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NORMAL GENERALIZED TOPOLOGIES
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Abstract. The concept of normality is de�ned for generalized topologies in
the sense of [1], a few properties of normal spaces are proved, and their charac-
terization with the help of a suitable form of Urysohn's lemma is discussed.

1. Introduction

According to [1], a generalized topology (brie�y GT) on a setX is a subset
µ of the power set expX such that ∅ ∈ µ and the union of the elements of an
arbitrary subset of µ belongs to µ. The elements of µ are said to be µ-open,
their complements µ-closed. Clearly each topology is a GT.

As a generalization of the concept of normal topology, it is natural to say
that a GT µ is normal i�, whenever F and F ′ are µ-closed sets such that
F ∩ F ′ = ∅, there exist µ-open sets G and G′ satisfying F ⊂ G, F ′ ⊂ G′ and
G ∩G′ = ∅. In the literature, there are many papers discussing properties of
normal GT's for some particular GT µ (cf. e.g. [2], [3], [5], [6], [7], [8]).
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In the present paper, our purpose is to indicate some general properties
of a normal GT and, in particular, to give a characterization of them with
the help of a form of the well-known Urysohn's lemma (see e.g. [4]).

2. Fundamental properties of normal GT's

A �rst obvious remark rises from the fact that it is possible for a GTµ
that X is not µ-open:

Proposition 2.1. If µ is a GT such that X 6∈ µ then µ is (insipidly)
normal.

Proof. There are now no disjoint µ-closed sets since X −F,X −F ′ ∈ µ,
F ∩ F ′ = ∅ would imply X = (X − F ) ∪ (X − F ′) ∈ µ. ¤

An almost obvious equivalent characterization is:
Proposition 2.2. A GT µ on X is normal i� F ⊂ G, X − F,G ∈ µ

imply the existence of G′, X − F ′ ∈ µ such that F ⊂ G′ ⊂ F ′ ⊂ G.
Proof. If µ is normal then, for the disjoint µ-closed sets F and X −G,

we choose the disjoint µ-open sets G′ ⊃ F and X −F ′ ⊃ X −G. Conversely,
if F ⊂ G, X − F, G ∈ µ implies the existence of G′, X − F ′ ∈ µ satisfying
F ⊂ G′ ⊂ F ′ ⊂ G, then, given disjoint µ-closed sets K, K ′, we can choose
G′, X − F ′ ∈ µ such that K ⊂ G′ ⊂ F ′ ⊂ X −K ′ and then G′, X − F ′ are
disjoint µ-open sets satisfyingK ⊂ G′, K ′ ⊂ X−F ′ so that µ is normal. ¤

Consider now a GT µ on X and a map g : X0 → X. Similarly to the
particular case of topologies, we say that the setsg−1(M) : M ∈ µ constitute
the inverse image µ0 = g−1(µ) of µ.

Proposition 2.3. If µ is a GT on X then g−1(µ) is a GT on X0.
Proof. ⋃

i∈I g−1(Mi) = g−1(
⋃

i∈I Mi). ¤
Of course, the µ0-closed sets are those of the form g−1(F ) where F is

µ-closed.
In the particular case whenX0 ⊂ X and g(x) = x for x ∈ X0 we say that

µ0 is the restriction of µ to X0; we write now µ0 = µ|X0. In this case g−1(A)
= A ∩X0 for A ⊂ X.

Proposition 2.4. If µ is a normal GT on X and g : X0 → X is sur-
jective then g−1(µ) is normal.

Proof. Suppose F0, F
′
0 are disjoint µ0-closed sets. Then F0 = g−1(F ),

F ′
0 = g−1(F ′), and x ∈ F ∩ F ′ would imply x = g(y) for some y ∈ X0 so that

y ∈ F0 ∩ F ′
0 would hold. Therefore F and F ′ are disjoint, there are disjoint

µ-open sets G,G′ such that F ⊂ G, F ′ ⊂ G′, and then G0 = g−1(G), G′
0 =

g−1(G′) are disjoint µ0-open sets such that F0 ⊂ G0, F ′
0 ⊂ G′

0. ¤
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For the case of a restriction, the above statement cannot be used because
then g is not surjective in general. However, we have:

Proposition 2.5. If µ is a normal GT on X and X0 ⊂ X is µ-closed
then the restriction µ0 = µ|X0 is normal.

Proof. If F0, F
′
0 are disjoint µ0-closed sets then F0 = F ∩X0 for some

µ-closed set F , but so F0 is µ-closed itself. SimilarlyF ′
0 is µ-closed. Therefore

there exist disjoint µ-open sets G, G′ satisfying F0 ⊂ G, F ′
0 ⊂ G′ and then

G ∩X0, G′ ∩X0 are disjoint, µ0-open and satisfy F0 ⊂ G∩X0, F ′
0 ⊂ G′ ∩X0.

¤

3. Urysohn's lemma for normal GT's

Let us recall (see [1]) that, if µ is a GT on X, ν is a GT on Y , then
f : X → Y is said to be (µ, ν)-continuous i� f−1(N) ∈ µ for each N ∈ ν.

Let β ⊂ expY be arbitrary. Then:
Lemma 3.1. The family ν ⊂ expY composed of ∅ and all sets N ⊂ Y of

the form N =
⋃

i∈I Bi, where Bi ∈ β and I 6= ∅ is arbitrary, is a GT on Y .
¤

We say that the base β generates the GT ν.
E.g. consider Y = R and β =

{
(−∞, t) : t ∈ R

} ∪ {
(t,+∞) : t ∈ R

}
.

Then the GT on R generated by the base β will be denoted by υ.
Lemma 3.2. Let µ be a GT on X and the GT ν on Y be generated by the

base β. Then a map f : X → Y is (µ, ν)-continuous i� f−1(B) ∈ µ for each
B ∈ β. ¤

Now we are able the prove the following variant of Urysohn's lemma:
Theorem 3.3. Let µ be a normal GT on X and F , F ′ be disjoint µ-

closed sets. Then there exists a (µ, υ)-continuous function f : X → R such
that f(x) = 0 for x ∈ F and f(x) = 1 for x ∈ F ′.

Proof. Let D denote the collection of all real numbers of the formm/2n,
n = 0, 1, 2, . . . , m ∈ Z. We �rst de�ne µ-open sets G(r) and µ-closed sets
F (r) for r ∈ D satisfying

(3.3.1) G(r) ⊂ F (r) for r ∈ D

and

(3.3.2) F (r) ⊂ G(s) for r, s ∈ D, (r < s).

First put for r ∈ D

G(r) = ∅ (r 5 0), F (r) = ∅ (r < 0),(3.3.3)
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G(r) = X (r > 1), F (r) = X (r = 1),(3.3.4)

F (0) = F, G(1) = X − F ′.(3.3.5)

So the sets G(r) and F (r) are de�ned for r ∈ D, r 5 0 and r = 1 in a way
that (3.3.1) and (3.3.2) are valid.

We have to de�neG(r) and F (r) for r ∈D, 0 < r < 1. Let Dn denote the
set composed ofm/2n for n = 0,1,2, . . . and m = 0,1, . . . ,2n. We shall de�ne
G(r) and F (r) for r ∈ Dn, n = 0, 1, 2, . . . . The set D0 = {0, 1} is settled by
(3.3.3) to (3.3.5). This will be the starting point of a recursion.

Suppose that G(r) and F (r) are de�ned for r ∈ Dk, k = 0, . . . , n in such
a way that (3.3.1) and (3.3.2) are ful�lled. Then, in particular, F (m/2n)
⊂ G

(
(m+1)/2n

)
. De�ne the µ-open set G

(
(2m+1)/2n+1

)
and the µ-closed

set F
(
(2m + 1)/2n+1

)
using 2.2 so that

F (m/2n) ⊂ G
(
(2m + 1)/2n+1

) ⊂ F
(
(2m + 1)/2n+1

) ⊂ G
(
(m + 1)/2n

)
.

This being done for m = 0, . . . , 2n − 1, the set Dn+1 is settled. At the end
of this recursion, G(r) and F (r) is known for r ∈ D and (3.3.1), (3.3.2) are
valid.

De�ne now

(3.3.6) f(x) = inf
{

r ∈ D : x ∈ F (r)
}

.

By (3.3.3) and (3.3.4), 0 5 f(x) 5 1 and f(x) = 0 for x ∈ F (0) = F by (3.3.5),
f(x) = 1 for x ∈ F ′ since r ∈ D, r < 1 implies F (r) ⊂ G(1) = X − F ′, thus
x 6∈ F (r), by (3.3.5) again.

We have to show that f is (µ, υ)-continuous. According to (3.2) it su�ces
to examine whether f−1

(
(−∞, t)

)
and f−1

(
(t, +∞)

)
belong to µ.

If x belongs to the �rst set, i.e. if f(x) < t then there is r ∈ D such that
r < t and x ∈ F (r), and then x ∈ G(s) for s ∈ D, r < s < t, according to
(3.3.2). Now y ∈ G(s) implies y ∈ F (s) by (3.3.1), therefore f(y) 5 s < t, so
that G(s) is a µ-open set satisfying x ∈ G(s) ⊂ f−1

(
(−∞, t)

)
: the latter set

is the union of µ-open sets and hence µ-open itself.
If x ∈ f−1

(
(t, +∞)

)
then t < f(x) so that x 6∈ F (r) whenever r ∈ D,

r < f(x). Choose r such that t < r < f(x). For the µ-open set X − F (r),
necessarily x ∈ X −F (r) ⊂ f−1

(
(t,+∞)

)
; in fact, y ∈ X −F (r) implies that

y ∈ F (s), s ∈D, s < r is impossible since theny ∈ F (s) ⊂ G(r) ⊂ F (r) would
hold by (3.3.1) and (3.3.2). Therefore y 6∈ F (s) for these s, f(y) = r > t.
Again, f−1

(
(t, +∞)

)
is the union of µ-open sets and so µ-open itself. ¤

The statement in 3.3 is su�cient for the normality ofµ:
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Theorem 3.4. If µ is a GT on X with the property that, if F , F ′ are
disjoint µ-closed sets, there exists a (µ, υ)-continuous function f : X → R
satisfying f(x) = 0 for x ∈ F and f(x) = 1 for x ∈ F ′, then µ is normal.

Proof. The disjoint sets f−1
(
(−∞, 1/2)

)
and f−1

(
(1/2, +∞)

)
are µ-

open and contain F and F ′, respectively. ¤
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