Acta Math. Hungar., 115 (4) (2007), 309-313. DOI: 10.1007/s10474-007-5249-9 First published online February 17, 2007

NORMAL GENERALIZED TOPOLOGIES

Á. CSÁSZÁR[∗]

Eötvös Loránd University, Department of Analysis, H-1117 Budapest, Pázmány P. sétány 1/C

(Received November 2, 2005; accepted September 7, 2006)

Abstract. The concept of normality is defined for generalized topologies in the sense of [1], a few properties of normal spaces are proved, and their characterization with the help of a suitable form of Urysohn's lemma is discussed.

1. Introduction

According to [1], a *generalized topology* (briefly GT) on a set X is a subset μ of the power set exp X such that $\emptyset \in \mu$ and the union of the elements of an arbitrary subset of μ belongs to μ . The elements of μ are said to be μ -open, their complements μ -closed. Clearly each topology is a GT.

As a generalization of the concept of normal topology, it is natural to say that a GT μ is normal iff, whenever F and F' are μ -closed sets such that $F \cap F' = \emptyset$, there exist μ -open sets G and G' satisfying $F \subset G$, $F' \subset G'$ and $G \cap G' = \emptyset$. In the literature, there are many papers discussing properties of normal GT's for some particular GT μ (cf. e.g. [2], [3], [5], [6], [7], [8]).

[∗]Research supported by Hungarian Foundation for Scientic Research, grant No. T 49786. Key words and phrases: normal generalized topology, inverse image, restriction, base, continuous map, Urysohn's lemma.

 2000 Mathematics Subject Classification: 54A05, 54D15.

310 Á. CSÁSZÁR

In the present paper, our purpose is to indicate some general properties of a normal GT and, in particular, to give a characterization of them with the help of a form of the well-known Urysohn's lemma (see e.g. [4]).

2. Fundamental properties of normal GT's

A first obvious remark rises from the fact that it is possible for a $GT\mu$ that X is not μ -open:

PROPOSITION 2.1. If μ is a GT such that $X \notin \mu$ then μ is (insipidly) normal.

PROOF. There are now no disjoint μ -closed sets since $X - F, X - F' \in \mu$, $F \cap F' = \emptyset$ would imply $X = (X - F) \cup (X - F') \in \mu$.

An almost obvious equivalent characterization is:

PROPOSITION 2.2. A $GT \mu$ on X is normal iff $F \subset G$, $X - F, G \in \mu$ imply the existence of $G', X - F' \in \mu$ such that $F \subset G' \subset F' \subset G$.

PROOF. If μ is normal then, for the disjoint μ -closed sets F and $X - G$, we choose the disjoint μ -open sets $G' \supset F$ and $X - F' \supset X - G$. Conversely, if $F \subset G$, $X - F, G \in \mu$ implies the existence of $G', X - F' \in \mu$ satisfying $F\subset G'\subset F'\subset G$, then, given disjoint μ -closed sets K, K' , we can choose $G', X - F' \in \mu$ such that $K \subset G' \subset F' \subset X - K'$ and then $G', X - F'$ are disjoint μ -open sets satisfying $K \subset G', K' \subset X - F'$ so that μ is normal. \Box

Consider now a GT μ on X and a map $g: X_0 \to X$. Similarly to the particular case of topologies, we say that the sets $g^{-1}(M):\,M\in\mu$ constitute the *inverse image* $\mu_0 = g^{-1}(\mu)$ of μ .

PROPOSITION 2.3. If μ is a GT on X then $g^{-1}(\mu)$ is a GT on X_0 .

PROOF. $\bigcup_{i \in I} g^{-1}(M_i) = g^{-1}(\bigcup_{i \in I} M_i)$ \Box

Of course, the μ_0 -closed sets are those of the form $g^{-1}(F)$ where F is μ -closed.

In the particular case when $X_0 \subset X$ and $g(x) = x$ for $x \in X_0$ we say that μ_0 is the restriction of μ to X_0 ; we write now $\mu_0 = \mu | X_0$. In this case $g^{-1}(A)$ $= A \cap X_0$ for $A \subset X$.

PROPOSITION 2.4. If μ is a normal GT on X and $g: X_0 \to X$ is surjective then $g^{-1}(\mu)$ is normal.

PROOF. Suppose F_0, F'_0 are disjoint μ_0 -closed sets. Then $F_0 = g^{-1}(F)$, $F'_0 = g^{-1}(F')$, and $x \in F \cap F'$ would imply $x = g(y)$ for some $y \in X_0$ so that $y \in F_0 \cap F'_0$ would hold. Therefore F and F' are disjoint, there are disjoint μ -open sets G, G' such that $F \subset G, F' \subset G'$, and then $G_0 = g^{-1}(G), G'_0 = g^{-1}(G)$ $g^{-1}(G')$ are disjoint μ_0 -open sets such that $F_0 \subset G_0, F'_0 \subset G'_0$.

Acta Mathematica Hungarica 115, 2007

For the case of a restriction, the above statement cannot be used because then q is not surjective in general. However, we have:

PROPOSITION 2.5. If μ is a normal GT on X and $X_0 \subset X$ is μ -closed then the restriction $\mu_0 = \mu | X_0$ is normal.

PROOF. If F_0, F'_0 are disjoint μ_0 -closed sets then $F_0 = F \cap X_0$ for some μ -closed set $F,$ but so F_0 is μ -closed itself. Similarly F_0' is μ -closed. Therefore there exist disjoint μ -open sets G, G' satisfying $F_0 \subset G, F'_0 \subset G'$ and then $G \cap X_0, G' \cap X_0$ are disjoint, μ_0 -open and satisfy $F_0 \subset G \cap X_0, F'_0 \subset G' \cap X_0$. ¤

3. Urysohn's lemma for normal GT's

Let us recall (see [1]) that, if μ is a GT on X, ν is a GT on Y, then $f: X \to Y$ is said to be (μ, ν) -continuous iff $f^{-1}(N) \in \mu$ for each $N \in \nu$. Let $\beta \subset \exp Y$ be arbitrary. Then:

LEMMA 3.1. The family $\nu \subset \exp Y$ composed of \emptyset and all sets $N \subset Y$ of the form $N = \bigcup_{i \in I} B_i$, where $B_i \in \beta$ and $I \neq \emptyset$ is arbitrary, is a GT on Y. ¤

We say that the base β generates the GT ν .

E.g. consider $Y = \mathbf{R}$ and $\beta = \{(-\infty, t) : t \in \mathbf{R}\}$ ª ∪ © $(t, +\infty): t \in \mathbf{R}$ ª Then the GT on **R** generated by the base β will be denoted by v .

LEMMA 3.2. Let μ be a GT on X and the GT ν on Y be generated by the base β . Then a map $f: X \to Y$ is (μ, ν) -continuous iff $f^{-1}(B) \in \mu$ for each $B \in \beta$. \square

Now we are able the prove the following variant of Urysohn's lemma:

THEOREM 3.3. Let μ be a normal GT on X and F, F' be disjoint μ closed sets. Then there exists a (μ, ν) -continuous function $f : X \to \mathbf{R}$ such that $f(x) = 0$ for $x \in F$ and $f(x) = 1$ for $x \in F'$.

PROOF. Let **D** denote the collection of all real numbers of the form $m/2^n$, $n = 0, 1, 2, \ldots, m \in \mathbb{Z}$. We first define μ -open sets $G(r)$ and μ -closed sets $F(r)$ for $r \in \mathbf{D}$ satisfying

$$
(3.3.1) \tG(r) \subset F(r) \tfor r \in \mathbf{D}
$$

and

$$
(3.3.2) \tF(r) \subset G(s) \tfor r, s \in \mathbf{D}, (r < s).
$$

First put for $r \in \mathbf{D}$

$$
(3.3.3) \tG(r) = \emptyset \t(r \le 0), \tF(r) = \emptyset \t(r < 0),
$$

Acta Mathematica Hungarica 115, 2007

.

312 Á. CSÁSZÁR

$$
(3.3.4) \tG(r) = X \t(r > 1), \tF(r) = X \t(r \ge 1),
$$

(3.3.5)
$$
F(0) = F, \quad G(1) = X - F'.
$$

So the sets $G(r)$ and $F(r)$ are defined for $r \in \mathbf{D}$, $r \leq 0$ and $r \geq 1$ in a way that $(3.3.1)$ and $(3.3.2)$ are valid.

We have to define $G(r)$ and $F(r)$ for $r \in \mathbf{D}$, $0 < r < 1$. Let \mathbf{D}_n denote the set composed of $m/2^n$ for $n = 0, 1, 2, \ldots$ and $m = 0, 1, \ldots, 2^n$. We shall define $G(r)$ and $F(r)$ for $r \in \mathbf{D}_n$, $n = 0, 1, 2, \ldots$. The set $\mathbf{D}_0 = \{0, 1\}$ is settled by (3.3.3) to (3.3.5). This will be the starting point of a recursion.

Suppose that $G(r)$ and $F(r)$ are defined for $r \in \mathbf{D}_k$, $k = 0, \ldots, n$ in such a way that $(3.3.1)$ and $(3.3.2)$ are fulfilled. Then, in particular, $F(m/2^n)$ a way that (5.5.1) and (5.5.2) are fulnitied. Then, in particular, $F(m/Z^*)$
 $\subset G((m+1)/2^n)$. Define the μ -open set $G((2m+1)/2^{n+1})$ and the μ -closed $\mathcal{L} \cup \{((m+1)/2) \}$. Define the μ -open set
set $F((2m+1)/2^{n+1})$ using 2.2 so that

$$
F(m/2^{n}) \subset G((2m+1)/2^{n+1}) \subset F((2m+1)/2^{n+1}) \subset G((m+1)/2^{n}).
$$

This being done for $m = 0, \ldots, 2ⁿ - 1$, the set \mathbf{D}_{n+1} is settled. At the end of this recursion, $G(r)$ and $F(r)$ is known for $r \in \mathbf{D}$ and $(3.3.1)$, $(3.3.2)$ are valid.

Define now

(3.3.6)
$$
f(x) = \inf \{ r \in \mathbf{D} : x \in F(r) \}.
$$

By (3.3.3) and (3.3.4), $0 \le f(x) \le 1$ and $f(x) = 0$ for $x \in F(0) = F$ by (3.3.5). $f(x) = 1$ for $x \in F'$ since $r \in \mathbf{D}$, $r < 1$ implies $F(r) \subset G(1) = X - F'$, thus $x \notin F(r)$, by $(3.3.5)$ again.

We have to show that f is (μ, v) -continuous. According to (3.2) it suffices to examine whether $f^{-1}((-\infty, t))$ and $f^{-1}((t, +\infty))$ belong to μ .

If x belongs to the first set, i.e. if $f(x) < t$ then there is $r \in D$ such that $r < t$ and $x \in F(r)$, and then $x \in G(s)$ for $s \in \mathbf{D}$, $r < s < t$, according to (3.3.2). Now $y \in G(s)$ implies $y \in F(s)$ by $(3.3.1)$, therefore $f(y) \leq s < t$, so that $G(s)$ is a μ -open set satisfying $x \in G(s) \subset f^{-1}((-\infty, t))$: the latter set is the union of μ -open sets and hence μ -open itself.

If $x \in f^{-1}((t, +\infty))$ then $t < f(x)$ so that $x \notin F(r)$ whenever $r \in \mathbf{D}$, $r < f(x)$. Choose r such that $t < r < f(x)$. For the μ -open set $X - F(r)$, necessarily $x \in X - F(r) \subset f^{-1} \big(\, (t, + \infty) \big)$; in fact, $y \in X - F(r)$ implies that $y \in F(s)$, $s \in \mathbf{D}$, $s < r$ is impossible since then $y \in F(s) \subset G(r) \subset F(r)$ would hold by (3.3.1) and (3.3.2). Therefore $y \notin F(s)$ for these $s, f(y) \ge r > t$. Again, $f^{-1}((t, +\infty))$ is the union of μ -open sets and so μ -open itself. \Box

The statement in 3.3 is sufficient for the normality of μ :

Acta Mathematica Hungarica 115, 2007

THEOREM 3.4. If μ is a GT on X with the property that, if F, F' are disjoint μ -closed sets, there exists a (μ, ν) -continuous function $f : X \to \mathbf{R}$ satisfying $f(x) = 0$ for $x \in F$ and $f(x) = 1$ for $x \in F'$, then μ is normal. $\frac{1}{\sqrt{2}}$

PROOF. The disjoint sets $f^{-1}((-\infty, 1/2))$ and $f^{-1}($ $(1/2, +\infty)$ are μ open and contain F and F' , respectively. \Box

References

- [1] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 $(2002), 351 - 357.$
- [2] J. Dontchev and T. Noiri, Quasi normal spaces and πg -closed sets, Acta Math. Hun $gar., 89 (2000), 211-219.$
- [3] E. Ekici, On γ -normal spaces, Acta Math. Hungar.
- [4] R. Engelking, *General Topology*, Heldermann Verlag (Berlin, 1989).
- [5] M. Ganster, S. Jafari and G. B. Navalagi, On semi-g-regular and semi-g-normal spaces, Demonstratio Math., 35 (2002) , 415-421.
- [6] J. K. Kohli and A. K. Das, New normality axioms and decompositions of normality, Glasnik Math., 37 (2002), 163-173.
- [7] S. N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.), $22(68)$ (1978), 27-29.
- [8] T. Noiri, Semi-normal spaces and some functions, Acta Math. Hungar., 65 (1994), 305311.