(
ϕ

(
ε1 − η1 − η2

a

)
− η

)}
.

Let 0 < λ2 < 1 be arbitrary. Then by (2.12) there exists a positive integer
N2 such that for all k > N2,

(2.24) Fxm(k)−1xm(k)
(η) = 1− λ2.

Using (2.22) and (2.24), we have from (2.23) for all k > max {N1, N2},

Fxm(k)−1xn(k)−1

(
ϕ

(
ε1 − η1 − η2

a

))
= T{1− λ2, 1− λ}.

As λ2 is arbitrary and T being continuous, we have

(2.25) Fxm(k)−1xn(k)−1

(
ϕ

(
ε1 − η1 − η2

a

))
= T (1, 1− λ) = 1− λ.

Using (2.1), (2.16), (2.20), (2.21) and (2.25) we have

1− λ > Fxm(k)xn(k)

(
ϕ(ε1)

)

= min
{

Fxm(k)−1xn(k)−1

(
ϕ

(
ε1 − η1 − η2

a

))
, Fxm(k)−1xm(k)

(
ϕ

(η1

b

))
,

Fxn(k)−1xn(k)

(
ϕ

(η2

c

)) }
= min {1− λ, 1− λ1, 1− λ1} = 1− λ,

which is a contradiction. Hence {xn} is a Cauchy sequence. As (S, F, T ) is
complete, we have xn → z as n →∞ for some z ∈ S.

We now show that z is a �xed point of f , that is, fz = z. Let ε2 > 0
be arbitrary. As ϕ is strictly monotone increasing, we can take a positive
number ε3 and k such that c < k < 1, ε3 < ε2 and ε2

k < ε3
c . Now η′ > 0 is

chosen in such a way that

(2.26) η′ < min
{

ϕ(ε2)− ϕ(ε3), ϕ
(ε3

c

)
− ϕ

(ε2

k

)}
.

(The choice is possible since ϕ is strictly monotone increasing.)

Acta Mathematica Hungarica 122, 2009



212 B. S. CHOUDHURY, K. DAS and P. N. DUTTA

By virtue of left continuity of ϕ, we can choose positive numbers α1, α2,
α3 in such a way that

α1 + α2 + α3 = ε3 and ϕ
(α3

c

)
= ϕ

(
ε3

c
− α1 + α2

c

)
> ϕ

(ε3

c

)
− η′.

(2.27)

Again by (2.26) we have ϕ( ε3
c )−η′ > ϕ( ε2

k )), and by (2.1), (2.27) and (2.26),

Fzfz

(
ϕ(ε2)

)
= T{Fzxn(η′), Fxnfz

(
ϕ(ε2)

) − η′}
= T{Fzxn(η′), Fxnfz

(
ϕ(ε3)

)} = T{Fzxn(η′), Ffxn−1fz

(
ϕ(ε3)

)}

= T{Fzxn(η′),min
{

Fxn−1z

(
ϕ

(α1

a

))
, Fxn−1xn

(
ϕ

(α2

b

))
, Fzfz

(
ϕ

(α3

c

))}(2.28)

= T{Fzxn(η′),min
{

Fxn−1z

(
ϕ

(α1

a

))
, Fxn−1xn

(
ϕ

(α2

b

))
,(2.29)

Fzfz

(
ϕ

(ε3

c
− η′

)) }

= T{Fzxn(η′),min
{

Fxn−1z

(
ϕ

(α1

a

))
, Fxn−1xn

(
ϕ

(α2

b

))
, Fzfz

(
ϕ

(ε2

k

))}
.

As T is continuous, taking limit as n →∞, using (2.12) and the fact that
xn → z, we have

Fzfz

(
ϕ(ε2)

)
= T

(
1,min

{
1, 1, Fzfz

(
ϕ

(ε2

k

))})

= T
(
1, Fzfz

(
ϕ

(ε2

k

)))
= Fzfz

(
ϕ

(ε2

k

))
.

Since ε2 > 0 is arbitrary, we successively apply the above inequality and we
obtain

Fzfz

(
ϕ(ε2)

)
= Fzfz

(
ϕ

( ε2

k2

))
= Fzfz

(
ϕ

( ε2

k3

))
= · · ·

= Fzfz

(
ϕ

( ε2

kq′

))
→ 1

as q′ →∞. By properties (i) and (ii) of ϕ, given s1 > 0 we can have r1 > 0
such that ϕ(r1) < s1. Therefore, Fzfz(s1) > Fzfz

(
ϕ(r1)

)
= 1 for all s1 > 0.

Hence z = fz. Therefore z is a �xed point of f .
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Next we prove the uniqueness of �xed point. Let z and z1 be two �xed
point of f that is fz = z and fz1 = z1. Then for any t > 0,

Fzz1

(
ϕ(t)

)
= Ffzfz1

(
ϕ(t)

)

= min
{

Fzz1

(
ϕ

(
t1
a

))
, Fzfz

(
ϕ

(
t2
b

))
, Fz1fz1

(
ϕ

(
t3
c

))}

where t1 + t2 + t3 = t and 0 < a + b + c < 1.
We take v in such a way that a + b + c + 3v = 1. Let t1 = (a + v)t, t2 =

(b + v)t and t3 = (c + v)t. Then t1 + t2 + t3 = t. Thus

Fzz1

(
ϕ(t)

)
= Ffzfz1

(
ϕ(t)

)
= min

{
Fzz1

(
ϕ

(
(a + v)t

a

))
,

Fzfz

(
ϕ

(
(b + v)t

b

))
, Fz1fz1

(
ϕ

(
(c + v)t

c

))}

= min

{
Fzz1

(
ϕ

(
t
a

a+v

))
, Fzz

(
ϕ

(
t
b

b+v

))
, Fz1z1

(
ϕ

(
t
c

c+v

))}

= min

{
Fzz1

(
ϕ

(
t
a

a+v

))
, 1, 1

}
= Fzz1

(
ϕ

(
t
a

a+v

))

= Fzz1

(
ϕ

(
t

µ

))
where 0 < µ =

a

a + v
< 1.

Applying successively the above inequality

Fzz1

(
ϕ(t)

)
= Fzz1

(
ϕ

(
t

µ

))
= Fzz1

(
ϕ

(
t

µ2

))
= · · ·

= Fzz1

(
ϕ

(
t

µn

))
→ 1

as n →∞. By properties (i) and (ii) of ϕ, given t > 0, we can have r > 0
such that ϕ(r) < t. Therefore, Fzz1(t) = Fzz1

(
ϕ(r)

)
= 1 for all t > 0. Hence

z = z1. This proves the uniqueness of �xed point.
It is well known that any metric space may be considered as a Menger

space if we assume Fxy(t) = H
(
t− d(x, y)

)
, where H is the Heaviside func-

tion given by

H(s) =

{
1, if s > 0,

0, if s 5 0
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and T (a, b) = TM (a, b) = min {a, b}.
If we take (S, d) as a complete metric space then the corresponding

Menger space (S, F, TM ), where TM is the minimum t-norm, is also com-
plete.

If ψ is an altering distance function as in De�nition 1.1 with the addi-
tional property ψ(t)→∞, as t→∞ then it is easily veri�ed that the function
de�ned by

ϕ(t) =

{
inf

{
α : ψ(α) = t

}
, for t > 0,

0, for t = 0

is a Φ-function (De�nition 1.10).
We next show that the inequality (2.1) in this case implies

ψ
(
d(fx, fy)

)
5 aψ

(
d(x, y)

)
+ bψ

(
d(x, fx)

)
+ cψ

(
d(y, fy)

)

in a metric space.
Inequality (2.1) will be violated if there exists t > 0, t1 + t2 + t3 = t and

t1, t2, t3 > 0 such that Ffxfy

(
ϕ(t)

)
= 0 and all of Fxy(ϕ( t1

a )), Fxfx(ϕ( t2
b )),

Fyfy(ϕ( t3
c )) are equal to 1. Now Ffxfy

(
ϕ(t)

)
= 0 implies

H(
(
ϕ(t)− d(fx, fy)

)
= 0, ϕ(t)− d(fx, fy)) 5 0,

ϕ(t) 5 d(fx, fy), inf
{

α : ψ(α) = t
}

5 d(fx, fy),

that is, by virtue of continuity of ψ

(2.30) ψ
(
d(fx, fy)

)
= t.

Again t = t1 + t2 + t3. Therefore ψ
(
d(fx, fy)

)
= t1 + t2 + t3.

Also Fxy(ϕ( t1
a )) = 1 implies

H

(
ϕ

(
t1
a

)
− d(x, y)

)
= 1, ϕ

(
t1
a

)
− d(x, y) > 0, ϕ

(
t1
a

)
> d(x, y),

whence inf {β : ψ(β) = t1
a } > d(x, y). By continuity of ψ, d(x, y) 6∈ {β :

ψ(β) = t1
a } that is, ψ

(
d(x, y)

)
< t1

a which implies

(2.31) t1 > aψ
(
d(x, y)

)
.

Similarly, from Fxfx(ϕ( t2
b )) = 1 and Fyfy(ϕ( t3

c )) = 1 we have respectively

t2 > bψ
(
d(x, fx)

)
,(2.32)

Acta Mathematica Hungarica 122, 2009



A FIXED POINT RESULT IN MENGER SPACES 215

t3 > cψ
(
d(y, fy)

)
.(2.33)

Thus we have

(2.34) ψ
(
d(fx, fy)

)
> aψ

(
d(x, y)

)
+ bψ

(
d(x, fx)

)
+ cψ

(
d(y, fy)

)
.

Hence we can say that inequality (2.1) implies

ψ
(
d(fx, fy)

)
5 aψ

(
d(x, y)

)
+ bψ

(
d(x, fx)

)
+ cψ

(
d(y, fy)

)

in the corresponding metric space.
We have then the following result.
Corollary 2.1. Let (S, d) be a complete metric space, f be a self map

on S and ψ be an altering distance function with the additional property
ψ(t) →∞ as t →∞. If f satis�es the inequality

(2.35) ψ
(
d(fx, fy)

)
5 aψ

(
d(x, y)

)
+ bψ

(
d(x, fx)

)
+ cψ

(
d(y, fy)

)

for all x, y ∈ S with x 6= y and 0 < a + b + c < 1, then f has a unique �xed
point.

If we take b = c in Corollary 2.1 we obtain a result in [12].
Note. In Corollary 2.1 the additional requirement on the altering dis-

tance function ψ(t)→∞ as t→∞ can be omitted if we modify the de�nition
of the Φ-function by making these into extended real valued functions and
thus allowing these functions to assume +∞. Then an altering distance func-
tion generates a Φ-function in the same way, that is

ϕ(t) =

{
inf

{
α : ψ(α) = t

}
, for t > 0,

0, for t = 0.

All our results are valid under such modi�cation and also the proofs remain
identical.

Example 2.1. Let (S,F, T ) be a complete Menger space with continuous
t-norm T , where S = [2, 4], Fxy(t) = t

t+|x−y| and let f : S → S be de�ned as
follows:

fx =
4 + x

3
, 2 5 x 5 4.

If ϕ(t) = t2, a = 3
4 , b = 1

9 , c = 1
9 then it satis�es all the conditions of

Theorem 2.1. It is seen that x = 2 is the �xed point of f .
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