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Abstract. We show that if A is a subset of {1, . . . , n} which has no pair of
elements whose di�erence is equal to p− 1 with p a prime number, then the size
of A is O

(
n(log log n)−c(log log log log log n)) for some absolute c > 0.

1. Introduction

For a set of integers A we denote by A−A the set of all di�erences a− a′
with a and a′ in A, and if A is a �nite set we denote its cardinality by |A|.
Sárközy [12] proved, by the Hardy�Littlewood method, that if A is a subset
of {1, . . . , n} such that A−A does not contain a perfect square, then

|A| ¿ n(log log n)2/3(log n)−1/3.

This estimate was improved by Pintz, Steiger and Szemerédi [10] to

|A| ¿ n(log n)−(1/12) log log log log n.

This improvement was obtained using the Hardy�Littlewood method together
with a combinatorial result concerning sums of rationals. Balog, Pelikán,
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Pintz and Szemerédi [1], elucidating the method in [10], proved for any �xed
integer k = 2, that if A is a subset of {1, . . . , n} such that A−A does not
contain a perfect k-th power, then

|A| ¿k n(log n)−(1/4) log log log log n.

In the works cited above the following basic property is used: if s is a
perfect k-th power then so is qks for every positive integer q. This multi-
plicative property is used in the following fashion. Suppose that B is a set of
integers and A = {c + qkb : b ∈ B} for some integers c and q = 1. If A−A
does not contain a perfect k-th power, then the same is true for B −B. This
deduction is the basis of an iteration argument that plays a fundamental rôle
in [1], [10], and [12].

Sárközy [13] also considered the set S = {p− 1 : p a prime} of shifted
primes, and showed that if A is a subset of {1, . . . , n} such that A−A does
not contain an integer from S then

|A| ¿ n
(log log log n)3(log log log log n)

(log log n)2
.

The argument Sárközy used in [12] cannot be applied directly to the set S
of shifted primes since it does not have a multiplicative property analogous
to the one possessed by the set of perfect k-th powers. Sárközy got around
this di�culty by not only considering the set S of shifted primes, but also
the sets de�ned for each positive integer d by

Sd =
{

p− 1
d

: p a prime, p ≡ 1 (mod d)
}

.

In [13] Sárközy uses an iteration argument based on the following observation.
Suppose B is a set of integers and A = {c + qb : b ∈ B} for some integers c
and q = 1. If A−A does not intersect Sd for some positive integer d, then
B −B does not intersect Sdq.

In this article we show that the combinatorial argument presented in [1]
and [10] can be carried out to improve Sárközy's result on the set S of shifted
primes. We shall prove the following.

Theorem. Let n be a positive integer and A a subset of {1, . . . , n}. If
there does not exist a pair of integers a, a′ ∈ A such that a− a′ = p− 1 for
some prime p, then

|A| ¿ n

(
(log log log n)3(log log log log n)

(log log n)

)log log log log log n

.
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DIFFERENCE SETS AND SHIFTED PRIMES 81

The set of perfect squares and the set S of shifted primes are examples
of intersective sets. To de�ne this class of sets we introduce some notation.
Given a set of positive integers H we de�ne D(H,n), for any positive integer
n, to be the maximal size of a subset A of {1, . . . , n} such that A−A does
not intersect H. A set of positive integers H is called intersective if D(H,n)
= o(n).

Kamae and Mendès France [6] supplied a general criterion for determining
if a set of positive integers is intersective. From their criterion they deduced
the following.

(I) For any �xed integer a the set {p + a : p a prime, p > −a} is intersec-
tive if and only if a = ±1.

(II) Let h be a nonconstant polynomial with integer coe�cients and whose
leading coe�cient is positive. The set

{
h(m) : m = 1, h(m) = 1

}
is intersec-

tive if and only if for each positive integer d the modular equation h(x) ≡ 0
(mod d) has a solution.

Let h be a polynomial as in (II) with degree k = 2 and such that h(x) ≡ 0
(mod d) has a solution for every positive integer d. The author [8] has shown
that if A is a subset of {1, . . . , n} such that A−A does not intersect

{
h(m) :

m = 1, h(m) = 1
}
, then |A| ¿ n(log log n)µ/(k−1)(log n)−(k−1), where µ = 3

if k = 2 and µ = 2 if k = 3. It is possible to improve this result with the
method presented in this paper.

2. Preliminary lemmata

In this paper we use the following notations. For a real number x we write
e(x) for e2πix, and [x] is used to denote the greatest integer less than or equal
to x. The greatest common divisor of the integers u and v is given by (u, v).
Euler's totient function is denoted, as usual, by φ. For any positive integer
i we write logi to denote the i-th iterated logarithm, that is, log1 n = log n
and logi n = log(logi−1 n) for every integer i = 2.

A fundamental rôle is played by the following relations. For integers n
and r, with n positive,

n−1∑

t=0

e(rt/n) =

{
n if n | r
0 if n - r

,

∫ 1

0
e(rα) dα =

{
1 if r = 0

0 if r 6= 0.

Given a subset A of {1, . . . , n} its generating function is given by

F (α) =
∑

a∈A

e(αa), α ∈ R.
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Using the relations above we �nd that

n∑

t=1

∣∣F (t/n)
∣∣2 = n|A|,

∫ 1

0

∣∣F (α)
∣∣2

dα = |A|.

Of course, these are particular cases of Parseval's identity.
Sárközy's method in [12] and [13] is based on Roth's work [11] on three-

term arithmetic progressions in dense sets. Following this method Sárközy
uses a functional inequality to derive his results concerning the set of perfect
squares and the set S of shifted primes. Our approach here uses, like Gow-
ers [3] and Green [4], a density increment argument. The next lemma tells
us that if the generating function of a �nite set A satis�es a certain size con-
straint, then it must be concentrated along an arithmetic progression. We
use this result in Lemma 10 to obtain a density increment that we iterate in
the �nal section of the paper to prove the theorem.

Lemma 1. Let n be a positive integer and A a subset of {1, . . . , n} with
size δn. For any real α let F (α) denote the generating function of A. Let q
be a positive integer and U a positive real number such that 2πqU 5 n. Let
E denote the subset of [0, 1] de�ned by

E =
{

α ∈ [0, 1] :
∣∣∣∣α−

a

q

∣∣∣∣ 5 U

n
for some 0 5 a 5 q

}
.

If θ is a positive number such that

(1)
n−1∑

t=1
t/n∈E

∣∣F (t/n)
∣∣2 = θ|A|2,

then there exists an arithmetic progression P in {1, . . . , n} with di�erence q
such that

|P | = n

32πqU
and |A ∩ P | = |P |δ(1 + 8−1θ

)
.

Proof. This closely resembles Lemma 20 in [8] and can be proved in the
same manner. ¤

We now state a combinatorial result presented by Balog, Pelikán, Pintz
and Szemerédi in [1], the proof of which uses only elementary techniques. It
is this result, that we use in Lemma 9, that allows us to improve Sárközy's
result on the set S of shifted primes.

Lemma 2 ([1], Lemma CR). Let K and L be positive integers, and let τ
be the maximal value of the divisor function up to KL. Let K be a nonempty
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DIFFERENCE SETS AND SHIFTED PRIMES 83

subset of rationals such that if a/k ∈ K is in lowest terms then 1 5 a 5 k
5 K. Suppose that for each a/k ∈ K there corresponds a subset of rationals
La/k such that if b/l ∈ La/k is in lowest terms then 1 5 b 5 l 5 L. Suppose
further that B and H are positive integers such that

|La/k| = H for all a/k ∈ K

and ∣∣∣∣
{

b :
b

l
∈

⋃
La/k

}∣∣∣∣ 5 B for all l 5 L.

Then the size of the set

Q =
{

a

k
+

b

l
:

a

k
∈ K,

b

l
∈ La/k

}

satis�es

|Q| = |K|H
(

H

LBτ8(1 + log K)

)
.

3. Exponential sums over primes

Let d and n denote positive integers. As in [13], our application of the
Hardy�Littlewood method employs exponential sums over numbers from the
set Sd de�ned in the introduction. For any real number α set

Sn,d(α) =
∑

s∈Sd
s5n

log(ds + 1)e(αs).

In this section we present some estimates related to Sn,d(α). Throughout this
section we assume d and n satisfy

d 5 log n.

Lemma 3. For n su�ciently large,

Sd,n(0) À dn

φ(d)
.
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Proof. By the de�nition of Sd we �nd that

Sd,n(0) =
∑

p5dn+1
p≡1mod d

log p.

Since d 5 log n the Siegel�Wal�sz theorem says that this sum is asymptotic
to (dn + 1)/φ(q), from which the result follows. ¤

The next two lemmas provide estimates of S(α) derived by A. Sárközy.
Lemma 4. Let a and b be integers such that (a, b) = 1 and 1 5 b 5 log n.

There exists a positive real number c such that if α is a real number that
satis�es

∣∣∣α− a

b

∣∣∣ 5
exp

(
c(log n)1/2)

n
,

and n is su�ciently large, then

∣∣Sd,n(α)
∣∣ <

dn

φ(d)φ(b)
,

furthermore, if α 6= a/b then

∣∣Sd,n(α)
∣∣ <

d

φ(d)φ(b)

∣∣∣α− a

b

∣∣∣
−1

.

Proof. This is a restatement of Lemma 5 from [13]. ¤
Let R denote a real number that satis�es

(2) 3 5 R 5 log n.

For integers a and b such that (a, b) = 1 and 0 5 a 5 b 5 R set

(3) M(b, a) =
{

α ∈ [0, 1] :
∣∣∣α− a

b

∣∣∣ 5 R

n log log R

}
.

Let m denote the set of real numbers α for which there do not exist integers
a and b such that (a, b) = 1, 1 5 b < R, and α ∈ M(b, a).

Lemma 5. For α ∈ m and large n,

(4) Sd,n(α) ¿ dn

φ(d)
· log log R

R
.

Proof. This is a restatement of Lemma 9 from [13]. ¤
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Lemma 6. Let a and b be integers such that 0 5 a 5 b 5 R and (a, b) = 1.
Then for n su�ciently large

∑

t/n∈M(b,a)

∣∣Sd,n(t/n)
∣∣ ¿ dn

φ(d)φ(b)
log R.

Proof. Suppose that t/n ∈ M(b, a). Then
∣∣∣∣
t

n
− a

b

∣∣∣∣ 5 R

n log log R
5 log n

n
,

and since b 5 R 5 log n we can, for large enough n, apply Lemma 4 with α
replaced by t/n.

Let u and v be integers such that
u

n
<

a

b
<

v

n
, v − u = 2.

Applying Lemma 4 we obtain
∑

t/n∈M(b,a)
u/n5t/n5v/n

∣∣Sd,n(t/n)
∣∣ ¿ dn

φ(d)φ(b)
.

For t/n ∈ M(b, a) with t/n < u/n, Lemma 4 implies
∣∣Sd,n(t/n)

∣∣ ¿ d

φ(d)φ(b)

∣∣∣∣
t

n
− a

b

∣∣∣∣
−1

¿ d

φ(d)φ(b)

∣∣∣∣
t

n
− u

n

∣∣∣∣
−1

.

Therefore
∑

t/n∈M(b,a)
t/n<u/n

∣∣Sd,n(t/n)
∣∣ ¿ dn

φ(d)φ(b)

∑

t/n∈M(b,a)
t/n<u/n

1
|t− u|

¿ dn

φ(d)φ(b)

∑

15m5R/ log log R

1
m
¿ dn

φ(d)φ(b)
log R.

Similarly
∑

t/n∈M(b,a)
v/n<t/n

∣∣Sd,n(t/n)
∣∣ ¿ dn

φ(d)φ(b)
log R. ¤

A multiplicative arithmetic function f is called strongly multiplicative if
f(pk) = f(p) for every prime p and positive integer k. The next lemma con-
tains a standard deduction on the average order over arithmetic progressions
for certain strongly mutliplicative arithmetic functions.
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Lemma 7. Let x be a real number such that x = 1, and let d and r be
positive integers. If f is a strongly multiplicative arithmetic function such
that f(m) = 1 for every positive integer m and f(p) = 1 + O(p−1), then

∑

m5x
m≡r mod d

f(m) ¿ f
(
(r, d)

) x

d
.

Proof. Let g be the arithmetic function de�ned by

g(m) =
∑

k|m
µ

(m

k

)
f(k),

where µ is the Möbius function. Using the fact that f is strongly multiplica-
tive we deduce that

g(m) = µ(m)2
∏

p|m

(
f(p)− 1

)
.

Since f(m) = 1 for every positive integer m it follows that g is a non-
negative valued arithmetic function. By the Möbius inversion formula f(m)
=

∑
k|m g(k), therefore

∑

m5x
m≡r mod d

f(m) =
∑

m5x
m≡r mod d

∑

k|m
g(k) =

∑

k5x

g(k)
∑

m5x
m≡r mod d
m≡0 mod k

1.

The last sum above is zero if (k, d) - r and at most x(d, k)/(dk) if (k, d) | r.
This implies, since g is a non-negative valued function, that

∑

m5x
m≡r mod d

f(m) 5 x

d

∑

k5x
(k,d)|r

g(k)(k, d)
k

=
x

d

∑

s|(r,d)

s
∑

k5x
(k,d)=s

g(k)
k

=
x

d

∑

s|(r,d)

∑

l5x/s
(l,d/s)=1

g(sl)
l

.

For positive integers u and v it can be veri�ed that g(uv) 5 g(u)g(v), thus
∑

m5x
m≡r mod d

f(m) 5 x

d

∑

s|(r,d)

g(s)
∑

l5x

g(l)
l
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DIFFERENCE SETS AND SHIFTED PRIMES 87

5 f
(
(r, d)

) x

d

∏

p5x

(
1 +

g(p)
p

)
= f

(
(r, d)

) x

d

∏

p5x

(
1 +

f(p)− 1
p

)
.

Since f(p) = 1 and f(p) = 1 + O(p−1) the previous product is bounded from
above by the absolutely convergent in�nite product

∏
p (1 + p−1

(
f(p)− 1

)
).

Therefore ∑

m5x
m≡r mod d

f(m) ¿ f
(
(r, d)

) x

d
. ¤

The next lemma is analogous to Proposition 11 of Green [4].
Lemma 8.

n−1∑

t=0

∣∣Sd,n(t/n)
∣∣4 ¿

(
dn

φ(d)

)4

.

Proof. By Gallagher's inequality [9, Lemma 1.2] we have

n−1∑

t=0

∣∣Sd,n(t/n)
∣∣4 5 n

∫ 1

0

∣∣Sd,n(α)
∣∣4

dα + 2
∫ 1

0

∣∣Sd,n(α)3S′d,n(α)
∣∣ dα,

where S′d,n(α) is the derivative of Sd,n(α) with respect to α. By Hölder's
inequality
∫ 1

0

∣∣Sd,n(α)3S′d,n(α)
∣∣ dα 5

(∫ 1

0

∣∣Sd,n(α)
∣∣4

dα

)3/4(∫ 1

0

∣∣S′d,n(α)
∣∣4

dα

)1/4

.

Let rd(m) denote the number of pairs (p1, p2) where p1 and p2 are primes
such that p1, p2 ≡ 1 (mod d) and

p1 − 1
d

+
p2 − 1

d
= m.

By Parseval's identity,
∫ 1

0

∣∣Sd,n(α)
∣∣4

dα 5 (log n)4
∑

m5n

rd(m)2

and ∫ 1

0

∣∣S′d,n(α)
∣∣4

dα 5 2π(n log n)4
∑

m5n

rd(m)2.
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From the above we deduce that

(5)
n−1∑

t=0

∣∣Sd,n(t/n)
∣∣4 ¿ n(log n)4

∑

m5n

rd(m)2.

For each positive integer m we have

rd(m) 5
∣∣{p : 1 < p 5 dm + 2, p ≡ 1 mod d, dm + 2− p is a prime}∣∣ .

To bound rd(m) we apply the combinatorial sieve to estimate the size of the
set above. In particular, Corollary 2.4.1 of [5] implies

rd(m) ¿
∏

p|d(dm+2)

(
1− 1

p

)−1 dm + 1
φ(d) log2

(
(dm + 1)/d

) .

Note that
∏

p|d(dm+2)

(
1− 1

p

)−1

5 d

φ(d)

(
dm + 2

φ(dm + 2)

)
,

therefore
rd(m) ¿ d2m

φ(d)2(log m)2

(
dm + 2

φ(dm + 2)

)
.

This implies
∑

m5n

rd(m)2 ¿ d4n2

φ(d)4(log n)4
∑

u5dn+2
u≡2 mod d

(
u

φ(u)

)2

.

Let f(u) =
(
u/φ(u)

)2. It can be veri�ed that f is a strongly multiplicative
arithmetic function such that f(u) = 1 for every positive integer u and f(p)
= 1 + O(p−1). Thus, we can apply Lemma 7 to obtain

∑

u5dn+2
u≡2 mod d

(
u

φ(u)

)2

¿ n.

Therefore
∑

m5n

rd(m)2 ¿ d2n3

φ(d)2(log n)4
,

and thus, on account of (5), the result follows. ¤
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4. A density increment

Throughout this section n denotes a positive integer and A a subset of
{1, . . . , n}. For any real α set

F (α) =
∑

a∈A

e(αa), F1(α) =
∑

a∈A
a5n/2

e(αa).

Denote by C1 a �xed positive constant. This constant will be used through-
out the rest of the paper. We will need C1 to be su�ciently large, but it
should be noted that the size of C1 will never be determined by n or A. Let
δ denote the density of A, that is, |A| = δn. The following parameters are
de�ned in terms of C1 and δ:

R(δ) = (C1δ
−1)(log log C1δ−1)

7/8

,(6)

θ(δ) = (C1δ
−1)−4(log log log C1δ−1)

−1

.(7)

Q1 = (C1δ
−1)(log log C1δ−1)

1/8

,(8)

Λ =
[
3
4

log log log C1δ
−1

]
,(9)

With R = R(δ) let M(q, a) be de�ned as in (3), and for any positive
integer q 5 R set

M(q) =
q⋃

a=0
(a,q)=1

M(q, a).

Lemma 9. Let d be a positive integer such that d 5 log n. Suppose that
A−A does not intersect Sd and that

(10) C1δ
−1 5 e(log log n)1/2

,

provided C1 and n are su�ciently large there exists a positive integer q 5 R(δ)
such that

(11)
n−1∑

t=1
t/n∈M(q)

∣∣F (t/n)
∣∣2 = θ(δ)|A|2.
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90 J. LUCIER

Proof. Here we adopt the method used in [1]. Given any positive integer
λ we make the following de�nitions. For integers a and k, with k = 1, de�ne

Mλ(k, a) =
{

α ∈ [0, 1] :
∣∣∣α− a

k

∣∣∣ 5 λR

n log log R

}
,

and for real numbers K, U = 1,

Pλ(K,U) =
{

a

k
: 1 5 a 5 k 5 K, (a, k) = 1, max

t/n∈Mλ(k,a)

∣∣F1(t/n)
∣∣ = |A|/U

}
.

Furthermore, set

(12) Qλ = Q2λ−1
1

and

µλ = max
15K5Qλ

15U

∣∣Pλ(K,U)
∣∣

U2
.

Let Kλ and Uλ denote a pair for which µλ takes its maximum. As K = U = 1
is considered in the de�nition of µλ we have

(13) 1 5 µλ 5 K2
λ

U2
λ

.

It follows that

(14) 1 5 Uλ 5 Kλ 5 Qλ.

For each λ 5 Λ we want the intervals Mλ(k, a) with k 5 Qλ to be pairwise
disjoint. It can be veri�ed that this will happen if

(15) 2λR

n log log R
<

1
Q2

λ

(for λ 5 Λ).

To show this we estimate λ, R, and Qλ for λ 5 Λ. By (9) and (10) we deduce
that

λ 5 3
4

log log log log n (for λ 5 Λ).

By (9) we �nd that 2λ 5 (log log C1δ
−1)3/4, and hence by (8) and (12) we

�nd that
log Qλ 5 2λ log Q1 5 (log log C1δ

−1)7/8 log C1δ
−1.
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By (6) this implies log Qλ 5 log R, and so

(16) Qλ 5 R.

By (6) and (10) we �nd, for n large enough, that

(17) 3 5 R 5 log n.

From the above estimates for λ, R, and Qλ we deduce that (15) holds for
su�ciently large n. Therefore, when λ 5 Λ we have

µλ|A|2 =
∣∣Pλ(Kλ, Uλ)

∣∣ |A|
2

U2
λ

5
N−1∑

t=0

∣∣F1(t/n)
∣∣2 5 n|A|.

So

(18) δ 5 µ−1
λ .

Let us assume, to obtain a contradiction, that

(19)
n−1∑

t=1
t/n∈M(q)

∣∣F (t/n)
∣∣2

< θ(δ)|A|2 (for all 1 5 q 5 R).

By using Lemma 2 and (19) we will show, provided C1 and n are su�ciently
large, that

(20) µλ+1 = θ(δ)−1/2µλ (for 1 5 λ 5 Λ).

Assuming for now that (20) holds we show how a contradiction is ob-
tained, thus proving that the assumption (19) is false. Since µ1 = 1, it follows
from (20) that µΛ+1 = θ(δ)−(1/2)Λ, and thus by (18) we have δ 5 θ(δ)(1/2)Λ.
We can take C1 to be large enough so that (9) implies Λ = (1/4) log3 C1δ

−1,
then by (7) we �nd that δ 5 C−1

1 δ < δ, a contradiction. Therefore (19) can-
not hold for all 1 5 q 5 R.

We now proceed to show that (20) holds. To this end, let us �x λ with
1 5 λ 5 Λ. For now we also �x a rational a/k in Pλ(Uλ,Kλ). We associate
with a/k a fraction u/n ∈ Mλ(k, a) such that

∣∣F (u/n)
∣∣ = |A|/Uλ. Such a

u/n exists by the way a/k was chosen.
Since A−A contains no integers from Sd we �nd that

n−1∑

t=0

F1(u/n + t/n)F (−t/n)Sd,n(t/n) = 0.
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By the triangle inequality, Lemma 3, and the way u/n was chosen we �nd
that

(21) |A|2
Uλ

·
(

dn

φ(d)

)
¿

n−1∑

t=1

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣ .

Set

(22) Y = (C1δ
−1)3/2

Q2
λ

and let N denote the set of t/n such that
∣∣F (t/n)

∣∣ 5 |A|/Y . By two appli-
cations of the Cauchy�Schwarz inequality, Parseval's identity, and Lemma 8
we �nd that

∑

t/n∈N

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣

5
( n−1∑

t=0

∣∣F1(u/n + t/n)
∣∣2

)1/2( ∑

t/n∈N

∣∣F (t/n)
∣∣4

)1/4( n−1∑

t=0

∣∣Sd,n(t/n)
∣∣4

)1/4

¿ dn3/2|A|1/2

φ(d)

( ∑

t/n∈N

∣∣F (t/n)
∣∣4

)1/4

.

Now
( ∑

t/n∈N

∣∣F (t/n)
∣∣4

)1/4

5 max
t/n∈N

∣∣F (t/n)
∣∣1/2

( n−1∑

t=0

∣∣F (t/n)
∣∣2

)1/4

5 |A|1/2

Y 1/2

(
n|A|)1/4 =

n1/4|A|3/4

Y 1/2
.

Therefore

∑

t/n∈N

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣ ¿ dn7/4|A|5/4

φ(d)Y 1/2
.

By (14) and (22) we �nd that

Y −1/2 = C
−3/4
1 δ3/4Q−1

λ 5 C
−3/4
1 |A|3/4n−3/4U−1

λ ,
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thus

(23)
∑

t/n∈N

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣ ¿ C

−3/4
1

|A|2
Uλ

(
dn

φ(d)

)
.

Let N1 denote the set of t/n such that
∣∣F1(u/n + t/n)

∣∣ 5 |A|/Y . By the
same reasoning used in the deduction of (23) we �nd that

(24)
∑

t/n∈N1

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣ ¿ C

−3/4
1

|A|2
Uλ

(
dn

φ(d)

)
.

For λ 5 Λ we have Qλ+1/Qλ < R. Indeed, (9) and (12) imply

Qλ+1

Qλ
5 Q2Λ

1 5 (C1δ
−1)(log log C1δ−1)

3/4

< R.

Let m∗ denote the union of the M(q) with Qλ+1/Qλ 5 q 5 R. By the Cauchy�
Schwarz inequality we �nd that

∑

t/n∈m∗

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣ 5

(
n|A|) sup

t/n∈m∗λ

∣∣Sd,n(t/n)
∣∣ .

(25)

We are now going to show that

(26) sup
t/n∈m∗λ

∣∣Sd,n(t/n)
∣∣ ¿ C−1

1 U−1
λ δ

(
dn

φ(d)

)
.

Suppose that t/n ∈ m∗, then t/n ∈ M(q, a) for some integers a and q such
that 0 5 a 5 q, (a, q) = 1, and Qλ+1/Qλ 5 q 5 R. Since q 5 R 5 log n, we
deduce from Lemma 4 that

Sd,n(t/n) ¿ dn

φ(d)φ(q)
.

Using the well-known estimate

(27) φ(q) À q

log log q
,

(see for example [7, Theorem 328]), we obtain

(28) Sd,n(t/n) ¿
(

dn

φ(d)

)
log log q

q
.
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The lower bound on q implies

(29) log log q

q
¿ log log Qλ+1/Qλ

Qλ+1/Qλ
.

By (12) we have Qλ+1/Qλ = QλQ1 = Q2λ

1 , thus

log log Qλ+1/Qλ

Qλ+1/Qλ
=

log log Q2λ

1

QλQ1
=

λ(log 2) + log log Q1

QλQ1
.

Using (8) and (9) we �nd that λ ¿ log log Q1, by this and (14) we obtain

log log Qλ+1/Qλ

Qλ+1/Qλ
¿ log log Q1

UλQ1
.

Using (8) we �nd, by taking C1 large enough, that

log
(

log log Q1

Q1

)
5 − log C1δ

−1,

and thus
log log Q1

Q1
5 C−1

1 δ.

From (29) and the subsequent estimates we obtain

(30) log log q

q
¿ C−1

1 U−1
λ δ,

Since t/n ∈ m∗ is arbitrary (28) and (30) imply that (26) is true. By (25)
and (26) we have

(31)
∑

t/n∈m∗

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣ ¿ C−1

1

|A|2
Uλ

(
dn

φ(d)

)
.

The contribution to the sum in (21) coming from the terms with t/n ∈ m
can similarly be bounded. By the Cauchy�Schwarz inequality and Lemma 5
we �nd that

∑

t/n∈m

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣ 5

(
n|A|) sup

t/n∈m

∣∣S(t/n)
∣∣
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¿ (
n|A|)

(
dn

φ(d)

)
log log R

R
.

Since R = Qλ+1/Qλ the argument used in the previous paragraph implies

(32)
∑

t/n∈m

∣∣F1(u/n + t/n)
∣∣ ∣∣F (t/n)

∣∣ ∣∣Sd,n(t/n)
∣∣ ¿ C−1

1

|A|2
Uλ

(
dn

φ(d)

)
.

Let N(b, a) be the set of t/n ∈ M(b, a) with t/n 6= 0 such that

∣∣F (t/n)
∣∣ = |A|

Y
,

∣∣F1(u/n + t/n)
∣∣ = |A|

Y
.

By (23), (24), (31), and (32) it follows for C1 large enough that

d|A|2n
φ(d)Uλ

¿
∑

b5Qλ+1/Qλ

∑

(a,b)=1

max
t/n∈N(b,a)

∣∣F (t/n)
∣∣

× max
t/n∈N(b,a)

∣∣F1(u/n + t/n)
∣∣ ∑

t/n∈M(b,a)

∣∣Sd,n(t/n)
∣∣ .

Since d 5 log n we can apply Lemma 6 to the inner sum above to obtain

|A|2
Uλ log R

¿
∑

b5Qλ+1/Qλ

1
φ(b)

∑

(a,b)=1

max
t/n∈N(b,a)

∣∣F (t/n)
∣∣ max

t/n∈N(b,a)

∣∣F1(u/n + t/n)
∣∣ .

Let L(L, V,W ) denote the set of reduced fractions b/l ∈ [0, 1] such that

L

2
5 l 5 L,

|A|
V

5 max
t/n∈M(l,b)

∣∣F (t/n)
∣∣ 5 2

|A|
V

,

|A|
W

5 max
t/n∈M(l,b)

∣∣F1(u/n + t/n)
∣∣ 5 2

|A|
W

.

For b/l ∈ L(L, V, W ), we have

1
φ(l)

max
t/n∈M(l,b)

∣∣F (t/n)
∣∣ max

t/n∈M(l,b)

∣∣F1(u/n + t/n)
∣∣ ¿ (log log 3L)|A|2

LV W
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by (27). Therefore

|A|2
Uλ log R

¿
∑

L

∑

V

∑

W

∣∣L(L, V,W )
∣∣ (log log 3L)|A|2

LV W
.

where L runs through all the powers of 2 in the interval [1, 2Qλ+1/Qλ], and
V and W run through all the powers of 2 in the interval [1, 2Y ]. There must
exist a triple (L, V, W ) of indices such that

∣∣L(L, V,W )
∣∣ À LV W

Uλ(log log 3L)(log R)
.

We associate this triple with a/k.
The number of possible triples (L, V, W ) is ¿ log(Qλ+1/Qλ)(log Y )2,

which by (16) and (22) is¿ (log R)3. Therefore there exists a subset K ⊂ Pλ,
satisfying

(33) |K| À
∣∣Pλ(Kλ, Uλ)

∣∣
(log R)3

,

such that to each a/k ∈ K we associate the same triple, say (L, V, W ).
Let a/k ∈ K, then together with the associated fraction u/n ∈ Mλ(k, a),

we associate a set La/k of rationals b/l, 0 5 b 5 l, (b, l) = 1, L/2 5 l 5 L,
such that

|La/k| À
LV W

Uλ(log log 3L)(log R)
,(34)

|A|
V

5 max
v/n∈M(l,b)

∣∣F (v/n)
∣∣ 5 2|A|

V
,(35)

|A|
W

5 max
w/n∈M(l,b)

∣∣F1(u/n + w/n)
∣∣ 5 2|A|

W
.(36)

Set
Q =

{
a

k
+

b

l
:

a

k
∈ K,

b

l
∈ La/k

}
.

Let us estimate the cardinality of Q. Since L 5 Qλ+1/Qλ 5 R, assump-
tion (19) and (35) imply

∣∣∣∣
{

b :
b

l
∈

⋃
La/k

}∣∣∣∣
( |A|

V

)2

5
∑

t/n∈M(l)

∣∣F (t/n)
∣∣2 5 θ(δ)|A|2.
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So that ∣∣∣∣
{

b :
b

l
∈

⋃
La/k

}∣∣∣∣ ¿ θ(δ)V 2.

Lemma 2 then implies

|Q| À |K| · L2V 2W 2

U2
λ(log log 3L)2(log R)2

· θ(δ)−1

LV 2τ8(1 + log Kλ)
.

From (14) and (16) we obtain log Kλ 5 log R, by this and (33) it follows that

(37) |Q| À W 2

(
θ(δ)−1

τ8(log R)6

) ∣∣Pλ(Kλ, Uλ)
∣∣

U2
λ

.

Note that Q is a subset of (0, 2]. Let Q1 = Q∩ (0, 1] and Q2 = Q∩ (1, 2].
Let us assume without loss of generality that |Q1| = (1/2)|Q|. If this is not
the case, then |Q2| = (1/2)|Q|, and we can replace Q1 in the argument below
by the rational numbers in Q2 shifted to the left by 1. Since |Q1| = (1/2)|Q|
we see that (37) is still valid with Q replaced by Q1

Let r/s = a/k + b/l be in Q1. For u/n ∈ Mλ(k, a) and w/n ∈ M(l, b) we
have ∣∣∣r

s
−

(u

n
+

w

n

)∣∣∣ 5
∣∣∣u
n
− a

k

∣∣∣ +
∣∣∣∣
w

n
− b

l

∣∣∣∣ 5 (λ + 1)R
n log log R

,

and therefore u/n + w/n ∈ Mλ+1(s, r). Thus, by (36) we deduce that

(38) max
t/n∈Mλ+1(s,r)

∣∣F1(t/n)
∣∣ = |A|

W
(for r/s ∈ Q1).

We now estimate the size of the denominator of r/s. Certainly s 5 kl 5 KλL.
By (14) we have Kλ 5 Qλ and L was chosen to satisfy L 5 Qλ+1/Qλ. There-
fore s 5 Qλ+1 whenever r/s ∈ Q1. By this and (38) we obtain

(39) Q1 ⊂ Pλ+1(Qλ+1,W ).

By (37), with Q replaced by Q1, and (39) we �nd that
∣∣Pλ+1(Qλ+1,W )

∣∣
W 2

À
(

θ(δ)−1

τ8(log R)6

) ∣∣Pλ(Kλ, Uλ)
∣∣

U2
λ

.

This implies

(40) µλ+1 À θ(δ)−1

τ8(log R)6
µλ.
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We now estimate τ , the maximum of the divisor function up to KλL
5 Qλ+1. If d(m) is the number of divisors of m then

log d(m) ¿ log m

log log m
,

(see [7, Theorem 317]). Thus, by (12), we have

log τ ¿ log Qλ+1

log log Qλ+1
¿ 2λ log Q1

log log Q1
,

and since λ 5 Λ we deduce from (8) and (9) that

log τ ¿ log C1δ
−1

(log log C1δ−1)1/4
.

It follows from (7) that

(41) log τ = o
(

log θ(δ)−1) (for C1δ
−1 →∞).

We also �nd from (6) and (7) that

(42) log log R = o
(

log θ(δ)−1) (for C1δ
−1 →∞).

Since θ(δ)−1 tends to in�nity as C1δ
−1 tends to in�nity, we deduce from (40),

(41), and (42) that for C1 su�ciently large

µλ+1 = θ(δ)−1/2µλ.

Since λ 5 Λ was arbitrary, (20) is true and as shown earlier, the lemma can
be deduced from this. ¤

We now derive a density increment argument that will be iterated in the
next section to prove our theorem.

Lemma 10. Let d be a positive integer such that d 5 log n. Suppose that
A−A does not intersect Sd and that δ, the density of A, satis�es (10). Pro-
vided C1 and n are su�ciently large there exist positive integers d′ and n′,
and a subset A′ of {1, . . . , n′} of size δ′n′, such that A′−A′ does not intersect
Sd′, and moreover

d 5 d′ 5 R(δ)d, R(δ)−2n 5 n′ 5 n, δ′ = δ
(
1 + 8−1θ(δ)

)
.
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Proof. By the hypotheses, Lemma 9 implies that there exists a positive
integer q 5 R(δ) such that (11) is true. With this q and U = R(δ)/ log logR(δ)
let E be de�ned as in Lemma 1. Note that M(q) ⊂ E. The inequality (17)
is still valid, thus 2πqU 5 2πR(δ)2 5 n for su�ciently large n. Therefore, we
can apply Lemma 1 with θ = θ(δ) to deduce that there exists an arithmetic
progression P with di�erence q such that

(43) |P | = n log log R(δ)
32πqR(δ)

and
(44) |A ∩ P | = |P |δ(1 + 8−1θ(δ)

)
.

Let n′ = |P |. Then there exists an integer c and subset A′ of {1, . . . , n′} such
that A∩P = {c + qa′ : a′ ∈ A′}. Put d′ = dq. Since A−A does not intersect
Sd, we deduce that A′ does not intersect Sdq. Let the size of A′ be δ′n′. Then
(44) implies

δ′ = δ
(
1 + 8−1θ(δ)

)
.

To �nish we need to estimate n′ and d′. Since q 5 R(δ) we �nd by (43) and
for C1 large enough that n′ = R(δ)−2n, and clearly, n′ 5 n. Now, again by
the fact that q 5 R(δ), we obtain q 5 d′ = dq 5 R(δ)q. ¤

5. Proof of Theorem

Let us assume, for a contradiction, that the theorem is false. Then for C1

and n su�ciently large, there exists a subset A of {1, . . . , n} of size δn, such
that A−A does not intersect S and

(45) δ = C1

(
log2 n

(log3 n)2(log4 n)

)− log5 n

.

Set
(46) Z =

[
64 θ(δ)−1 log C1δ

−1
]
,

and put d0 = 1, n0 = n, A0 = A, and δ0 = δ. By using Lemma 10 repeatedly
we can show that for each integer k, with 1 5 k 5 Z, there are integers dk

and nk and a subset Ak of {1, . . . , nk} of size δknk such that Ak −Ak does
not intersect Sdk

. Moreover, dk, nk, and δk satisfy
dk−1 5 dk 5 R(δk−1)dk−1, R(δk−1)

−2nk−1 5 nk 5 nk−1,

δk = δk−1

(
1 + 8−1θ(δk−1)

)
.
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Since d0 = 1 and n0 = n, these estimates imply

(47) dk 5 R(δ)k, nk = R(δ)−2kn, δk = δ
(
1 + 8−1θ(δ)

)k
.

Let us show that we can actually perform this iteration Z times. Let
0 5 l 5 Z − 1, and suppose that we have performed this iteration l times. To
show that Lemma 10 can be applied an (l + 1)-st time we need to show that
nl is su�ciently large, dl 5 log nl, and that (10) is satis�ed with δ replaced
by δl.

We begin by estimating nl. By (47) we obtain

(48) log nl = log n− 2l log R(δ).

Since l < Z, (6) and (46) imply

l log R(δ) 5 64 θ(δ)−1(log C1δ
−1)2(log2 C1δ

−1)7/8
.

By (45) we obtain

(log C1δ
−1)2(log2 C1δ

−1)3/4 5 2(log3 n)2(log4 n)7/8(log5 n)2

for large enough n. By (7) and (45) we �nd, for n and C1 su�ciently large,
that

log θ(δ)−1 =
4 log C1δ

−1

log3 C1δ−1
5 log

(
log2 n

(log3 n)2(log4 n)

)
.

(Here we used that (log x)(log3 x)−1 is eventually increasing.) Therefore

θ(δ)−1 5 log2 n

(log3 n)2(log4 n)
.

From the above we deduce, for n and C1 large enough, that

(49) l log R(δ) 5 log2 n.

Therefore, by (48),

log nl = log n− 2 log2 n = log
(

n

(log n)2

)
,

and so

(50) nl = n

(log n)2
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for l < Z. This shows that by taking n to be arbitrarily large, the same is
true for nl.

We now show that dl 5 log nl. By (47) we have log dl 5 l log R(δ), and
thus by (49) we obtain log dl 5 (1/2) log2 n. For large n this implies

dl 5 (log n)1/2 5 log
n

(log n)2
5 log nl

by (50).
We leave it to the reader to verify that (45) and (50) imply, for n and

C1 su�ciently large, that (10) is satis�ed with δ and n replaced by δl and
nl respectively. Finally, since Al −Al does not intersect Sdl

we can apply
Lemma 10 to obtain the desired outcome.

Since (47) is true with k = Z we �nd that

log δZ = Z log
(
1 + 8−1θ(δ)

) − log C1δ
−1.

Since 8−1θ(δ) < 1, this implies

(51) log δZ = 16−1Zθ(δ)− log C1δ
−1.

(Here we used log(1 + x) = x/2 for 0 5 x 5 1.) For C1 large enough Z =
32θ(δ)−1 log C1δ

−1, thus

log δZ = 2 log C1δ
−1 − log C1δ

−1 > 0.

This implies δZ > 1, a contradiction, since by de�nition δZ 5 1. This contra-
diction establishes the theorem.
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