Acta Math. Hungar., 120 $(1-2)$ (2008) , $79-102$. DOI: 10.1007/s10474-007-7107-1 First published online January 22, 2008

DIFFERENCE SETS AND SHIFTED PRIMES

J. LUCIER

Département de Mathématiques et de Statistiques, Université de Montréal, CP 6128, succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada e-mail: lucier@crm.umontreal.ca

(Received June 8, 2007; accepted August 14, 2007)

Abstract. We show that if A is a subset of $\{1, \ldots, n\}$ which has no pair of elements whose difference is equal to $p-1$ with p a prime number, then the size beements whose unterfact is equal to $p-1$ with p a prime number
of A is $O(n(\log \log n)^{-c(\log \log \log \log \log n)})$ for some absolute $c > 0$.

1. Introduction

For a set of integers A we denote by $A - A$ the set of all differences $a - a'$ with a and a' in A, and if A is a finite set we denote its cardinality by $|A|$. Sárközy $[12]$ proved, by the Hardy–Littlewood method, that if A is a subset of $\{1, \ldots, n\}$ such that $A - A$ does not contain a perfect square, then

$$
|A| \ll n(\log \log n)^{2/3}(\log n)^{-1/3}.
$$

This estimate was improved by Pintz, Steiger and Szemerédi [10] to

$$
|A| \ll n(\log n)^{-(1/12)\log\log\log\log n}.
$$

This improvement was obtained using the Hardy-Littlewood method together with a combinatorial result concerning sums of rationals. Balog, Pelikán,

Key words and phrases: Hardy-Littlewood method, difference sets, shifted primes. 2000 Mathematics Subject Classification: 11P55, 11P32, 11B75.

^{0236-5294/\$ 20.00 © 2008} Akadémiai Kiadó, Budapest

Pintz and Szemerédi [1], elucidating the method in [10], proved for any fixed integer $k \geq 2$, that if A is a subset of $\{1, \ldots, n\}$ such that $A - A$ does not contain a perfect k -th power, then

$$
|A| \ll_k n(\log n)^{-(1/4)\log\log\log\log n}.
$$

In the works cited above the following basic property is used: if s is a perfect k-th power then so is $q^k s$ for every positive integer q. This multiplicative property is used in the following fashion. Suppose that B is a set of integers and $A = \{c + q^k b : b \in B\}$ for some integers c and $q \ge 1$. If $A - A$ does not contain a perfect k-th power, then the same is true for $B - B$. This deduction is the basis of an iteration argument that plays a fundamental rôle in [1], [10], and [12].

Sárközy [13] also considered the set $S = \{p-1 : p \text{ a prime}\}\$ of shifted primes, and showed that if A is a subset of $\{1, \ldots, n\}$ such that $A - A$ does not contain an integer from S then

$$
|A| \ll n \frac{(\log \log \log n)^3 (\log \log \log \log n)}{(\log \log n)^2}.
$$

The argument Sárközy used in [12] cannot be applied directly to the set S of shifted primes since it does not have a multiplicative property analogous to the one possessed by the set of perfect k-th powers. Sárközy got around this difficulty by not only considering the set $\mathcal S$ of shifted primes, but also the sets defined for each positive integer d by

$$
S_d = \left\{ \frac{p-1}{d} : p \text{ a prime}, \ p \equiv 1 \pmod{d} \right\}.
$$

In [13] Sárközy uses an iteration argument based on the following observation. Suppose B is a set of integers and $A = \{c + qb : b \in B\}$ for some integers c and $q \geq 1$. If $A - A$ does not intersect S_d for some positive integer d, then $B - B$ does not intersect \mathcal{S}_{dq} .

In this article we show that the combinatorial argument presented in [1] and [10] can be carried out to improve Sárközy's result on the set S of shifted primes. We shall prove the following.

THEOREM. Let n be a positive integer and A a subset of $\{1, \ldots, n\}$. If there does not exist a pair of integers $a, a' \in A$ such that $a - a' = p - 1$ for some prime p, then

$$
|A| \ll n \left(\frac{(\log \log \log n)^3 (\log \log \log \log n)}{(\log \log n)} \right)^{\log \log \log \log \log n}.
$$

The set of perfect squares and the set $\mathcal S$ of shifted primes are examples of *intersective* sets. To define this class of sets we introduce some notation. Given a set of positive integers H we define $D(H, n)$, for any positive integer n, to be the maximal size of a subset A of $\{1, \ldots, n\}$ such that $A - A$ does not intersect H. A set of positive integers H is called *intersective* if $D(H, n)$ $= o(n)$.

Kamae and Mendès France [6] supplied a general criterion for determining if a set of positive integers is intersective. From their criterion they deduced the following.

(I) For any fixed integer a the set $\{p + a : p \text{ a prime}, p > -a\}$ is intersective if and only if $a = \pm 1$.

(II) Let h be a nonconstant polynomial with integer coefficients and whose (ii) Let *h* be a nonconstant potynomial with integer coefficients and whose
leading coefficient is positive. The set $\{h(m): m \geq 1, h(m) \geq 1\}$ is intersective if and only if for each positive integer d the modular equation $h(x) \equiv 0$ (mod d) has a solution.

Let h be a polynomial as in (II) with degree $k \ge 2$ and such that $h(x) \equiv 0$ (mod d) has a solution for every positive integer d . The author $[8]$ has shown (mod *a*) has a solution for every positive integer *a*. The author [o] has shown
that if *A* is a subset of $\{1,\ldots,n\}$ such that $A - A$ does not intersect $\{h(m):$ $m \geq 1, h(m) \geq 1$ ª , then $|A| \ll n(\log \log n)^{\mu/(k-1)}(\log n)^{-(k-1)}$, where $\mu = 3$ if $k = 2$ and $\mu = 2$ if $k \ge 3$. It is possible to improve this result with the method presented in this paper.

2. Preliminary lemmata

In this paper we use the following notations. For a real number x we write $e(x)$ for $e^{2\pi ix}$, and $[x]$ is used to denote the greatest integer less than or equal to x. The greatest common divisor of the integers u and v is given by (u, v) . Euler's totient function is denoted, as usual, by ϕ . For any positive integer *i* we write log_i to denote the *i*-th iterated logarithm, that is, $log_1 n = log n$ and $\log_i n = \log(\log_{i-1} n)$ for every integer $i \geq 2$.

A fundamental rôle is played by the following relations. For integers n and r , with n positive,

$$
\sum_{t=0}^{n-1} e(rt/n) = \begin{cases} n & \text{if } n \mid r \\ 0 & \text{if } n \nmid r \end{cases}, \qquad \int_0^1 e(r\alpha) d\alpha = \begin{cases} 1 & \text{if } r = 0 \\ 0 & \text{if } r \neq 0. \end{cases}
$$

Given a subset A of $\{1, \ldots, n\}$ its generating function is given by

$$
F(\alpha) = \sum_{a \in A} e(\alpha a), \quad \alpha \in \mathbb{R}.
$$

Using the relations above we find that

$$
\sum_{t=1}^{n} |F(t/n)|^{2} = n|A|, \qquad \int_{0}^{1} |F(\alpha)|^{2} d\alpha = |A|.
$$

Of course, these are particular cases of Parseval's identity.

Sárközy's method in [12] and [13] is based on Roth's work [11] on threeterm arithmetic progressions in dense sets. Following this method Sárközy uses a functional inequality to derive his results concerning the set of perfect squares and the set S of shifted primes. Our approach here uses, like Gowers [3] and Green [4], a density increment argument. The next lemma tells us that if the generating function of a finite set A satisfies a certain size constraint, then it must be concentrated along an arithmetic progression. We use this result in Lemma 10 to obtain a density increment that we iterate in the final section of the paper to prove the theorem.

LEMMA 1. Let n be a positive integer and A a subset of $\{1, \ldots, n\}$ with size δn . For any real α let $F(\alpha)$ denote the generating function of A. Let q be a positive integer and U a positive real number such that $2\pi qU \leq n$. Let E denote the subset of [0, 1] defined by

$$
E = \left\{ \alpha \in [0,1] : \left| \alpha - \frac{a}{q} \right| \leq \frac{U}{n} \text{ for some } 0 \leq a \leq q \right\}.
$$

If θ is a positive number such that

(1)
$$
\sum_{\substack{t=1 \ t/n \in E}}^{n-1} |F(t/n)|^2 \geqq \theta |A|^2,
$$

then there exists an arithmetic progression P in $\{1,\ldots,n\}$ with difference q such that

$$
|P| \ge \frac{n}{32\pi qU} \quad \text{and} \quad |A \cap P| \ge |P|\delta\left(1 + 8^{-1}\theta\right).
$$

PROOF. This closely resembles Lemma 20 in [8] and can be proved in the same manner. \square

We now state a combinatorial result presented by Balog, Pelikán, Pintz and Szemerédi in [1], the proof of which uses only elementary techniques. It is this result, that we use in Lemma 9, that allows us to improve Sárközy's result on the set S of shifted primes.

LEMMA 2 ([1], Lemma CR). Let K and L be positive integers, and let τ be the maximal value of the divisor function up to KL . Let K be a nonemptu

subset of rationals such that if $a/k \in \mathcal{K}$ is in lowest terms then $1 \leq a \leq k$ $\leq K$. Suppose that for each $a/k \in K$ there corresponds a subset of rationals $\mathcal{L}_{a/k}$ such that if $b/l \in \mathcal{L}_{a/k}$ is in lowest terms then $1 \leq b \leq l \leq L$. Suppose further that B and H are positive integers such that

$$
|\mathcal{L}_{a/k}| \ge H \quad \text{for all} \quad a/k \in \mathcal{K}
$$

and

$$
\left| \left\{ b : \frac{b}{l} \in \bigcup \mathcal{L}_{a/k} \right\} \right| \leq B \quad \text{for all} \quad l \leq L.
$$

Then the size of the set

$$
\mathcal{Q} = \left\{ \frac{a}{k} + \frac{b}{l} : \frac{a}{k} \in \mathcal{K}, \ \frac{b}{l} \in \mathcal{L}_{a/k} \right\}
$$

satisfies

$$
|\mathcal{Q}| \geqq |\mathcal{K}| H\left(\frac{H}{LB\tau^8(1+\log K)}\right).
$$

3. Exponential sums over primes

Let d and n denote positive integers. As in [13], our application of the Hardy-Littlewood method employs exponential sums over numbers from the set S_d defined in the introduction. For any real number α set

$$
S_{n,d}(\alpha) = \sum_{\substack{s \in S_d \\ s \le n}} \log(ds + 1)e(\alpha s).
$$

In this section we present some estimates related to $S_{n,d}(\alpha)$. Throughout this section we assume d and n satisfy

$$
d \leq \log n.
$$

LEMMA 3. For n sufficiently large,

$$
S_{d,n}(0) \gg \frac{dn}{\phi(d)}.
$$

PROOF. By the definition of \mathcal{S}_d we find that

$$
S_{d,n}(0) = \sum_{\substack{p \leq dn+1 \\ p \equiv 1 \bmod d}} \log p.
$$

Since $d \leq \log n$ the Siegel-Walfisz theorem says that this sum is asymptotic to $(dn+1)/\phi(q)$, from which the result follows. \square

The next two lemmas provide estimates of $S(\alpha)$ derived by A. Sárközy.

LEMMA 4. Let a and b be integers such that $(a, b) = 1$ and $1 \leq b \leq \log n$. There exists a positive real number c such that if α is a real number that satisfies

$$
\left|\alpha - \frac{a}{b}\right| \le \frac{\exp\left(c(\log n)^{1/2}\right)}{n},
$$

and n is sufficiently large, then

$$
\left| S_{d,n}(\alpha) \right| < \frac{dn}{\phi(d)\phi(b)},
$$

furthermore, if $\alpha \neq a/b$ then

$$
\left| S_{d,n}(\alpha) \right| < \frac{d}{\phi(d)\phi(b)} \left| \alpha - \frac{a}{b} \right|^{-1}.
$$

PROOF. This is a restatement of Lemma 5 from [13]. \Box

Let R denote a real number that satisfies

$$
(2) \t\t\t 3 \leq R \leq \log n.
$$

For integers a and b such that $(a, b) = 1$ and $0 \le a \le b \le R$ set

(3)
$$
\mathfrak{M}(b, a) = \left\{ \alpha \in [0, 1] : \left| \alpha - \frac{a}{b} \right| \leq \frac{R}{n \log \log R} \right\}
$$

Let m denote the set of real numbers α for which there do not exist integers a and b such that $(a, b) = 1, 1 \leq b < R$, and $\alpha \in \mathfrak{M}(b, a)$.

.

LEMMA 5. For $\alpha \in \mathfrak{m}$ and large n,

(4)
$$
S_{d,n}(\alpha) \ll \frac{dn}{\phi(d)} \cdot \frac{\log \log R}{R}.
$$

PROOF. This is a restatement of Lemma 9 from [13]. \Box

LEMMA 6. Let a and b be integers such that $0 \le a \le b \le R$ and $(a, b) = 1$. Then for n sufficiently large

$$
\sum_{t/n \in \mathfrak{M}(b,a)} |S_{d,n}(t/n)| \ll \frac{dn}{\phi(d)\phi(b)} \log R.
$$

PROOF. Suppose that $t/n \in \mathfrak{M}(b,a)$. Then

$$
\left|\frac{t}{n} - \frac{a}{b}\right| \le \frac{R}{n \log \log R} \le \frac{\log n}{n},
$$

and since $b \leq R \leq \log n$ we can, for large enough n, apply Lemma 4 with α replaced by t/n .

Let u and v be integers such that

$$
\frac{u}{n} < \frac{a}{b} < \frac{v}{n}, \quad v - u = 2.
$$

Applying Lemma 4 we obtain

$$
\sum_{\substack{t/n \in \mathfrak{M}(b,a) \\ u/n \le t/n \le v/n}} |S_{d,n}(t/n)| \ll \frac{dn}{\phi(d)\phi(b)}.
$$

For $t/n \in \mathfrak{M}(b,a)$ with $t/n < u/n$, Lemma 4 implies

$$
\left|S_{d,n}(t/n)\right| \ll \frac{d}{\phi(d)\phi(b)}\left|\frac{t}{n}-\frac{a}{b}\right|^{-1} \ll \frac{d}{\phi(d)\phi(b)}\left|\frac{t}{n}-\frac{u}{n}\right|^{-1}.
$$

Therefore

$$
\sum_{\substack{t/n \in \mathfrak{M}(b,a) \\ t/n < u/n}} |S_{d,n}(t/n)| \ll \frac{dn}{\phi(d)\phi(b)} \sum_{\substack{t/n \in \mathfrak{M}(b,a) \\ t/n < u/n}} \frac{1}{|t-u|}
$$
\n
$$
\ll \frac{dn}{\phi(d)\phi(b)} \sum_{1 \le m \le R/\log\log R} \frac{1}{m} \ll \frac{dn}{\phi(d)\phi(b)} \log R.
$$

Similarly

$$
\sum_{\substack{t/n \in \mathfrak{M}(b,a) \\ v/n < t/n}} |S_{d,n}(t/n)| \ll \frac{dn}{\phi(d)\phi(b)} \log R. \quad \Box
$$

A multiplicative arithmetic function f is called strongly multiplicative if $f(p^k) = f(p)$ for every prime p and positive integer k. The next lemma contains a standard deduction on the average order over arithmetic progressions for certain strongly mutliplicative arithmetic functions.

LEMMA 7. Let x be a real number such that $x \ge 1$, and let d and r be positive integers. If f is a strongly multiplicative arithmetic function such that $f(m) \geq 1$ for every positive integer m and $f(p) = 1 + O(p^{-1})$, then

$$
\sum_{\substack{m \le x \\ m \equiv r \bmod d}} f(m) \ll f((r,d)) \frac{x}{d}.
$$

PROOF. Let g be the arithmetic function defined by

$$
g(m) = \sum_{k|m} \mu\left(\frac{m}{k}\right) f(k),
$$

where μ is the Möbius function. Using the fact that f is strongly multiplicative we deduce that

$$
g(m) = \mu(m)^{2} \prod_{p|m} (f(p) - 1).
$$

Since $f(m) \ge 1$ for every positive integer m it follows that g is a nonnegative valued arithmetic function. By the Möbius inversion formula $f(m)$ $=\sum_{k|m} g(k)$, therefore

$$
\sum_{\substack{m\leq x\\m\equiv r \bmod d}} f(m) = \sum_{\substack{m\leq x\\m\equiv r \bmod d}} \sum_{k|m} g(k) = \sum_{k\leq x} g(k) \sum_{\substack{m\leq x\\m\equiv r \bmod d\\m\equiv 0 \bmod k}} 1.
$$

The last sum above is zero if $(k, d) \nmid r$ and at most $x(d, k)/(dk)$ if $(k, d) \mid r$. This implies, since g is a non-negative valued function, that

$$
\sum_{\substack{m \leq x \\ m \equiv r \bmod d}} f(m) \leq \frac{x}{d} \sum_{\substack{k \leq x \\ (k,d)|r}} \frac{g(k)(k,d)}{k} = \frac{x}{d} \sum_{\substack{s | (r,d) \\ (k,d) = s}} s \sum_{\substack{k \leq x \\ (k,d) = s}} \frac{g(k)}{k}
$$

$$
= \frac{x}{d} \sum_{\substack{s | (r,d) \\ (l,d/s) = 1}} \sum_{\substack{l \leq x/s \\ (l,d/s) = 1}} \frac{g(sl)}{l}.
$$

For positive integers u and v it can be verified that $g(uv) \leq g(u)g(v)$, thus

$$
\sum_{\substack{m \le x \\ m \equiv r \bmod d}} f(m) \le \frac{x}{d} \sum_{s | (r,d)} g(s) \sum_{l \le x} \frac{g(l)}{l}
$$

DIFFERENCE SETS AND SHIFTED PRIMES 87

$$
\leq f((r,d)) \frac{x}{d} \prod_{p \leq x} \left(1 + \frac{g(p)}{p}\right) = f((r,d)) \frac{x}{d} \prod_{p \leq x} \left(1 + \frac{f(p)-1}{p}\right).
$$

Since $f(p) \geq 1$ and $f(p) = 1 + O(p^{-1})$ the previous product is bounded from above by the absolutely convergent infinite product $\prod_p (1 + p^{-1}(f(p) - 1))$. Therefore

$$
\sum_{\substack{m \le x \\ m \equiv r \bmod d}} f(m) \ll f((r,d)) \frac{x}{d}.\quad \Box
$$

The next lemma is analogous to Proposition 11 of Green [4]. LEMMA 8.

$$
\sum_{t=0}^{n-1} |S_{d,n}(t/n)|^4 \ll \left(\frac{dn}{\phi(d)}\right)^4.
$$

PROOF. By Gallagher's inequality [9, Lemma 1.2] we have

$$
\sum_{t=0}^{n-1} |S_{d,n}(t/n)|^4 \leq n \int_0^1 |S_{d,n}(\alpha)|^4 d\alpha + 2 \int_0^1 |S_{d,n}(\alpha)|^3 S'_{d,n}(\alpha)| d\alpha,
$$

where $S'_{d,n}(\alpha)$ is the derivative of $S_{d,n}(\alpha)$ with respect to α . By Hölder's inequality

$$
\int_0^1 |S_{d,n}(\alpha)|^3 S'_{d,n}(\alpha)| d\alpha \leq \bigg(\int_0^1 |S_{d,n}(\alpha)|^4 d\alpha\bigg)^{3/4} \bigg(\int_0^1 |S'_{d,n}(\alpha)|^4 d\alpha\bigg)^{1/4}.
$$

Let $r_d(m)$ denote the number of pairs (p_1, p_2) where p_1 and p_2 are primes such that $p_1, p_2 \equiv 1 \pmod{d}$ and

$$
\frac{p_1 - 1}{d} + \frac{p_2 - 1}{d} = m.
$$

By Parseval's identity,

$$
\int_0^1 |S_{d,n}(\alpha)|^4 \, d\alpha \leq (\log n)^4 \sum_{m \leq n} r_d(m)^2
$$

and

$$
\int_0^1 |S'_{d,n}(\alpha)|^4 \, d\alpha \leq 2\pi (n \log n)^4 \sum_{m \leq n} r_d(m)^2.
$$

From the above we deduce that

(5)
$$
\sum_{t=0}^{n-1} |S_{d,n}(t/n)|^4 \ll n(\log n)^4 \sum_{m \leq n} r_d(m)^2.
$$

For each positive integer m we have

$$
r_d(m) \leqq |\{p : 1 < p \leqq dm + 2, \ p \equiv 1 \bmod d, \ dm + 2 - p \text{ is a prime} \}|.
$$

To bound $r_d(m)$ we apply the combinatorial sieve to estimate the size of the set above. In particular, Corollary 2.4.1 of [5] implies

$$
r_d(m) \ll \prod_{p\mid d(dm+2)} \left(1-\frac{1}{p}\right)^{-1} \frac{dm+1}{\phi(d)\log^2\left((dm+1)/d\right)}.
$$

Note that

$$
\prod_{p\mid d(dm+2)}\left(1-\frac{1}{p}\right)^{-1}\leqq \frac{d}{\phi(d)}\left(\frac{dm+2}{\phi(dm+2)}\right),
$$

therefore

$$
r_d(m) \ll \frac{d^2m}{\phi(d)^2(\log m)^2} \left(\frac{dm+2}{\phi(dm+2)}\right).
$$

This implies

$$
\sum_{m \leq n} r_d(m)^2 \ll \frac{d^4 n^2}{\phi(d)^4 (\log n)^4} \sum_{\substack{u \leq dn+2 \\ u \equiv 2 \bmod d}} \left(\frac{u}{\phi(u)}\right)^2.
$$

Let $f(u) =$ ¡ $u/\phi(u)$ ². It can be verified that f is a strongly multiplicative arithmetic function such that $f(u) \geq 1$ for every positive integer u and $f(p)$ $= 1 + O(p^{-1})$. Thus, we can apply Lemma 7 to obtain

$$
\sum_{\substack{u \leq dn+2 \\ u \equiv 2 \bmod d}} \left(\frac{u}{\phi(u)}\right)^2 \ll n.
$$

Therefore

$$
\sum_{m \leq n} r_d(m)^2 \ll \frac{d^2 n^3}{\phi(d)^2 (\log n)^4},
$$

and thus, on account of (5), the result follows. \Box

4. A density increment

Throughout this section n denotes a positive integer and A a subset of $\{1, \ldots, n\}$. For any real α set

$$
F(\alpha) = \sum_{a \in A} e(\alpha a), \qquad F_1(\alpha) = \sum_{\substack{a \in A \\ a \le n/2}} e(\alpha a).
$$

Denote by C_1 a fixed positive constant. This constant will be used throughout the rest of the paper. We will need C_1 to be sufficiently large, but it should be noted that the size of C_1 will never be determined by n or A. Let δ denote the density of A, that is, $|A| = \delta n$. The following parameters are defined in terms of C_1 and δ :

(6)
$$
R(\delta) = (C_1 \delta^{-1})^{(\log \log C_1 \delta^{-1})^{7/8}},
$$

(7)
$$
\theta(\delta) = (C_1 \delta^{-1})^{-4(\log \log \log C_1 \delta^{-1})^{-1}}.
$$

(8)
$$
Q_1 = (C_1 \delta^{-1})^{(\log \log C_1 \delta^{-1})^{1/8}},
$$

(9)
$$
\Lambda = \left[\frac{3}{4}\log\log\log C_1\delta^{-1}\right],
$$

With $R = R(\delta)$ let $\mathfrak{M}(q, a)$ be defined as in (3), and for any positive integer $q \leq R$ set

$$
\mathfrak{M}(q) = \bigcup_{\substack{a=0 \\ (a,q)=1}}^q \mathfrak{M}(q,a).
$$

LEMMA 9. Let d be a positive integer such that $d \leq \log n$. Suppose that $A - A$ does not intersect S_d and that

(10)
$$
C_1 \delta^{-1} \leq e^{(\log \log n)^{1/2}},
$$

provided C_1 and n are sufficiently large there exists a positive integer $q \leq R(\delta)$ such that

(11)
$$
\sum_{\substack{t=1 \ t/n \in \mathfrak{M}(q)}}^{n-1} |F(t/n)|^2 \geq \theta(\delta)|A|^2.
$$

PROOF. Here we adopt the method used in [1]. Given any positive integer λ we make the following definitions. For integers a and k, with $k \geq 1$, define

$$
\mathfrak{M}_{\lambda}(k, a) = \left\{ \alpha \in [0, 1] : \left| \alpha - \frac{a}{k} \right| \leq \frac{\lambda R}{n \log \log R} \right\},\
$$

and for real numbers $K, U \geq 1$,

$$
\mathcal{P}_{\lambda}(K,U) = \left\{ \frac{a}{k} : 1 \leq a \leq k \leq K, (a,k) = 1, \max_{t/n \in \mathfrak{M}_{\lambda}(k,a)} |F_1(t/n)| \geq |A|/U \right\}.
$$

Furthermore, set

$$
(12)\qquad \qquad Q_{\lambda} = Q_1^{2^{\lambda}-1}
$$

and

$$
\mu_{\lambda} = \max_{\substack{1 \leq K \leq Q_{\lambda} \\ 1 \leq U}} \frac{\left| \mathcal{P}_{\lambda}(K, U) \right|}{U^2}.
$$

Let K_{λ} and U_{λ} denote a pair for which μ_{λ} takes its maximum. As $K = U = 1$ is considered in the definition of μ_{λ} we have

(13)
$$
1 \leqq \mu_{\lambda} \leqq \frac{K_{\lambda}^{2}}{U_{\lambda}^{2}}.
$$

It follows that

(14)
$$
1 \leq U_{\lambda} \leq K_{\lambda} \leq Q_{\lambda}.
$$

For each $\lambda \leq \Lambda$ we want the intervals $\mathfrak{M}_{\lambda}(k, a)$ with $k \leq Q_{\lambda}$ to be pairwise disjoint. It can be verified that this will happen if

(15)
$$
\frac{2\lambda R}{n\log\log R} < \frac{1}{Q_{\lambda}^2} \qquad \text{(for } \lambda \leq \Lambda\text{)}.
$$

To show this we estimate λ , R, and Q_{λ} for $\lambda \leq \Lambda$. By (9) and (10) we deduce that \overline{a}

$$
\lambda \leq \frac{3}{4} \log \log \log \log n \qquad \text{(for } \lambda \leq \Lambda\text{)}.
$$

By (9) we find that $2^{\lambda} \leq (\log \log C_1 \delta^{-1})^{3/4}$, and hence by (8) and (12) we find that

$$
\log Q_{\lambda} \leq 2^{\lambda} \log Q_1 \leq (\log \log C_1 \delta^{-1})^{7/8} \log C_1 \delta^{-1}.
$$

By (6) this implies $\log Q_\lambda \leq \log R$, and so

$$
(16) \tQ_{\lambda} \leq R.
$$

By (6) and (10) we find, for *n* large enough, that

$$
(17) \t\t\t 3 \le R \le \log n.
$$

From the above estimates for λ , R, and Q_{λ} we deduce that (15) holds for sufficiently large n. Therefore, when $\lambda \leq \Lambda$ we have

$$
\mu_{\lambda}|A|^2 = |\mathcal{P}_{\lambda}(K_{\lambda},U_{\lambda})| \frac{|A|^2}{U_{\lambda}^2} \leq \sum_{t=0}^{N-1} |F_1(t/n)|^2 \leq n|A|.
$$

So

(18)
$$
\delta \leqq \mu_{\lambda}^{-1}.
$$

Let us assume, to obtain a contradiction, that

(19)
$$
\sum_{\substack{t=1 \ t/n \in \mathfrak{M}(q)}}^{n-1} |F(t/n)|^2 < \theta(\delta)|A|^2 \quad \text{(for all } 1 \leq q \leq R).
$$

By using Lemma 2 and (19) we will show, provided C_1 and n are sufficiently large, that

(20)
$$
\mu_{\lambda+1} \geqq \theta(\delta)^{-1/2} \mu_{\lambda} \quad \text{(for } 1 \leqq \lambda \leqq \Lambda\text{)}.
$$

Assuming for now that (20) holds we show how a contradiction is obtained, thus proving that the assumption (19) is false. Since $\mu_1 \geq 1$, it follows from (20) that $\mu_{\Lambda+1} \geqq \theta(\delta)^{-(1/2)\Lambda}$, and thus by (18) we have $\delta \leqq \theta(\delta)^{(1/2)\Lambda}$. We can take C_1 to be large enough so that (9) implies $\Lambda \ge (1/4) \log_3 C_1 \delta^{-1}$, then by (7) we find that $\delta \leqq C_1^{-1}\delta < \delta$, a contradiction. Therefore (19) cannot hold for all $1 \leq q \leq R$.

We now proceed to show that (20) holds. To this end, let us fix λ with $1 \leq \lambda \leq \Lambda$. For now we also fix a rational a/k in $\mathcal{P}_{\lambda}(U_{\lambda}, K_{\lambda})$. We associate with a/k a fraction $u/n \in \mathfrak{M}_{\lambda}(k, a)$ such that $|F(u/n)| \geq |A|/U_{\lambda}$. Such a u/n exists by the way a/k was chosen.

Since $A - A$ contains no integers from S_d we find that

$$
\sum_{t=0}^{n-1} F_1(u/n + t/n) F(-t/n) S_{d,n}(t/n) = 0.
$$

By the triangle inequality, Lemma 3, and the way u/n was chosen we find that

(21)
$$
\frac{|A|^2}{U_{\lambda}} \cdot \left(\frac{dn}{\phi(d)}\right) \ll \sum_{t=1}^{n-1} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)|.
$$

Set

(22)
$$
Y = (C_1 \delta^{-1})^{3/2} Q_{\lambda}^2
$$

and let ${\cal N}$ denote the set of t/n such that $|F(t/n)| \leq |A|/Y$. By two applications of the Cauchy-Schwarz inequality, Parseval's identity, and Lemma 8 we find that

$$
\sum_{t/n \in \mathcal{N}} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)|
$$
\n
$$
\leq \left(\sum_{t=0}^{n-1} |F_1(u/n + t/n)|^2\right)^{1/2} \left(\sum_{t/n \in \mathcal{N}} |F(t/n)|^4\right)^{1/4} \left(\sum_{t=0}^{n-1} |S_{d,n}(t/n)|^4\right)^{1/4}
$$
\n
$$
\ll \frac{dn^{3/2}|A|^{1/2}}{\phi(d)} \left(\sum_{t/n \in \mathcal{N}} |F(t/n)|^4\right)^{1/4}.
$$

Now

$$
\left(\sum_{t/n \in \mathcal{N}} |F(t/n)|^4\right)^{1/4} \leqq \max_{t/n \in \mathcal{N}} |F(t/n)|^{1/2} \left(\sum_{t=0}^{n-1} |F(t/n)|^2\right)^{1/4}
$$

$$
\leqq \frac{|A|^{1/2}}{Y^{1/2}} (n|A|)^{1/4} = \frac{n^{1/4}|A|^{3/4}}{Y^{1/2}}.
$$

Therefore

$$
\sum_{t/n \in \mathcal{N}} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \ll \frac{dn^{7/4} |A|^{5/4}}{\phi(d) Y^{1/2}}.
$$

By (14) and (22) we find that

$$
Y^{-1/2} = C_1^{-3/4} \delta^{3/4} Q_{\lambda}^{-1} \leq C_1^{-3/4} |A|^{3/4} n^{-3/4} U_{\lambda}^{-1},
$$

thus

(23)
$$
\sum_{t/n \in \mathcal{N}} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \ll C_1^{-3/4} \frac{|A|^2}{U_{\lambda}} \left(\frac{dn}{\phi(d)}\right).
$$

Let \mathcal{N}_1 denote the set of t/n such that $|F_1(u/n+t/n)| \leq |A|/Y$. By the same reasoning used in the deduction of (23) we find that

(24)
$$
\sum_{t/n \in \mathcal{N}_1} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \ll C_1^{-3/4} \frac{|A|^2}{U_{\lambda}} \left(\frac{dn}{\phi(d)}\right).
$$

For $\lambda \leq \Lambda$ we have $Q_{\lambda+1}/Q_{\lambda} < R$. Indeed, (9) and (12) imply

$$
\frac{Q_{\lambda+1}}{Q_{\lambda}} \leqq Q_1^{2^{\Lambda}} \leqq (C_1 \delta^{-1})^{(\log \log C_1 \delta^{-1})^{3/4}} < R.
$$

Let \mathfrak{m}^* denote the union of the $\mathfrak{M}(q)$ with $Q_{\lambda+1}/Q_{\lambda} \leq q \leq R$. By the Cauchy-Schwarz inequality we find that

(25)

$$
\sum_{t/n \in \mathfrak{m}^*} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \leq (n|A|) \sup_{t/n \in \mathfrak{m}^*_{\lambda}} |S_{d,n}(t/n)|.
$$

We are now going to show that

(26)
$$
\sup_{t/n \in \mathfrak{m}_{\lambda}^*} |S_{d,n}(t/n)| \ll C_1^{-1} U_{\lambda}^{-1} \delta\left(\frac{dn}{\phi(d)}\right).
$$

Suppose that $t/n \in \mathfrak{m}^*$, then $t/n \in \mathfrak{M}(q, a)$ for some integers a and q such that $0 \le a \le q$, $(a, q) = 1$, and $Q_{\lambda+1}/Q_{\lambda} \le q \le R$. Since $q \le R \le \log n$, we deduce from Lemma 4 that

$$
S_{d,n}(t/n) \ll \frac{dn}{\phi(d)\phi(q)}.
$$

Using the well-known estimate

(27)
$$
\phi(q) \gg \frac{q}{\log \log q},
$$

(see for example [7, Theorem 328]), we obtain

(28)
$$
S_{d,n}(t/n) \ll \left(\frac{dn}{\phi(d)}\right) \frac{\log \log q}{q}.
$$

The lower bound on q implies

(29)
$$
\frac{\log \log q}{q} \ll \frac{\log \log Q_{\lambda+1}/Q_{\lambda}}{Q_{\lambda+1}/Q_{\lambda}}.
$$

By (12) we have $Q_{\lambda+1}/Q_{\lambda} = Q_{\lambda}Q_1 = Q_1^{2\lambda}$ $_1^{2^{\prime\prime}}$, thus

$$
\frac{\log\log Q_{\lambda+1}/Q_{\lambda}}{Q_{\lambda+1}/Q_{\lambda}} = \frac{\log\log Q_1^{2^{\lambda}}}{Q_{\lambda}Q_1} = \frac{\lambda(\log 2) + \log\log Q_1}{Q_{\lambda}Q_1}.
$$

Using (8) and (9) we find that $\lambda \ll \log \log Q_1$, by this and (14) we obtain

$$
\frac{\log\log Q_{\lambda+1}/Q_{\lambda}}{Q_{\lambda+1}/Q_{\lambda}} \ll \frac{\log\log Q_1}{U_{\lambda}Q_1}.
$$

Using (8) we find, by taking C_1 large enough, that

$$
\log\left(\frac{\log\log Q_1}{Q_1}\right) \leq -\log C_1 \delta^{-1},
$$

and thus

$$
\frac{\log\log Q_1}{Q_1} \leqq C_1^{-1}\delta.
$$

From (29) and the subsequent estimates we obtain

(30)
$$
\frac{\log \log q}{q} \ll C_1^{-1} U_{\lambda}^{-1} \delta,
$$

Since $t/n \in \mathfrak{m}^*$ is arbitrary (28) and (30) imply that (26) is true. By (25) and (26) we have

(31)
$$
\sum_{t/n \in \mathfrak{m}^*} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \ll C_1^{-1} \frac{|A|^2}{U_{\lambda}} \left(\frac{dn}{\phi(d)} \right).
$$

The contribution to the sum in (21) coming from the terms with $t/n \in \mathfrak{m}$ can similarly be bounded. By the Cauchy-Schwarz inequality and Lemma 5 we find that

$$
\sum_{t/n \in \mathfrak{m}} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \leq (n|A|) \sup_{t/n \in \mathfrak{m}} |S(t/n)|
$$

DIFFERENCE SETS AND SHIFTED PRIMES 95

$$
\ll (n|A|) \left(\frac{dn}{\phi(d)}\right) \frac{\log \log R}{R}.
$$

Since $R \geq Q_{\lambda+1}/Q_{\lambda}$ the argument used in the previous paragraph implies

(32)
$$
\sum_{t/n \in \mathfrak{m}} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \ll C_1^{-1} \frac{|A|^2}{U_{\lambda}} \left(\frac{dn}{\phi(d)} \right).
$$

Let $\mathfrak{N}(b, a)$ be the set of $t/n \in \mathfrak{M}(b, a)$ with $t/n \neq 0$ such that

$$
|F(t/n)| \geq \frac{|A|}{Y}, \qquad |F_1(u/n + t/n)| \geq \frac{|A|}{Y}.
$$

By (23) , (24) , (31) , and (32) it follows for C_1 large enough that

$$
\frac{d|A|^2 n}{\phi(d)U_{\lambda}} \ll \sum_{b \leq Q_{\lambda+1}/Q_{\lambda}} \sum_{(a,b)=1} \max_{t/n \in \mathfrak{N}(b,a)} |F(t/n)|
$$

$$
\times \max_{t/n \in \mathfrak{N}(b,a)} |F_1(u/n + t/n)| \sum_{t/n \in \mathfrak{M}(b,a)} |S_{d,n}(t/n)|.
$$

Since $d \leq \log n$ we can apply Lemma 6 to the inner sum above to obtain

$$
\frac{|A|^2}{U_\lambda \log R}
$$

$$
\ll \sum_{b \leq Q_{\lambda+1}/Q_{\lambda}} \frac{1}{\phi(b)} \sum_{(a,b)=1} \max_{t/n \in \mathfrak{N}(b,a)} \left| F(t/n) \right| \max_{t/n \in \mathfrak{N}(b,a)} \left| F_1(u/n + t/n) \right|.
$$

Let $\mathcal{L}(L,V,W)$ denote the set of reduced fractions $b/l \in [0,1]$ such that

$$
\frac{L}{2} \le l \le L, \quad \frac{|A|}{V} \le \max_{t/n \in \mathfrak{M}(l,b)} |F(t/n)| \le 2\frac{|A|}{V},
$$

$$
\frac{|A|}{W} \le \max_{t/n \in \mathfrak{M}(l,b)} |F_1(u/n + t/n)| \le 2\frac{|A|}{W}.
$$

For $b/l \in \mathcal{L}(L, V, W)$, we have

$$
\frac{1}{\phi(l)}\max_{t/n\in \mathfrak{M}(l,b)} \left| \left. F(t/n) \right| \max_{t/n\in \mathfrak{M}(l,b)} \left| \left. F_1(u/n + t/n) \right| \right. \right. \ll \frac{(\log\log 3L)|A|^2}{L V W}
$$

by (27). Therefore

$$
\frac{|A|^2}{U_{\lambda}\log R} \ll \sum_{L} \sum_{V} \sum_{W} |\mathcal{L}(L, V, W)| \frac{(\log\log 3L)|A|^2}{LVW}.
$$

where L runs through all the powers of 2 in the interval $[1, 2Q_{\lambda+1}/Q_{\lambda}]$, and V and W run through all the powers of 2 in the interval $[1, 2Y]$. There must exist a triple (L, V, W) of indices such that

$$
\left| \mathcal{L}(L, V, W) \right| \gg \frac{L V W}{U_{\lambda}(\log \log 3L)(\log R)}.
$$

We associate this triple with a/k .

The number of possible triples (L, V, W) is $\ll \log(Q_{\lambda+1}/Q_{\lambda})(\log Y)^2$, which by (16) and (22) is $\ll (\log R)^3$. Therefore there exists a subset $\mathcal{K} \subset \mathcal{P}_\lambda$, satisfying

(33)
$$
|\mathcal{K}| \gg \frac{|P_{\lambda}(K_{\lambda},U_{\lambda})|}{(\log R)^{3}},
$$

such that to each $a/k \in \mathcal{K}$ we associate the same triple, say (L, V, W) .

Let $a/k \in \mathcal{K}$, then together with the associated fraction $u/n \in \mathfrak{M}_{\lambda}(k, a)$, we associate a set $\mathcal{L}_{a/k}$ of rationals b/l , $0 \leq b \leq l$, $(b, l) = 1$, $L/2 \leq l \leq L$, such that

(34)
$$
|\mathcal{L}_{a/k}| \gg \frac{LVW}{U_{\lambda}(\log \log 3L)(\log R)},
$$

(35)
$$
\frac{|A|}{V} \leq \max_{v/n \in \mathfrak{M}(l,b)} |F(v/n)| \leq \frac{2|A|}{V},
$$

(36)
$$
\frac{|A|}{W} \leq \max_{w/n \in \mathfrak{M}(l,b)} |F_1(u/n + w/n)| \leq \frac{2|A|}{W}.
$$

Set

$$
Q = \left\{ \frac{a}{k} + \frac{b}{l} : \frac{a}{k} \in \mathcal{K}, \ \frac{b}{l} \in \mathcal{L}_{a/k} \right\}.
$$

Let us estimate the cardinality of \mathcal{Q} . Since $L \leq Q_{\lambda+1}/Q_{\lambda} \leq R$, assumption (19) and (35) imply

$$
\left|\left\{b:\,\frac{b}{l}\in\bigcup\mathcal{L}_{a/k}\right\}\right|\left(\frac{|A|}{V}\right)^2\leq\sum_{t/n\in\mathfrak{M}(l)}\left|F(t/n)\right|^2\leq\theta(\delta)|A|^2.
$$

So that

$$
\left\{b:\,\frac{b}{l}\in\bigcup\mathcal{L}_{a/k}\right\}\bigg|\ll\theta(\delta)V^2.
$$

Lemma 2 then implies

$$
|\mathcal{Q}| \gg |\mathcal{K}| \cdot \frac{L^2 V^2 W^2}{U_\lambda^2 (\log \log 3L)^2 (\log R)^2} \cdot \frac{\theta(\delta)^{-1}}{L V^2 \tau^8 (1 + \log K_\lambda)}.
$$

From (14) and (16) we obtain $\log K_\lambda \leq \log R$, by this and (33) it follows that

(37)
$$
|\mathcal{Q}| \gg W^2 \left(\frac{\theta(\delta)^{-1}}{\tau^8 (\log R)^6}\right) \frac{|\mathcal{P}_\lambda(K_\lambda, U_\lambda)|}{U_\lambda^2}.
$$

 \overline{a} $\begin{array}{c} \begin{array}{c} \hline \end{array} \end{array}$ $\overline{ }$ $\overline{}$

Note that Q is a subset of $(0, 2]$. Let $\mathcal{Q}_1 = \mathcal{Q} \cap (0, 1]$ and $\mathcal{Q}_2 = \mathcal{Q} \cap (1, 2]$. Let us assume without loss of generality that $|Q_1| \geq (1/2)|Q|$. If this is not the case, then $|Q_2| \ge (1/2)|Q|$, and we can replace Q_1 in the argument below by the rational numbers in \mathcal{Q}_2 shifted to the left by 1. Since $|\mathcal{Q}_1| \geq (1/2)|\mathcal{Q}|$ we see that (37) is still valid with Q replaced by Q_1

Let $r/s = a/k + b/l$ be in \mathcal{Q}_1 . For $u/n \in \mathfrak{M}_{\lambda}(k, a)$ and $w/n \in \mathfrak{M}(l, b)$ we have \overline{a} \overline{a} \overline{a} \overline{a} \overline{a}

$$
\left|\frac{r}{s} - \left(\frac{u}{n} + \frac{w}{n}\right)\right| \le \left|\frac{u}{n} - \frac{a}{k}\right| + \left|\frac{w}{n} - \frac{b}{l}\right| \le \frac{(\lambda + 1)R}{n \log \log R},
$$

and therefore $u/n + w/n \in \mathfrak{M}_{\lambda+1}(s,r)$. Thus, by (36) we deduce that

(38)
$$
\max_{t/n \in \mathfrak{M}_{\lambda+1}(s,r)} |F_1(t/n)| \geq \frac{|A|}{W} \quad \text{(for } r/s \in \mathcal{Q}_1\text{)}.
$$

We now estimate the size of the denominator of r/s . Certainly $s \leq kl \leq K_{\lambda}L$. By (14) we have $K_{\lambda} \leq Q_{\lambda}$ and L was chosen to satisfy $L \leq Q_{\lambda+1}/Q_{\lambda}$. Therefore $s \leq Q_{\lambda+1}$ whenever $r/s \in Q_1$. By this and (38) we obtain

(39)
$$
Q_1 \subset \mathcal{P}_{\lambda+1}(Q_{\lambda+1}, W).
$$

By (37), with Q replaced by Q_1 , and (39) we find that

$$
\frac{\left|\mathcal{P}_{\lambda+1}(Q_{\lambda+1},W)\right|}{W^2} \gg \left(\frac{\theta(\delta)^{-1}}{\tau^8(\log R)^6}\right) \frac{\left|\mathcal{P}_{\lambda}(K_{\lambda},U_{\lambda})\right|}{U_{\lambda}^2}.
$$

This implies

(40)
$$
\mu_{\lambda+1} \gg \frac{\theta(\delta)^{-1}}{\tau^8 (\log R)^6} \mu_{\lambda}.
$$

We now estimate τ , the maximum of the divisor function up to $K_{\lambda}L$ $\leq Q_{\lambda+1}$. If $d(m)$ is the number of divisors of m then

$$
\log d(m) \ll \frac{\log m}{\log \log m},
$$

(see $[7,$ Theorem 317]). Thus, by (12) , we have

$$
\log \tau \ll \frac{\log Q_{\lambda+1}}{\log\log Q_{\lambda+1}} \ll \frac{2^\lambda \log Q_1}{\log\log Q_1},
$$

and since $\lambda \leq \Lambda$ we deduce from (8) and (9) that

$$
\log \tau \ll \frac{\log C_1 \delta^{-1}}{(\log \log C_1 \delta^{-1})^{1/4}}.
$$

It follows from (7) that

(41)
$$
\log \tau = o\left(\log \theta(\delta)^{-1}\right) \qquad \text{(for } C_1\delta^{-1} \to \infty\text{).}
$$

We also find from (6) and (7) that

(42)
$$
\log \log R = o\left(\log \theta(\delta)^{-1}\right) \qquad \text{(for } C_1\delta^{-1} \to \infty\text{).}
$$

Since $\theta(\delta)^{-1}$ tends to infinity as $C_1 \delta^{-1}$ tends to infinity, we deduce from (40), (41) , and (42) that for C_1 sufficiently large

$$
\mu_{\lambda+1} \geqq \theta(\delta)^{-1/2} \mu_{\lambda}.
$$

Since $\lambda \leq \Lambda$ was arbitrary, (20) is true and as shown earlier, the lemma can be deduced from this. \Box

We now derive a density increment argument that will be iterated in the next section to prove our theorem.

LEMMA 10. Let d be a positive integer such that $d \leq \log n$. Suppose that $A - A$ does not intersect S_d and that δ , the density of A, satisfies (10). Provided C_1 and n are sufficiently large there exist positive integers d' and n' , and a subset A' of $\{1, \ldots, n'\}$ of size $\delta' n'$, such that $A' - A'$ does not intersect $\mathcal{S}_{d'}$, and moreover

$$
d \leq d' \leq R(\delta)d
$$
, $R(\delta)^{-2}n \leq n' \leq n$, $\delta' \geq \delta(1 + 8^{-1}\theta(\delta))$.

PROOF. By the hypotheses, Lemma 9 implies that there exists a positive integer $q \leq R(\delta)$ such that (11) is true. With this q and $U = R(\delta) / \log \log R(\delta)$ let E be defined as in Lemma 1. Note that $\mathfrak{M}(q) \subset E$. The inequality (17) is still valid, thus $2\pi qU\leqq 2\pi R(\delta)^2\leqq n$ for sufficiently large $n.$ Therefore, we can apply Lemma 1 with $\theta = \theta(\delta)$ to deduce that there exists an arithmetic progression P with difference q such that

(43)
$$
|P| \ge \frac{n \log \log R(\delta)}{32\pi q R(\delta)}
$$

and

(44)
$$
|A \cap P| \geq |P|\delta(1 + 8^{-1}\theta(\delta)).
$$

Let $n' = |P|$. Then there exists an integer c and subset A' of $\{1, \ldots, n'\}$ such that $A \cap P = \{c + qa' : a' \in A'\}$. Put $d' = dq$. Since $A - A$ does not intersect \mathcal{S}_d , we deduce that A' does not intersect \mathcal{S}_{dq} . Let the size of A' be $\delta' n'$. Then (44) implies ¡ ¢

$$
\delta' \geqq \delta \left(1 + 8^{-1} \theta(\delta) \right).
$$

To finish we need to estimate n' and d'. Since $q \leq R(\delta)$ we find by (43) and for C_1 large enough that $n' \geqq R(\delta)^{-2}n$, and clearly, $n' \leqq n$. Now, again by the fact that $q \leq R(\delta)$, we obtain $q \leq d' = dq \leq R(\delta)q$. \Box

5. Proof of Theorem

Let us assume, for a contradiction, that the theorem is false. Then for C_1 and n sufficiently large, there exists a subset A of $\{1,\ldots,n\}$ of size δn , such that $A - A$ does not intersect S and

(45)
$$
\delta \geq C_1 \left(\frac{\log_2 n}{(\log_3 n)^2 (\log_4 n)} \right)^{-\log_5 n}
$$

Set

(46)
$$
Z = \left[64 \,\theta(\delta)^{-1} \log C_1 \delta^{-1} \right],
$$

and put $d_0 = 1$, $n_0 = n$, $A_0 = A$, and $\delta_0 = \delta$. By using Lemma 10 repeatedly we can show that for each integer k, with $1 \leq k \leq Z$, there are integers d_k and n_k and a subset A_k of $\{1, \ldots, n_k\}$ of size $\delta_k n_k$ such that $A_k - A_k$ does not intersect \mathcal{S}_{d_k} . Moreover, d_k , n_k , and δ_k satisfy

$$
d_{k-1} \leq d_k \leq R(\delta_{k-1})d_{k-1}, \qquad R(\delta_{k-1})^{-2}n_{k-1} \leq n_k \leq n_{k-1},
$$

$$
\delta_k \geq \delta_{k-1}(1 + 8^{-1}\theta(\delta_{k-1})).
$$

Acta Mathematica Hungarica 120, 2008

.

Since $d_0 = 1$ and $n_0 = n$, these estimates imply

(47)
$$
d_k \leq R(\delta)^k, \quad n_k \geq R(\delta)^{-2k}n, \quad \delta_k \geq \delta \left(1 + 8^{-1}\theta(\delta)\right)^k.
$$

Let us show that we can actually perform this iteration Z times. Let $0 \leq l \leq Z-1$, and suppose that we have performed this iteration l times. To show that Lemma 10 can be applied an $(l + 1)$ -st time we need to show that n_l is sufficiently large, $d_l \leq \log n_l$, and that (10) is satisfied with δ replaced by δ_l .

We begin by estimating n_l . By (47) we obtain

(48)
$$
\log n_l \geq \log n - 2l \log R(\delta).
$$

Since $l < Z$, (6) and (46) imply

$$
l \log R(\delta) \leq 64 \theta(\delta)^{-1} (\log C_1 \delta^{-1})^2 (\log_2 C_1 \delta^{-1})^{7/8}.
$$

By (45) we obtain

$$
(\log C_1 \delta^{-1})^2 (\log_2 C_1 \delta^{-1})^{3/4} \le 2(\log_3 n)^2 (\log_4 n)^{7/8} (\log_5 n)^2
$$

for large enough n. By (7) and (45) we find, for n and C_1 sufficiently large, that \mathbf{r}

$$
\log \theta(\delta)^{-1} = \frac{4 \log C_1 \delta^{-1}}{\log_3 C_1 \delta^{-1}} \leq \log \left(\frac{\log_2 n}{(\log_3 n)^2 (\log_4 n)} \right).
$$

(Here we used that $(\log x)(\log_3 x)^{-1}$ is eventually increasing.) Therefore

$$
\theta(\delta)^{-1} \leqq \frac{\log_2 n}{(\log_3 n)^2 (\log_4 n)}.
$$

From the above we deduce, for n and C_1 large enough, that

(49)
$$
l \log R(\delta) \leq \log_2 n.
$$

Therefore, by (48),

$$
\log n_l \ge \log n - 2 \log_2 n = \log \left(\frac{n}{(\log n)^2} \right),
$$

and so

(50)
$$
n_l \geq \frac{n}{(\log n)^2}
$$

for $l < Z$. This shows that by taking n to be arbitrarily large, the same is true for n_l .

We now show that $d_l \leq \log n_l$. By (47) we have $\log d_l \leq l \log R(\delta)$, and thus by (49) we obtain $\log d_l \leq (1/2) \log_2 n$. For large *n* this implies

$$
d_l \leq (\log n)^{1/2} \leq \log \frac{n}{(\log n)^2} \leq \log n_l
$$

by (50).

We leave it to the reader to verify that (45) and (50) imply, for n and C_1 sufficiently large, that (10) is satisfied with δ and n replaced by δ_l and n_l respectively. Finally, since $A_l - A_l$ does not intersect S_{d_l} we can apply Lemma 10 to obtain the desired outcome.

Since (47) is true with $k = Z$ we find that

$$
\log \delta_Z \geq Z \log \left(1 + 8^{-1} \theta(\delta) \right) - \log C_1 \delta^{-1}.
$$

Since $8^{-1}\theta(\delta) < 1$, this implies

(51)
$$
\log \delta_Z \geqq 16^{-1} Z \theta(\delta) - \log C_1 \delta^{-1}.
$$

(Here we used $\log(1 + x) \ge x/2$ for $0 \le x \le 1$.) For C_1 large enough $Z \ge$ $32\theta(\delta)^{-1}\log C_1\delta^{-1}$, thus

$$
\log \delta_Z \ge 2 \log C_1 \delta^{-1} - \log C_1 \delta^{-1} > 0.
$$

This implies $\delta_Z > 1$, a contradiction, since by definition $\delta_Z \leq 1$. This contradiction establishes the theorem.

Acknowledgement. The author was supported by a postdoctoral fellowship from the Centre de Recherches Mathématiques at Montréal.

References

- [1] A. Balog, J. Pelikán, J. Pintz and E. Szemerédi, Difference sets without κ -powers, $Acta Math. Hungar., 65 (1994), 165-187.$
- [2] H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., 31 (1977), 204-256.
- [3] W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal., 11 (2001), 465-588.
- [4] B. Green, On arithmetic structures in dense sets of integers, Duke Math. J., 114 $(2002), 215-238.$
- [5] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press (London, 1974).
- [6] T. Kamae and M. Mendès France, Van der Corput's difference theorem, Isreal J. Math., 31 (1978), 335-342.

- [7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press (Oxford, 1960).
- [8] J. Lucier, Intersective sets given by a polynomial, $Acta \ Arith.$, 123 (2006), 57-95.
- [9] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math., 127, Springer-Verlag (Berlin, 1971).
- [10] J. Pintz, W. L. Steiger and E. Szemerédi, On sets of natural numbers whose difference set contains no squares, J. London Math. Soc., 37 (1988), 219-231.
- [11] K. F. Roth, On certain sets of integers, *J. London Math. Soc.*, 28 (1953), 104-109.
- [12] A. Sárközy, On difference sets of sequences on integers. I, Acta Math. Acad. Sci. Hun $gar., 31 (1978), 125-149.$
- [13] A. Sárközy, On difference sets of sequences on integers. III, Acta Math. Acad. Sci. $Hungar., 31 (1978), 355-386.$