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Abstract. We show that if A is a subset of {1,...,n} which has no pair of
elements whose difference is equal to p — 1 with p a prime number, then the size

of Ais O(n(loglogn)~clogloelosloalosn)) o1 some absolute ¢ > 0

1. Introduction

For a set of integers A we denote by A — A the set of all differences a — a’
with @ and @’ in A, and if A is a finite set we denote its cardinality by |A|
Sarkozy [12]| proved, by the Hardy Littlewood method, that if A is a subset
of {1,...,n} such that A — A does not contain a perfect square, then

|A| < n(loglogn)??(logn)~1/3.
This estimate was improved by Pintz, Steiger and Szemerédi [10] to
’A’ < n(logn>—(1/12)loglogloglogn.

This improvement was obtained using the Hardy Littlewood method together
with a combinatorial result concerning sums of rationals Balog, Pelikan,
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Pintz and Szemerédi |1], elucidating the method in [10], proved for any fixed
integer k = 2, that if A is a subset of {1,...,n} such that A — A does not
contain a perfect k th power, then

‘A’ <y 7,L(log77‘)—(1/4)loglogloglogn.

In the works cited above the following basic property is used: if s is a
perfect k th power then so is ¢Fs for every positive integer ¢ This multi
plicative property is used in the following fashion Suppose that B is a set of
integers and A = {c+ ¢*b: b € B} for some integers cand ¢ =1 If A— A
does not contain a perfect k th power, then the same is true for B — B This
deduction is the basis of an iteration argument that plays a fundamental role
in 1], [10], and [12]

Sarkozy [13] also considered the set S ={p—1: p a prime} of shifted
primes, and showed that if A is a subset of {1,...,n} such that A — A does
not contain an integer from S then

log log1 3(logloglog1
|A|<<n(0g oglogn)”(loglogloglogn)

(loglog n)*

The argument Sarkoézy used in [12] cannot be applied directly to the set S
of shifted primes since it does not have a multiplicative property analogous
to the one possessed by the set of perfect k£ th powers Sarkdzy got around
this difficulty by not only considering the set S of shifted primes, but also
the sets defined for each positive integer d by

—1
Sd:{pd : paprime, p=1 (modd)}.

In [13] Sarkézy uses an iteration argument based on the following observation
Suppose B is a set of integers and A = {c+ ¢b: b € B} for some integers ¢
and ¢ 21 If A— A does not intersect Sy for some positive integer d, then
B — B does not intersect Sgq

In this article we show that the combinatorial argument presented in [1]
and [10] can be carried out to improve Sarkozy’s result on the set S of shifted
primes We shall prove the following

THEOREM Let n be a positive integer and A a subset of {1,...,n} If

there does not exist a pair of integers a,a’ € A such that a —a' =p—1 for
some prime p, then

(loglog log n)3(log logloglogn)
A
4] <n ( (loglogn)

> log loglog log logn
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DIFFERENCE SETS AND SHIFTED PRIMES 81

The set of perfect squares and the set S of shifted primes are examples
of intersective sets To define this class of sets we introduce some notation
Given a set of positive integers H we define D(H,n), for any positive integer
n, to be the maximal size of a subset A of {1,...,n} such that A — A does
not intersect H A set of positive integers H is called intersective if D(H,n)
= o(n)

Kamae and Mendés France [6] supplied a general criterion for determining
if a set of positive integers is intersective From their criterion they deduced
the following

(I) For any fixed integer a the set {p+a: p a prime, p > —a} is intersec
tive if and only if a = 1

(IT) Let h be a nonconstant polynomial with integer coefficients and whose
leading coefficient is positive The set { h(m): m =1, h(m) = 1} is intersec
tive if and only if for each positive integer d the modular equation h(z) =0
(mod d) has a solution

Let h be a polynomial as in (II) with degree k = 2 and such that h(z) =0
(mod d) has a solution for every positive integer d The author [8] has shown
that if A is a subset of {1,...,n} such that A — A does not intersect { h(m) :

m 21, h(m) 2 1}, then |A| < n(loglog n)" E=D(1og n)~*Y  where =3
if k=2 and p=21if k=3 It is possible to improve this result with the
method presented in this paper

2. Preliminary lemmata

In this paper we use the following notations For a real number x we write
e(z) for 2™ and [z] is used to denote the greatest integer less than or equal
to x The greatest common divisor of the integers u and v is given by (u,v)
Euler’s totient function is denoted, as usual, by ¢ For any positive integer
1 we write log; to denote the 7 th iterated logarithm, that is, log; n =logn
and log, n = log(log;_, n) for every integer i = 2

A fundamental role is played by the following relations For integers n
and r, with n positive,

n if n|r 1 1 if r=0
e(rt/n) = , / e(ra)da =
0 if ntr 0 0 if r#0.

n—1
t=0

Given a subset A of {1,...,n} its generating function is given by

Fla)= Z e(aa), aeR.

a€cA
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Using the relations above we find that
. 2 ! 2
S| F(t/n)|? = nlAl, /0 | F(e)|” da = |A].
t=1

Of course, these are particular cases of Parseval’s identity

Séarkozy’s method in [12] and [13] is based on Roth’s work [11]| on three
term arithmetic progressions in dense sets Following this method Sarkozy
uses a functional inequality to derive his results concerning the set of perfect
squares and the set S of shifted primes Our approach here uses, like Gow
ers |3] and Green [4], a density increment argument The next lemma tells
us that if the generating function of a finite set A satisfies a certain size con
straint, then it must be concentrated along an arithmetic progression We
use this result in Lemma 10 to obtain a density increment that we iterate in
the final section of the paper to prove the theorem

LEMMA 1 Let n be a positive integer and A a subset of {1,...,n} with
size on For any real o let F(«) denote the generating function of A Let q
be a positive integer and U a positive real number such that 2mqU < n Let
E denote the subset of [0,1] defined by

U
E:{ae[o,l]: a—a‘ §f07"50m60§a§q}.
q n
If 0 is a positive number such that
n—1 N
2
(1) > [F(t/n)|” Z 0]AP,
t)mep
then there exists an arithmetic progression P in {1,...,n} with difference q

such that

|P|§32an and |ANP|>|P[5(1+870).
T

ProOOF This closely resembles Lemma 20 in [8] and can be proved in the
same manner g

We now state a combinatorial result presented by Balog, Pelikidn, Pintz
and Szemerédi in [1], the proof of which uses only elementary techniques It
is this result, that we use in Lemma 9, that allows us to improve Sarkozy’s
result on the set S of shifted primes

LeMMA 2 ([1], Lemma CR) Let K and L be positive integers, and let T
be the mazimal value of the divisor function up to KL Let IC be a nonempty
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DIFFERENCE SETS AND SHIFTED PRIMES 83

subset of rationals such that if a/k € KC is in lowest terms then 1 < a < k
< K Suppose that for each a/k € K there corresponds a subset of rationals
Lok such that if b/l € L,y is in lowest terms then 1 =b =1 = L Suppose
further that B and H are positive integers such that

Lokl =2 H  forall a/kel

and

<B foral 1< L.

o0}

Then the size of the set

satisfies

H
Q= [KIH <LB7‘8(1 —i—logK)) '

3. Exponential sums over primes

Let d and n denote positive integers As in [13], our application of the
Hardy Littlewood method employs exponential sums over numbers from the
set Sy defined in the introduction For any real number « set

Spala) =) log(ds + 1)e(as).

sESy
s<n

In this section we present some estimates related to Sy, 4(a) Throughout this
section we assume d and n satisfy

d <logn.

LeEMMA 3 For n sufficiently large,

Sd’n(()) > —.
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PROOF By the definition of S; we find that

San(0)= Y logp.

p<dn+1
p=1lmod d

Since d < logn the Siegel Walfisz theorem says that this sum is asymptotic
to (dn+ 1)/¢(q), from which the result follows O
The next two lemmas provide estimates of S(«) derived by A Sarkozy

LEMMA 4 Let a and b be integers such that (a,b) =1 and 1 < b = logn
There exists a positive real number ¢ such that if « is a real number that
satisfies

1/2
’a_algexp(c(logn)/)
bl = n ’

and n 1s sufficiently large, then

dn
San(@)| < ———,
[Sanle)] < Sraam
furthermore, if o # a/b then
d a|—1
Sunle] < Lo
[Sar] < e 1 b
ProOOF This is a restatement of Lemma 5 from [13] O

Let R denote a real number that satisfies
(2) 3 < R < logn.
For integers a and b such that (a,b) =1 and 0 < a < b < R set

a R

(3) m(b,a):{ae[o,l]: ‘a_b‘§nloglogR}’

Let m denote the set of real numbers o for which there do not exist integers
a and b such that (a,b) =1,1 < b < R, and o € M(b, a)
LeMMA 5 For ao € m and large n,

dn loglog R
(4) San(a) < od R

ProoOF This is a restatement of Lemma 9 from [13] O
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LEMMA 6 Let a and b be integers such that 0 < a < b < R and (a,b) =1
Then for n sufficiently large

> [ Sanlt/n)] <

t/neM(b,a)

dn

¢(d)¢(b)

PROOF Suppose that t/n € M(b,a) Then

log R.

t a

n b

R < logn
nloglogR = n

A

9

and since b £ R < logn we can, for large enough n, apply Lemma 4 with «
replaced by t/n
Let w and v be integers such that

u o a v
— < -<—, v—u=2.
n b n

Applying Lemma 4 we obtain

dn
> [ Sanlt/n)| < —
t/neM(b,a) d)(d)(b(b)
u/n<t/n<v/n

For t/n € M(b,a) with t/n < u/n, Lemma 4 implies

-1

| San(t/n)| <« _ E—3_1<<L tou
i P(d)¢(b) |[n b P(d)gp(b) n n
Therefore
> [Sulein] < o ¥ g
t/neM(b,a) t/neM(b,a)
t/n<u/n t/n<u/n
dn dn
< > — < log R.
HADIO) | s tog P(d)o(b)
Similarly
Z | Sun(t/n)| < %logR. O
e ¢(d)9(b)
v/n<t/n

A multiplicative arithmetic function f is called strongly multiplicative if
f(p*) = f(p) for every prime p and positive integer & The next lemma con
tains a standard deduction on the average order over arithmetic progressions
for certain strongly mutliplicative arithmetic functions
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LEMMA 7 Let x be a real number such that x = 1, and let d and r be
positive integers If [ is a strongly multiplicative arithmetic function such
that f(m) =1 for every positive integer m and f(p) =1+ O(p~ 1), then

Y fm) < f((r,d))%.

mx
m=r mod d

PROOF Let g be the arithmetic function defined by

=> u(5) £

klm

where p is the Mébius function Using the fact that f is strongly multiplica

tive we deduce that
m)* T (f(p) -
plm

Since f(m) =1 for every positive integer m it follows that ¢ is a non
negative valued arithmetic function By the Mobius inversion formula f(m)
= > _kjm 9(k), therefore

Y. fmy= Y D k)= gk) Y, L

m<z m<z  klm k<x m<z
m=r mod d m=r mod d m=r mod d
m=0 mod k

The last sum above is zero if (k,d) tr and at most x(d, k)/(dk) if (k,d) | r
This implies, since ¢ is a non negative valued function, that

> sy MR dZZ%

mSx k<z s|(r,d) k<z
m=r mod d (k,d)|r (k,d)=s
T g(sl)
=32 X
sl(r,d) 1Zz/s
(L,d/s)=1

For positive integers u and v it can be verified that g(uv) < g(u)g(v), thus

> rm st Y g A
e Ay
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r) gL (1+57) = ST (14 755),

pSx pSz

II/\

Since f(p) = 1 and f(p) = 1+ O(p~ 1) the previous product is bounded from
above by the absolutely convergent infinite product ]_[p (1 + p_l( f(p) — 1))
Therefore

> fm) < f((nd) 5. O

m<x
m=r mod d

The next lemma is analogous to Proposition 11 of Green [4]
LEMMA &

Ssunt < (&)

PrROOF By Gallagher’s inequality |9, Lemma 1 2| we have

Z}Sdnt/n /\Sdn \da+2/ | Sun(@)S) ()] da,

where S («) is the derivative of Sy, () with respect to a By Hoélder’s
inequality

/ |Sun(@)Shn(0)] da < </01’Sd,n(a)’4da>3/4</01‘S(’Ln(a)}zlda)l/zl.

Let rq(m) denote the number of pairs (p1,p2) where p; and po are primes
such that p1,p2 =1 (mod d) and

pp—1 pp—1
T

By Parseval’s identity,
! 2
/ | San(c) ‘ da < (logn)* Z rqa(m)
0 m<n

and

1
/ ‘S(/j’n(a)‘élda < 2r(nlogn)? Z ra(m)?.
0

m<n
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From the above we deduce that

n—1
(5) S| Sun(t/n)|* < n(logn)® Y ry(m)?
t=0 m<n

For each positive integer m we have
rq(m) < |{p: l<p<dn+2, p=1modd, dm—l—?—pisaprime}}.

To bound rg(m) we apply the combinatorial sieve to estimate the size of the
set above In particular, Corollary 2 4 1 of [5] implies

1\ ! dm+1
ra(m) < H <1 - p) ¢(d)log® ((dm +1)/d)

pld(dm+2)
Note that
11 <1_1> 1§ d ( dm + 2 )
i NT8) = 0@ \Gtam )
therefore
ralm) < 2d2m 2( dm + 2 )
o(d)*(logm)* \ ¢(dm +2)

This implies

Z ra(m)? < o dtm? Z <“)2
o(d)*(log n)* o(u)

m<n uSdn+2
u=2 mod d

Let f(u) = (u/¢(u)) ? It can be verified that f is a strongly multiplicative
arithmetic function such that f(u) = 1 for every positive integer u and f(p)
=1+ O(p~!) Thus, we can apply Lemma 7 to obtain

> (¢>(uu))2 < n.

uS<dn+2
u=2 mod d
Therefore
d*n?

2

ra(m)” < —5—,
Z #(d)(logn)

and thus, on account of (5), the result follows O
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4. A density increment

Throughout this section n denotes a positive integer and A a subset of
{1,...,n} For any real « set

F(a) = Z e(aa), Fi(a) = Z e(aa).
oed a%enf/g

Denote by C§ a fixed positive constant This constant will be used through
out the rest of the paper We will need C to be sufficiently large, but it
should be noted that the size of C; will never be determined by n or A Let
0 denote the density of A, that is, |A| = dn  The following parameters are
defined in terms of Cy and §:

(loglog 016*1)7/8

(6) R(6) = (01(5—1) |
_ —1 —4(10glog10gcl571)_1
(7) 0(6) = (C167Y) |
(8) Q1 = (015—1)(10g10g015—1)1/8
; -1
(9) A= 1 logloglog C18 ’

With R = R(0) let M(q,a) be defined as in (3), and for any positive
integer ¢ < R set

mg) = |J Maa).
a=0
a,q)=1

(

LEMMA 9 Let d be a positive integer such that d < logn Suppose that
A — A does not intersect S; and that

1/2

(10) 016_1 § e(loglogn) 7

provided Cy and n are sufficiently large there exists a positive integer ¢ < R(J)
such that

n—1

(11) ST |Ft/n)]? Z 000)|A”.
{/nem(q)
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PROOF Here we adopt the method used in [1| Given any positive integer
A we make the following definitions For integers a and k, with k£ = 1, define
al o AR

My(k,a) = {a €[0,1]: ’O‘_ %’ = nloglogR}’

and for real numbers K, U = 1,

a

PUK,U) =42 1<a<k<K,(ak) =1, Fi(t/n)| > |A|/U L.
EO) ={F 1S eSS Kak =1, mw RG] 2 140
Furthermore, set
(12) Q=07
and

N LGS

M isk<q, U2

1<U

Let K and U denote a pair for which p) takes its maximum As K =U =1
is considered in the definition of py we have

K2
(13) 1< <2
U3

It follows that

(14) 1=SUy S K\ ZQh

For each A < A we want the intervals 9y (k, a) with & < Q) to be pairwise
disjoint It can be verified that this will happen if

2)\R

1
1 - R
(15) nloglog R < Q3

(for A < A).

To show this we estimate A\, R, and Q) for A £ A By (9) and (10) we deduce
that

A = - loglogloglogn (for A S A).

A =] w

By (9) we find that 2* < (loglog 6’1(5*1)3/4, and hence by (8) and (12) we

find that
log Qy < 2Mlog Q1 < (loglog 01(5*1)7/8 log C167 L.
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By (6) this implies log @ = log R, and so
(16) Q) = R.
By (6) and (10) we find, for n large enough, that
(17) 3 < R < logn.

From the above estimates for A\, R, and @) we deduce that (15) holds for
sufficiently large n Therefore, when A £ A we have

AP = | PA(Kx, U | o £ S | Fu(t/n)|? < nlAl.

So
(18) § <yt
Let us assume, to obtain a contradiction, that

n—1
(19) ST |F(t/n)|? < 0)|AP (forall 1 £ g £ R).
/(g

By using Lemma 2 and (19) we will show, provided C; and n are sufficiently
large, that

(20) it 2 008) 7 Ppy (for TS A A).

Assuming for now that (20) holds we show how a contradiction is ob
tained, thus proving that the assumption (19) is false Since p; = 1, it follows
from (20) that a1 = 0(8)" VP2 and thus by (18) we have & < 6(8)1/2A
We can take O to be large enough so that (9) implies A = (1/4)logs C167 1,
then by (7) we find that § < C;'6 < 6, a contradiction Therefore (19) can
not hold forall 1 £ ¢ < R

We now proceed to show that (20) holds To this end, let us fix A with
1= A=A For now we also fix a rational a/k in Py\(Uy, K)) We associate
with a/k a fraction u/n € 9\ (k,a) such that | F(u/n)| = |A|/Uy Such a
u/n exists by the way a/k was chosen

Since A — A contains no integers from Sy we find that

n—1
> Fi(u/n+t/n)F(—=t/n)San(t/n) = 0.
t=0
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By the triangle inequality, Lemma 3, and the way u/n was chosen we find
that

Els

@) Fo (;Z)) <<Z\F1 (u/n+t/n)| |F(t/n)] | San(t/n)].

Set

3/2
(22) v = (€3
and let A denote the set of ¢/n such that | F(t/n)| <|A|/Y By two appli

cations of the Cauchy Schwarz inequality, Parseval’s identity, and Lemma 8
we find that

Y | Eiu/n+t/n)| [F(t/n)]| | San(t/n)]

t/neN
n—1 ) 1/2 A 1/4 ,n—1 A 1/4
< (;}Fl(u/nﬂ/n)\ > <t/§€:N\F(t/n)} ) (;\sd,n(t/n)\ >
/ 1/4
< dn3/2|A’1 2< Z ‘F t/n > |
t/neN

Now

( > ‘F(t/n)‘4>1/4<t}n2’ﬁ/‘Ft/” 1/2<§}F(t/n)‘2)1/4

t/neN
1/2 1/4) 413/4
<Ayt AP
= vyl/2 Yy1/2
Therefore
dn7/4\A|5/4

t/neN
By (14) and (22) we find that

y-1/2 Cf3/453/4Q;1 < Cf3/4|A|3/4n’3/4U/\_1,
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DIFFERENCE SETS AND SHIFTED PRIMES 93

thus

_3j1] AP [ dn
(23) t/nzezN‘Fl(u/n—kt/n)‘ | E(t/n)] |San(t/n)| < C° N <¢(d)>

Let A denote the set of t/n such that | Fy(u/n+t/n)| < |A|/Y By the
same reasoning used in the deduction of (23) we find that

u/n n n n 73/4@ di
(24) t/n%vlm( /n+t/n)| | Ft/n)| | Sqn(t/n)| < C; A <¢(d)>‘

For A < A we have Qx4+1/Qx < R Indeed, (9) and (12) imply

Qxry1
Qx

Let m* denote the union of the M(q) with Qx+1/Qx < ¢ = R By the Cauchy
Schwarz inequality we find that

3/4

loglog C16~1
(loglog C1677) < R.

< Q¥ < (05

(25)
Z | Fi(u/n+t/n)| | F(t/n)| | San(t/n)| < (n|A]) sup |San(t/n)].
t/nem* t/nemy

We are now going to show that

1y— d
(26) t/ii%; }Sdﬂ(t/n)’ < Ccy'usts <¢(Z)> .

Suppose that t/n € m*, then t/n € M(q,a) for some integers a and ¢ such
that 0 < a = ¢, (a,q) =1, and Qx41/Qx < ¢ = R Since ¢ = R = logn, we
deduce from Lemma 4 that

dn
San(t/n) €K ———.
)< Sayota)
Using the well known estimate
q
2

(see for example |7, Theorem 328]), we obtain

(25) Sun(t/n) < ((;EZ)) log ;Og q
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The lower bound on ¢ implies

log 1 log 1
oglogg  log ogQHl/QA_

(29) q Q)+1/Qx

By (12) we have Qx+1/Qx = QaQ1 = QF ', thus

Qx+1/Qx Q\Q1 Q1

Using (8) and (9) we find that A < loglog @1, by this and (14) we obtain

loglog Qx11/@x  loglog Q7 ~ A(log2) + loglog Q1

loglog Qx41/@Q < log log @1
Qx11/Qx UrQ1

Using (8) we find, by taking C large enough, that

log1
@1
and thus
loglog Q1 _ crls.
Q1 N

From (29) and the subsequent estimates we obtain

log1
(30) 88T  orluy s,

Since t/n € m* is arbitrary (28) and (30) imply that (26) is true By (25)
and (26) we have

AP (dn
o T Iatins ol ol sue] < i (),

The contribution to the sum in (21) coming from the terms with ¢/n € m
can similarly be bounded By the Cauchy Schwarz inequality and Lemma 5
we find that

> | Fiw/n+t/m)] |FE/n)| | San(t/n)| £ (n|A]) sup |S(t/n)]

t/nem t/nem
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<o (2 25

Since R = Qx1+1/Q) the argument used in the previous paragraph implies

—1@ dan_
(32) t/%g:m’Fl(u/n—kt/n)‘ ‘F(t/n)} ‘Sd,n(t/n)} <O Uy <¢(d))

Let M(b, a) be the set of t/n € M(b,a) with ¢t/n # 0 such that

Al Al
|F(t/n)] 2 v | Fi(u/n+t/n)| = v
By (23), (24), (31), and (32) it follows for C large enough that

d|A|*n
S0, S > X t/nré“o%}ia F(t/n)]

b=Qxr+1/Qx (a,b)=

X, m‘%)z | Fi(u/n+t/n)| Z | San(t/n)].
/neN(b,a) t/neM(b,a)

Since d < logn we can apply Lemma 6 to the inner sum above to obtain

El
Uylog R

1
< Z (— Z /ne‘ﬂba)‘F (t/n |t/nré1§x | Fi(u/n+t/n)].
b=Qx+1/Qx a,b)=

Let L£(L,V,W) denote the set of reduced fractions b/l € [0,1] such that

L 4] < oAl
psise e m, rml 52l

A
174N

|A] A
Fi( t/n)| <22
W= t/nlél%}%b)‘ t(u/n+t/n)] < 25

For b/l € L(L,V,W), we have

(log log 3L)|Al?

L max |F(t/n)| max |Fi(u/n+t/n)] < VW

o) t/nem(ib) t/neM(l,b)
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by (27) Therefore

(log log 3L)|A|*
U,\logR<<zL:zV:%:|LLVW Lvw

where L runs through all the powers of 2 in the interval [1,2Qx4+1/Qx], and
V and W run through all the powers of 2 in the interval [1,2Y] There must
exist a triple (L, V, W) of indices such that

LVW
Ux(loglog3L)(log R)’

| L(L,V, V)| >

We associate this triple with a/k
The number of possible triples (L, V, W) is < log(Qxs1/Qx)(logY)?,

which by (16) and (22) is < (log R)® Therefore there exists a subset K C Py,
satisfying

| PA(K, Uy)|

(33) K| > (log R)?

9

such that to each a/k € I we associate the same triple, say (L, V, W)

Let a/k € K, then together with the associated fraction u/n € My (k,a),
we associate a set L, of rationals b/l, 0 =b=1, (b,l)=1, L/2=1= L,
such that

LVW
, c
(34) | a/’f’ > U)\(loglog?)L)(lOgR)’
4] _ <24
(35) v Sy Pl ==
Al <24
36 T = K S
(36) WS e | w)] < 55
Set,
a b a b
Q_{k+l EEK’ leﬁa/k}'

Let us estimate the cardinality of @ Since L < Qx+1/Qx < R, assump
tion (19) and (35) imply

fo: b eUen)| () = = 1roml sowar

t/neM(l)
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So that
b
Hb: 7€ Uﬁa/k}’ < O(6)V2.

Lemma 2 then implies

L2V2 W2 0(6)""

ol > IK|- : '
EEds U2(loglog 3L)*(log R)* LV278(1 + log K )

From (14) and (16) we obtain log K\ < log R, by this and (33) it follows that

0(5)"" '\ |PA(K, Uy
78(log R)° vy

(37) 19| > W? <

Note that Q is a subset of (0,2] Let @; = @N(0,1] and Q2 = QN (1,2]
Let us assume without loss of generality that |Q1| = (1/2)|Q| If this is not
the case, then |Qo| = (1/2)|Q|, and we can replace Qp in the argument below
by the rational numbers in Qy shifted to the left by 1 Since |Q1| = (1/2)|Q)|
we see that (37) is still valid with Q replaced by Q;

Let /s =a/k+b/l bein Q1 For u/n € My(k,a) and w/n € M(I,b) we

have
i_<g+g>‘§ E—g’—l—
s n o n n k

w_blo A+DHR
n 1|~ nloglogR’

and therefore u/n +w/n € My11(s,7) Thus, by (36) we deduce that

[A|
(38) t/neg?l?i(s,r) !Fl(t/n)} > W (for r/s € Q).

We now estimate the size of the denominator of /s Certainly s < kl < K)\L
By (14) we have K) < @, and L was chosen to satisfy L < Qx11/Qx There
fore s £ Q41 whenever /s € Q; By this and (38) we obtain

(39) Q1 C Pasr1(@rt1, W).
By (37), with Q replaced by Qp, and (39) we find that

| Prs1(Qrs1, W) 0(6)"" '\ |PA(Kx, Uy)|
w7\ Seerr) 0

This implies

O

40 > —
(10) fa 78(log R)®

[2x-
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We now estimate 7, the maximum of the divisor function up to K)L
< Qg1 If d(m) is the number of divisors of m then

1
log d(m) < ﬂ7
loglogm

(see [7, Theorem 317|) Thus, by (12), we have

log Q11 2* log Q1
loglogQxy1 — loglog Q1

logT <

and since A £ A we deduce from (8) and (9) that

log C1 61
(loglog Cy6—1)Y/4

logT <

It follows from (7) that

(41) logT = o( log 0(5)_1) (for C167 1 — o0).
We also find from (6) and (7) that

(42) loglog R = o( log0(5)™") (for C1671 — o0).

Since 0(8) ! tends to infinity as C16 7! tends to infinity, we deduce from (40),
(41), and (42) that for C sufficiently large

fire1 2 0(8) 2.

Since A £ A was arbitrary, (20) is true and as shown earlier, the lemma can
be deduced from this O

We now derive a density increment argument that will be iterated in the
next section to prove our theorem

LEMMA 10 Let d be a positive integer such that d < logn Suppose that
A — A does not intersect Sq and that §, the density of A, satisfies (10) Pro
vided C1 and n are sufficiently large there exist positive integers d' and n’,
and a subset A" of {1,...,n'} of size 6'n’, such that A’ — A’ does not intersect
S, and moreover

d<d SR(©O)d, R(@) > n<n'<n, &25(1+8700).
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PrROOF By the hypotheses, Lemma 9 implies that there exists a positive
integer ¢ < R() such that (11) is true With this ¢ and U = R(¢)/loglog R(9)
let E be defined as in Lemma 1 Note that 9(¢) C E The inequality (17)
is still valid, thus 2mqU < 27rR(5)2 < n for sufficiently large n Therefore, we
can apply Lemma 1 with 6 = 6(0) to deduce that there exists an arithmetic
progression P with difference ¢ such that

- nloglog R(d)

(43) P2 32mqR(6)
and
(44) |JANP| = |P|5(1+8710(5)).

Let n’ = |P| Then there exists an integer ¢ and subset A" of {1,...,n'} such
that ANP ={c+qd : o’ € A’} Putd =dq Since A— A does not intersect
S4, we deduce that A’ does not intersect Sq; Let the size of A’ be ¢'n’ Then
(44) implies
& =6(1+8710(5)).

To finish we need to estimate n’ and d’ Since ¢ < R(d) we find by (43) and
for Cy large enough that n’ = R(6) *n, and clearly, n’ <n Now, again by
the fact that ¢ £ R(9), we obtain ¢ £ d' = dq < R(d)q O

5. Proof of Theorem

Let us assume, for a contradiction, that the theorem is false Then for Cy

and n sufficiently large, there exists a subset A of {1,...,n} of size dn, such
that A — A does not intersect S and
1 —logsn
(45) 5301( 08y ) |
(logz n)”(logy n)
Set
(46) Z = [640(5) " log C167'],

and put dg =1, ng =n, Ag = A, and §p = 0 By using Lemma 10 repeatedly
we can show that for each integer k, with 1 < k < Z, there are integers dj

and ny and a subset Ay of {1,...,n;} of size dxny such that Ay — Ay does
not intersect Sy, Moreover, dy, ny, and J, satisfy
dp—1 = di, = R(6p—1)dp—1, R(6k-1) *np—1 < nyy < gy,

6 2 k-1 (1+8710(0k-1)).-
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Since dg = 1 and ng = n, these estimates imply
(47)  d S RO, np = RE) 0, 62 8(1+8716(5)".

Let us show that we can actually perform this iteration Z times Let
0 <1< Z -1, and suppose that we have performed this iteration [ times To
show that Lemma 10 can be applied an (I + 1) st time we need to show that
ny is sufficiently large, d; < logn,, and that (10) is satisfied with § replaced
by &

We begin by estimating n; By (47) we obtain

(48) logn; = logn — 2llog R(9).
Since | < Z, (6) and (46) imply
log R(5) < 640(8) " (log C161)* (log, C16~1)"/%,
By (45) we obtain
(log C10™1)*(log, C16~1)** < 2(logy n)*(log, n)"/* (1og; n)?

for large enough n By (7) and (45) we find, for n and C sufficiently large,

that
41 -t 1
log 0(5)_1 = &15_1 < log ( 0g22n > .
logs C10 (logs n)~(log, n)

(Here we used that (log z)(logz )~ is eventually increasing ) Therefore

log, n
(logy n)?(log, n)

A

0(5)*

From the above we deduce, for n and C large enough, that
(49) llog R(0) < logy n.

Therefore, by (48),

logn; =2 logn — 2logy n = log ( " 2> ,
(logn)
and so
n
50 n =
(50) = (logn)?
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for [ < Z This shows that by taking n to be arbitrarily large, the same is
true for ny

We now show that d; <logn; By (47) we have logd; < [log R(6), and
thus by (49) we obtain logd; = (1/2)logyn For large n this implies

n
d; < (log n)1/2 < log m < logny

by (50)

We leave it to the reader to verify that (45) and (50) imply, for n and
(4 sufficiently large, that (10) is satisfied with § and n replaced by §; and
n; respectively Finally, since A; — A; does not intersect Sy, we can apply

Lemma 10 to obtain the desired outcome
Since (47) is true with £ = Z we find that

logdy = Zlog (1+ 8_10((5)) —log C16~ 1
Since 8710(8) < 1, this implies
(51) logdz = 1671 Z60(5) —log C16~ L.

(Here we used log(1+x) =2 x/2 for 0 =2 =1) For C; large enough Z =
320(6) ' log C167, thus

logd, = 2log C16~ 1 —logC16~ ! > 0.

This implies dz > 1, a contradiction, since by definition dz < 1 This contra
diction establishes the theorem
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