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Abstract. Given a ruultiobjective optimization problern with the components
of the objective function as well as the constraint functions being composed convex
functions, we introduce, by using the Fenchel-Moreau conjugate of the functions
involved, a suitable dual problem. Under a standard constraint qualification and
some convexity as well as monotonicity conditions we prove the existence of strong
duality. Finally, some particular cases of this problem are presented.

1. Introduction

In the last decades convex composed programming (CCP) has received
considerable attention since it offers a unified framework for treating different
types of optimization problems. By (CCP) we mean a class of optimization
problems in which the objective function as well as the constraint functions
are composed convex functions. Among the large number of papers dealing
with composed optimization problems in both finite and infinite dimensional
spaces, we mention [1], [4], [8], [9], [10], [11], [12], [13], [14], [15], [21], [22]
and [23].
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178 R. I BOT, E. VARGYAS and G. WANKA

In this paper we consider a multiobjective composed problem of the form

(P) V;Igiinf(F(l?)), A= {31: €X:g(G)) gRﬁi O},

(Gr, .. G X =R f=(f1, . f)T R S RY%and g = (g1, ... g6)
R! — RF are vector-valued functions. The problem (P) has a quite general
formulation and provides a unified framework for studying different multiob-
jective optimization problems which can be obtained as a special case.

Qur purpose is to construct a multiobjective dual for the problem above.
First, we associate to it a scalar problem for which we completely study the
duality. We formulate the weak and strong duality theorems and give some
optimality conditions regarding to this scalarized problem. The approach we
adopt here is based on the conjugate duality approach, described in detail for
instance in [6]. The optimality conditions which we derive in the scalar case
allow to construct a multiobjective dual problem to the primal one. We prove
weak and strong duality also for the multiobjective primal-dual pair. Once
the general problem has been treated, some special cases are considered.

The main tool we use here to deal with the composed functions is the
formula of the Fenchel-Moreau conjugate function of the composition of an
increasing convex function with a convex function (see [5] and [24]).

This paper is organized as follows. In Section 2 we recall some notations
and definitions and give some preliminary results. Section 3 is devoted to the
study of the scalarized problem associated to problem (P). We introduce a
dual problem in terms of the Fenchel-Moreau conjugate of the objective func-
tion and the constraint functions, respectively, and prove weak and strong
duality statements. Necessary and sufficient optimality conditions linked to
this scalarized problem are given. In Section 4 we deal with the multiobjective
optimization problem. We introduce a multiobjective dual and prove weak
and strong duality theorems. The last section contains some special cases of
the original problem such as the classical multiobjective optimization prob-
lem with geometric and inequality constraints, as well as the multiobjective
composed optimization problem only with geometric constraints.

2. Notations and preliminary results

and by R' the non-negative orthant of R”. For x, y € R?, the inequality

w <ge y means that y — 2 € R, which is equivalent to 2; < y; for all i —
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1,...,p. Let X be a nonempty subset of RP. Denote by ri (X) the relative
interior of the set X. Considering a function f : R? — R, denote by dom (f)
= {.T e RP: f(a ) < - oc} im effective domain. We say that [ is proper if

DEFIMTION 2.1. Let X bea nonempty subset of R™. The function éy :

R™ — R defined by
0, if ze X,
Ox(x) =< o
400, otherwise,

is called the indicator function of the set X.
DEFINITION 2.2, When X is a nonempty subset of R" and f: X — R,
denote by
[ R" =R, [fe(z") = sup {:1?*1 z— f(2)}
xeX
the so-called conjugate relative to the set X. By taking X = R" one obtains
the classical Fenchel-Moreau conjugate of f.

DermNniTION 2.3, The function [ : R™ — R is called componentwise in-
creasing, if for x = (xy,... ,mm)T? y = (y1, ... ,,ym,)T e R™ where x; < vy,
i=1,...,m, we have f(x) < [f(y).

ProrosiTioON 2.1, If f: R™ — R is a componentwise increasing func-
tion, then f*(q) = +oo for all ¢ € R™\ R,

PrOOF. Let ¢ € R™\ R". Then there exists at least one i € {1,...,m}
such that ¢; < 0. But

)= sup {Fd—r@} =z sup  {¢Td- f(d)}
JeR” A=(0,sdg )T,
d;€R.
= sup {qid; — f(0,...,ds,...,0)} = sup {quds — f(0,...,ds,...0)}
d;ER 4, <0
> sup{qdi} — f(0,...,0) = oo
d; <0

Thus f*(¢g) = too Vge R®\RY. [0
The following classical result plays an important role in this paper.
TueoREM 2.1 (cf. Theorem 16.4 in [16]). Let fi,...,fn: R™ — R be
proper, conver functions. If the sets ri (dom ({ L)) ,i=1,...,n, have a point
in common, then

(Zf> mf{ZL(P inap},

=i 7 ~4=1 4=
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180 R. I BOT, E. VARGYAS and G. WANKA

where for each p € R™ the infimum is attained.

In what follows let X be a nonempty convex subset of R?, g : X — RF
a vector function with convex components and (CQ,) the constraint qualifi-
cation (|7}, [16])

9:(#) =0,

3

gi(a'y <0, i€ Ny,

1€ Ly,
(CQ,) Ja' e ri(X): *

where

[ e k) gi + X — R is the restriction to X
@ 7o of an affine function g; ¢ R — R

N o N , . o\ <
(Po) nf @), A= {17 €X: g(@)Sps o},

and its well-known Lagrange dual

(Dg) sup  inf {flx) + tTg(x)},

where f: X - Rand g: X — RF,

The next theorem states the Lagrange duality for the problems (P,) and
(Da).

THEOREM 2.2 (cf. [16]). Assume that X is a nonempty convexr subset
of R" and [: X — R and the components g;, i = 1,....k, of g: X — RF
are convez functions. If v(P,) > —oo and the constraint qualification (CQ,)
is fulfilled, then v(P,) = v(Dy) and the dual problem (Dg) has an optimal
solution.

REMARK 2.1. Denote by v(F) the optimal objective value of the opti-
mization problem (P).

Considering the multiobjective problem (P) assume that X € R” is a

fioi=1,...,8,and g5, 7 = 1,.. ., k, are convex and componentwise increasing
functions on R™ and R/, respectively.

For the multiobjective optimization problem (P) different notions of so-
lution are known. Let us recall the definition of the efficient and properly
efficient solutions.
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MULTIOBJECTIVE COMPOSED OPTIMIZATION PROBLEMS 181

DEFINITION 2.5. An element 7 € A Is baxd to be properly efficient w 1th
respect to (P) if there exists A = (A,..., A" €int (RY) (le. Ay >0, 4=
1,...,s), such that AT f(F(2)) £ A f(F(2)) forall z € A

R.EMAR}\ 2.2. It is straightforward to realize that a properly efficient so-
lution turns out to be efficient, too.

3. Duality for the scalarized problem

Inspired by Definition 2.5 we consider the following scalarized problem

(P,\) to (P)
> sef AL £ i
(1)) inf ATf(F(),

where A = (Ar,.... \)7T is a fixed vector in int (R3).

By using the perturbation theory developed by Ekeland and Temam (cf.
[6]), Wanka, Bot and Vargyas had introduced in [21] the following dual prob-
lem to the scalax problem (Py)

My sup {9 @)~ @) ) — (@O (-p)}-
PpER™, g€R™,
g ER!, tERE

REMARK 3.1. When A € RS, f = (fi,..., fo) : R — R® and f;, ¢

1,...,s, are componentwise increasing functions it follows that AT f: R™
— R is also a componentwise increasing function.

By Remark 3.1 and Proposition 2.1 one can take ¢ € R, ¢’ € Rﬂ,, in (Dy)
and so the dual problem becomes

Dy sup A =N~ ()~ @) ) = (¢ G  (-p)}
pER’”/’ qeRJV‘fl’
qeRl, teRE

Because of Theorem 2.1 we have

1) ) (Zu)*m)mf{Z(m(r }qu}

,,,,, =1
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and the infimum is attained for all ¢ € R”™. According to Proposition 2.1, 7%,

i = 1,...,s, must belong to R* and the dual (D)) looks like

(Dx) s

L { - }_? Nef)" () = (1"9) (¢) = (¢" F) (p) = (q’TG)fy(—m}
with

(2) (M) () = Niff ()\ 7i>

foralli = 1,...,s. Redenoting {-7" by r*,i = 1,..., s, we obtain the following
formulation for the dual:

(3) (Dx)

sup { - Z NS — (T ) (@) — (6T F) () — ((J’TG)}(—J))},

(p,q,q’,'r.,t)EY)\

The next theorem states the existence of weak duality between (Py) and
(Dy).
THEOREM 3.1 (weak duality for (Py)). We have v(Dy) < v(Py).

Proor. Let (p,q,¢',r,t) € Yy be an arbitrary element. By the Young—
Fenchel inequality

—[r Y = (Y Fz) | Ji(F(x)), YeeR" Vi=1,...,s,
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MULTIOBJECTIVE COMPOSED OPTIMIZATION PROBLEMS 183
~(T () £ ~¢TG(2) + t'g(G(x)), Vo eR™,
—(q"FYx(p) £ —p"u+ " Fla), VeeX,

i * ; o .
~@" @) (~p) £ pTa 1 " C), VeeX.

< Z Afi( F(a)) +t7g(Gla)),
i=1

for all x € X. Because (p,q¢,¢,r,t) € Y\, we have tT{}(G(SE)) <0 for all
x € A, which together with the inequality above implies that

for all x € A. Taking on the left side of this inequality the supremum over
(p,q,q',r,t) € Y, and on the right one the infimum over x € A, it follows that
v(Dy) Swv(Py). O

Further we study the existence of strong duality between (Py) and (D)),
namely the situation when the optimal objective values are equal and the
dual has an optimal solution. In order to do this, we introduce a constraint
qualification that guarantees the validity of strong duality, but first, let us
divide the index set {1,...,k} into two subsets,

= {z’.e {1,....k}

g; oG 1 X — R is the restriction to X of an
affine function g; 0 &' : R* — R

and N := {1,...,k}\ L. The constraint qualification follows (cl. [7], [16])
. A G 20, iel,

(CQ) Ja’ €ri(X): g ( ( )) - , .

‘ g:(G(')) <0, i€N.

THEOREM 3.2 (strong duality for (Py)). Assume that the constraint qual-
ification (CQ) is fulfilled. Then v(Py) = v(Dy). Moreover, provided v(P))
> —00, the dual problem has an optimal solution.
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Assume that v(l’ A} > —o0. Because the constraint qualification (CQ) is
fulfilled, by Theorem 2.2 there exists an element f € R,j such that (cf. La-
grange duality)

where ©(Py) denotes the optimal objective value of the problem (P,). Fur-
ther we attach to R™ a greatest element with respect to §R,+n” denoted copm

and let (R™)® = R™ U {oc}. Then for any 2 € (R™)® one has @ Sgm copm

and we consider the following operations on (R™)* : 2 - cogm — corm -+ 2

define now the functions

F(x), if xeX,

F:R"— (R"™)*, Flz) = .
copm, otherwise,

and
~ e~ Glx), if x& X,
G:R"— (RY, G(z) = @) .
cogpt, otherwise.
We also make the conventions that for all i = 1,...,s, fi(copm) = oo
and for all j =1,...,k, gj{oogpt) = 4+
Thus the optimal objective value of the primal problem can be written
as
(4) v(Py) = inf {NTF(F(x)) +17g(G(2) },

where A f o I' and #1'g o (¢ are functions with values in the extended real-

empty convex set, by Theorem 2.1 there exists p € R such that the infimum
in (1) is equal to
(5) v(Py) =~ foF+17g0G) (0)

e

—max{ - (\fo ) (p) = (TgoG) (=p)
max { = (A" fo k) (p) ~(tgoG) (-p)}

,,,,,,
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MULTIOBJECTIVE COMPOSED OPTIMIZATION PROBLEMS 185

Further, by Proposition 4.11 in [5] (see also [24]), there exist some ¢ € R'?
and ¢’ € R/, such that

(6)

Ao FY' () = min {0+ (" F) ()} = W@+ @ F) ()
and
(7) (g0 6)'(-p) = min {({"9)"(¢) + (TG (~p)}

The relations (4), (5), (6) and (7) imply actually the existence of the
vectors § € Rﬁ’,,, peR”, geRT and ¢ ¢ Rﬂ,, such that

i

Applying again Theorem 2.1 one can find some 7° € R, i=1,...s, such
that
W@ =Y ) () and Y 7 =4
i=1 i=1

for all i = 1,...,s. Redenoting %W by #,4=1,...,8, we obtain the fuple

%

(p,q,¢', 7, [) which is an optimal solution to the dual problem (Dy) fulfilling

which actually means that strong duality between (Py) and (D)) holds. [

To investigate later the multiobjective duality for (P) we need the op-
timality conditions regarding to the scalar problem (P,) and its dual (D).
These are formulated in the following theorem.
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186 R. I BOT, E. VARGYAS and G. WANKA

THEOREM 3.3. (a) Let the assumptions of Theorem 3.2 be fulfilled and
let & be an optimal solution to (Py). Then there exists o tuple (p,q,q,7,1)
€ Yy, optimal solution to (D)), such that the following optimality conditions
are satisfied.:

(if) ¢" F(2)
(iii) Mg (@) + ()" (¢) = ¢TC(w),
(iv) ¢7G(@) + (@7 (=p) = (-=p) 'z,

() Tg(G(x)) =0.

optimal solution to (D)) and strong duality holds.
ProOF. By Theorem 3.2 there exists a tuple (p,q, ¢, 7,t) € Yy, optimal
solution to (D)), such that

8) NF(F(x)) = v(Py) = v(Dy)

©) Dtsr@) + e - @) |
i=1
T (G@) + (T (@) - aTC@} + {dTF@ + @ FY(p) - T
H{ETGE) + (@76 () — (57} + { —Tg(C@) } -

s .
Because (p, 7,7, 7. 1) € Yy, we have > 7 = G, and so
i1

According to the Young—Fenchel inequality the following inequalities hold:

JF@) 1 Y= F@) 20, i=1.,s
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MULTIOBJECTIVE COMPOSED OPTIMIZATION PROBLEMS 187
tTg(G) + (t9) " (d) - ¢ G@) z 0,
¢"F(@)+ (d F)x(p) —pT2 2 0,
(TG + (@) (-p) ~ (-p) T 2 0.

Because | € R% and z € A there is —(7¢(G(z)) 2 0, and so, equation (9)
together with the inequalities above imply the relations (i)—(v).
(b) By (i)—(v), making the above calculations in the opposite direction

v(DA) Z =Y NSO = (79 (@) = (@7 F) ) — (67 C)x(-p)

=M f(F(@) Zv(P)),

which together with Theorem 3.1 ensures the strong duality for (P,) and
(Dy). O

4. The multiobjective dual problem

By using the duality developed above in the scalar case, we can formu-
late now a multiobjective dual (D) to the original problem (P) which will be
actually a vector maximum problem. We define the Pareto optimal solutions
to (D) in the sense of maximum and prove weak and strong duality theorems
between (P) and its dual.

The dual multiobjective optimization problem (D) is introduced by

D v-max  hip,q,d . r.t, \u
(D) pasmmax (p.a.q rt, A u),

with
hl('[)a q, qia 7 L, )\7 U/)
hS(pa 4, qla 7 t: )\: ’LL:)
hi(p. ¢, ¢’ v, t A\ w)

=~} () ~ ﬁ((t”wg)*(ﬂ + (" F)x(p) + (¢ (=p)) + s,

‘2

for i = 1,...s, the dual variables

T
p=(p1,...,pn) €ER", ¢q= = (q1,. ., qm) ER™, ¢ = =(qy,...,q)" eR
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188 R. I BOT, E. VARGYAS and G. WANKA

and the set of constraints

B - {(p,q,q’,r,.ﬁ,)\,?,z,) cqeRY, ¢ € Rﬁ,,, e R, i=1,...,8 te Ri;

DEFINITION 4.1. An clement (p,¢,q¢', 7,1, A, u) € B is said to be efficient
(or Pareto efficient) with respect to the problem (D) if from

hip,q.q" 7, t, \u) zRi hp,q, ¢ vt \u) for (p,gq, rt  \u)cB

The following theorem provides the weak duality between the vector prob-
lems (P) and (D).

THEOREM 4.1. There is no x € A and no (p,q,q',r,t, \,u) € B fulfilling

PRrOOF. Let us assume that there exist x € A and (p,q,¢,r, ¢, A, u) € B
such that f;(F(x)) < hi(p,q,¢',r,t, A\ ) for all i = 1,...,s and f;(F(x))
< hi(p.q,q' . t, A\, u) for at least one j € {1,...,s}. This implies

(10) )\Tf(F(w)) = Z)\ifi(l?’(w)) < i)\ihi(pﬁq,q’?r,t?)\,u)
i1

But

8

8 ", i —5 CpEy L ST Nyt
Zl)\zh/z(f),(},(},7“7f.,,)\,?1,) izl.)\zd{z (7“) ')\ZS/\T;(G 9’) ("})

=1 e i=1

_y A SEY = (T g) () + @ ) (0) + (@7 ) (—p),
=]

(=
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and applying then for f;, i = 1,...,8, t' g, ¢" F and ¢" G the Young-Fenchel
inequality we have
[ S fi(F@) - 9 F),  Yi=1,....s

—(t"g) (¢) £7g(G@)) - ¢TG(),

—(d"F)x() £ ¢"F (@) —pTe, —(dTC)(—p) £ dTC(x) +p .

s .
Because of > A\p* =q, 1 € R’fr and x € A, we obtain

ZAZ}IZ(Z)/Qaql/r*t/\* U Z/\j? F Z)‘ +ZJ(J(G( )>

i=1

—¢"G ) + ¢ Fla) —pTa+ 7 G(a) +pTe

S A(F@) + T (G) £ Y Nh(F

i=1 =1

lation (10). Thus the weak duality between (P) and (D) holds. [

Theorem 4.2 gives us the strong duality between the multiobjective prob-
lems (P) and (D)

THEOREM 4.2. Assume that the constraint qualification (CQ) is fulfilled
and let & be a pmperly efficient element to (P). Then there exists an efficient
solution (p,q,q,7,t, \,u) € B to the dual (D) such that the strong duality
J(F(x)) = h(p,q,d, 7,1\ ) holds.

PRrOOF. Let T be a properly efficient element to (P). By Definition 2.5,
it, follows that there exists a vector A = (Ar, ..., XS;)T € int (R5 ) such that
solves the scalar problem

(P5) inf X ().
Since the constraint qualification (CQ) is fulfilled, by Theorem 3.3 there ex-
ists an optimal solution (P, d,§,7,1) to the dual problem (D5) such that the
optimality conditions (i)—(v) are satisfied.

By using the elements # and (p,q, ¢, 7 z‘) we can construct now an effi-
cient solution (p,q, ¢, 7,t, A, @) to (D). In order to do thislet A = (Aq, ..., Ag
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be the vector given by the proper efficiency of &, p= (b1,....Pn) =

= (e a) =T T = () = (P ) = Fand E= (L, )]
o~ ~ T o~ s . ‘
= (t1,...,tg) =1. It remains to define the vector u = (uy, ..., uS)T. For
N s, let
1 : * o N . ind e
= (9 (@) + (@ F)x () + (" G x(=p) + () Fla).
SAG
For (p,q.q',7,t, A\, u) one has € R7, ¢ e R, M e R, i=1,...,s,

teRE, A eint(R%) and

S i = S A ((I79) @) + (67 F) () + (476) ()
i1 i1
+ i N ()R ()
3==1
—(T9) @) + (67F) )+ (76) (=) + SN TF (@)
i=1

8 ,
As > A7t = g, from the optimality conditions derived in Theorem 3.3 we
i1
obtain

> it =g C(@) — 1"g(G@) +p'T— 7" ()

which actually means that the element (9,4, ¢, 7, t, A, u) is feasible to (D).
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+ (") @) + @D 0) + @Ok (=) + () F@)

= =20+ (Y F@) = H(F@).

The maximality of (p,q, ¢, 7, {, \, %) follows by Theorem 4.1. [

5. Special cases

5.1. The classical multiobjective optimization problem with ge-
ometric and inequality constraints. The last section of this paper is
devoted to some special cases of the primal problem (P). First, we consider
the classical multiobjective optimization problem with inequality constraints

P’ inf F(z),
( > :JJIgA’ <Q)

where A’ = {z € X : G(x) ﬁaﬁ 0}, X € R™is a convex subset,

F=(F,. . F)T: X =R, G=(G,....Gp)" - X - RF

twise increasing.

Applying the results in the previous sections, one can determine a mul-
tiobjective dual to (P’). Let us also mention that the scalarized problem
becomes

P/ inf \N'F(2),
(P)) inf A" F (),

where A = (A1,..., A)" is a fixed vector in int (R% ), and its dual looks like

(DY) sup {— ‘ ./\z’ff(r")—(fﬂf’y)*((/)—(qTF)}(P)—((1’7'(1&(—79)},
i=1

(ra.q yr,t) €YY ;
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with

Yy = {(nq;q’mt) tpeR", geRS, ¢ eRE, r= (!, .. 0%,

r eRY, i=1,...,s, Z/\iri =q, teRﬁ}.
i=1
Taking into consideration the definitions of the functions fi;, ¢ = 1,...,s, and
g5, 3 = 1,...,k, respectively, we have for all i = 1,...,s,
. 0 if rt=landri=0,7=1,..., 8, i,
any - feh - Lo '
40,  otherwise,
, 0, if ¢ =t
(12) (t"g)(d) = .
+o0, otherwise,
and
s T O\*
. N A : 4 P NS A N
(13) (@"F)x(p) = ((Z/\w) P) () = (NI x (p).
G=1 X
Thus (D)) becomes
. AT e K T K
(14) (DY) sup  { — (ATFY o(p) — (7 G)(=p)}.

pER™, teRF

Let us notice that (D)) is nothing else but the so-called Fenchel—
Lagrange dual problem which has proved to be useful in studying the duality
in vector optimization (cf. [17], [18]).

The constraint qualification which will guarantee the existence of strong
duality becomes

G <0, iel,

gley 2 eri(X):
(©Q) &0 {Gi(x’)ax ieN,

G5+ X — R is the restriction to X of an
af;ﬁne fulloti()n (Jv? . RL’L N R
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The vector dual problem of (P’) can be equivalently written as

"II/I (pv t: )‘7 ’LL:)
(D) v-max  A'(p,t, A\ u), with R(p, A\ u) = :

pE N U)EB g : ’
(b A€ . (p,t, A u)

the dual variables

p=(pt,.. o) €ER™ t=(1....t)7 €R*, A=(\,...., )T eR’,

For an overview of multiobjective dual problems for (P’) see [2] and [3].

The next two theorems vield the weak and strong duality for the multi-
objective problems (') and (D) and can be derived from Theorems 4.1 and
4.2.

THEOREM 5.1. There is no x € A" and no (p,t,\,u) € B fulfilling F(x)

THEOREM 5.2. Assume that the constraints qualification (CQ) is ful-
Jilled and let @ be a properly efficient element to (P'). Then there exists an
efficient solution (p, 1, A, i) € B to the dual (D) and the strong duality F(F)

5.2. The multiobjective composed optimization problem with
geometric constraints. In this subsection we consider the multiobjective
optimization problem only with geometric constraints

(") vomin [(F(x)).

where X SR, F=(F,....Fn)" X =R™ and f=(f1,....[)"
R™ — R*. Assume that Fj, i =1,...,m, are convex and f;, 7=1,...,s,
are convex and componentwise increasing functions.

Problem (P”) was already treated by the authors in [19], the purpose

hereby is to show how the results obtained in [19] can be obtained, as special
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case, from the general results formulated in Sections 3 and 4 of this paper.
To this end, let us notice that problem (P”) can be obtained from (P) by

to the previous sections first we give the dual of the scalar primal problem
P/ inf A f(F(2)),
®) inf X7 (F().

associated to (P") where A = (A1,...,\,)" € int (R5) is a fixed vector. By
(3), the dual of (PX) is

(DY) sup {—ZAiJ}"(r"’)—(t’Z'g)*(q’) —(d"F)x(p) —(q”'G)}(—p)}:
o rt)eyy i1

with

&

: 2 N k

rreRY, i=1....,5, E At = g, t€R+}.
=1

=

' ' 0, if ¢ =0,
(tTg) (¢") = (0)"(¢) = sup {y'¢} = { g :

yeR! +o0, otherwise,
and therefore
(" C)x(=p) = 0% (=p) = = inf p"x = % (=),

the dual problem becomes

(DY) sup { =N = () () - 5f;<<—p>}.
PERT, (;ER"’", r"ERT, i1
i=1,...,8 i Agrt=g
=1

Let us mention that this dual has been introduced by Bo{ and Wanka in [1].
The multiobjective dual to (P”) is then

14 v-max A (p,q.r, ),
(D7) oA (psg. 7, A ),
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with
M{(p,q,r, A\, u)
]2’//(1)7 q,7, ’\7 U> -
RY(p, g, A )
"o k(i 1 T - o
h7 (])7 4,7, )\7“) - —Jq (‘}“ ) - K(((] F)‘((p> + é\'(_p)> U, 1= lv - 5
= ‘3
the dual variables
p= (T” g val>T € Rn: q = ((}17 ) Q?TL)T € Rmv "= (7} ) rs)v Ti = Rmv
§ =] 5, A= (A, 0T eRE w = (u Jus)! € RS,

The next two theorems provide the weak and strong duality for the mul-
tiobjective problems (P”) and (D”) and can be derived from Theorem 4.1
and Theorem 4.2.

THEOREM 5.3. There is no x € X and no (p,q, v, \,u) € B” fulfilling
f( F(l» éRj h,/(p: g, 7 A, U’) and j(}ﬁ<°L>> 7 h”(‘[), g7 A, U’)'

THEOREM 5.4. Let = be a properly efficient element to (P"y. Then there
evists an efficient solution (p,q,7, A, ) € B" to the dual (D") and the strong
duality f(F(z)) = 0" (p,q,7, X\, @) holds.
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