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A b s t r a c t .  Given a nmltiobjective optimization problem with the components 
of/he objective function as well ~s the co~straint functions being composed convex 
%nctions, we introduce, by using the Fencllel-Moreau conjugate of the %net.ions 
involved, a suitable dllal problem. Under a standard constraint qualifica:tion and 
sonle convexity as well a~s monotonicity conditions we prove the existence of strong 
duality° Fi~mlly, some particulm" cases of this problem are presented. 

1. I n t r o d u c t i o n  

In the last decades convex composed progra,mming (CCP) has received 
considera,ble attention since it offers a unified fiamework for treating diffbrent 
types of optimization problems. By (CCP) we mean a cla,ss of optimization 
problems in which the objective function as well as the constrNnt flmctions 
are composed convex flmctions. Among the large number of papers dealing 
with composed optimization problems in both finite a~ld infinite dimensional 
spaces, we mention [1], [4], [S], [9], [10], [11], [12], [13], [1,1], [15], [21], [22] 
a~d [23]. 

Key words and phrases: composed convex functlons~ scalar d tadity~ multlobjective duME2, 
optimality conditions. 
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178 R. L B O T ,  E. "¢\~RG~%S a n d  G.  V~%\NKA 

In this paper we consider a multiobjective composed problem of the %rm 

, C 0}, 

where X is a nonempty subset of R '~, F ( F j , . . . ,  F,~) T : X -4 R'% C 

( C 1 , . . . ,  Cz) T : X -+ R z, f ( f l , . . . ,  ]:~)T : R"" -~ R "~ and 9 (g l , . . . ,  9~:) T: 
R z -~ R ~ are vector-valued flmctions. The problem (P) has a quite general 
formulation and provides a unified framework for studying different multiot> 
jective optimization problems whid~ can be obtained as a special case. 

Our purpose is to construct a multiobjective dual for the problem above. 
First, we associate Co iC a scalar problem for whid~ we completely s~udy the 
duality. We tbmnflate the weak aad strong duNit,y theorems and give some 
optimality conditions regarding to this scala¢ized problem. The approach we 
adopt here is based on the conjugate duality approach, described in detail for 
instm~ce in [6]. The optimality conditions whid~ we derive in the scalar case 
allow to construct a multiobjective dual problem to the primal one. We prove 
weak mad strong duality also for the multiobjective primal-dual pair. 0nce 
the general problem has been treated, some special cases are considered. 

The main tom we use here to deal with the composed functions is the 
fbrnmla of the Fenchel-Moreau conjuga.te flmetion of the composition of an 
increa.sing convex function with a. convex function (see [5] and [24]). 

This paper is orgmfized as follows. In Section 2 we recall some notations 
and definitions and give some prelinfina.ry results. Section 3 is devoted to the 
study of the sc~-darized problem associated to problem (P). We introduce a 
dual problem in terms of the Fenchel-Moreau conjugate of the objective func- 
tion and the constraint functions, respectively, and prove weak and strong 
duality statements. Necessary and sufficient optimality conditions linked to 
this scalarized problem are given. In Section 4 we deal with the n-mltiobjective 
optimization proMem. We introduce a rnultiobjective dual and prove weak 
~md strong duality theorems. The last section contains some special cases of 
the original problem such as the classical multiobjective optimization prob- 
lem with geometric and inequality constraints, as well as the multiobjective 
composed optimization problem only with geometric constraints. 

2. N o t a t i o n s  and  p r e l h n i n a r y  resu l t s  

p 
Denote by :rTy ~ .~;'~y~ the inner product of the vectors 

i 1 

and by R~ the non-negative ort.hant of R p. For :r, y c RP, tile inequality 

.~: <R~ y means that ~/ -  x ff R~'t, which is equivalent to xi < y,~ for all i 
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MULTIOBJ]Eq?TIVE C O M P O S E D  OPTIMIZ.A;TION PP~OBLEMS 179 

1 , . . .  ,p. Let X be a nonempty subset of R ~). Denote by ri (X) the relative 

interior of the set X.  Considering a function f " R ~) -~ R,  denote by dora ( f )  

{ x c R~): f ( x )  < ] ~ }  its effhctive domain. We sa N that  f is proper if 
dora ( f )  ~ ~) and f (x )  > - o o  for all x c R ~. 

DEFINITION 2.1. Let X be a nonempty  subset  of R 'n. The function 6x : 
R" --~ 1% defined by 

~x(~') 
oc., otherwise, 

is called the indicator function of the set X.  

DEFINITION 2.2. When  X is a nonempty  subset of R "  and f : X -~ R,  
denote by 

~ -4 R, ~(,: ) sup { :,-,*'~: - / ( : , , )}  
:c E X 

the so-called conjugate relative to the set X.  By taking X R "  one obtains 
the classical Fenchel-Moreau conjugate of f .  

DEFINITION 2.3. The flmction f : R 'm' -4 R is called componentwise in- 

creasing, if fbr x ( x l , . . . , x , O  T, y (Yl , . . . ,Y. ,0  T c R "  where x~ < y~, 
i 1 , . . . , 'm ,  we have f ( x )  < f (y ) .  

PROPOSITION 2.1. If f " R '-"~ --+ R is a cornponentwisc increasing func- 
t,;o,,, *t,.~.,. f*(v)  + ~  .f,,,- o.lI V ~ W'~ \ R T .  

Pr<>oF. Let q C R "~ \ R~'.  Then there exists at least one i E { 1 , . . . ,  m} 
such that V,~ < 0. But  

f*(q) sup { q T d - f ( d ) }  => sup {q T d - f ( d ) }  
d E  R.  m d =  (0,. . . ,eli , . . .  ,0) T, 

d,i EKt. 

~'1~'  { ( ] i d i  j , / ' ( 0 '  " " " ' / ] ' '  " " " ' 0 )  } ~ ~ '1 [ '  { q ' ( ~ i  j f ( 0 ' ' ' "  ' ( ~ ' ' ' ' 0 ) }  
diER di<O 

> sup {vide} - f (O , . . . ,O)  ~ .  
di < 0  

Thus f*(q) +oo Vq E R m \ R~+L [] 

The following classical resuR plas,~s an important  role in this paper. 

THZ, OREM 2.1 (el. Theorem 16.4 in [16]). Let f l , . . . ,  f~ " R"" ---+ R be 
v,¥q,~',, ~o%.~,~:~. f.,,%~t.io%.% z f  t.I,,,., s~t.~, ri (dora (/:,:)), i 1 , . . . , . ,  h~,~  o. ~,oi%t. 
i,, common, then 

("±10" '±}  0,) i .~  / 7 ( > ) :  > 1~ , 
1 i 1 i 1 
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180 R. L BOT,  E. "¢\¢RG~%S and  G. V 6 \ N K A  

where for  each p 6 R "~' the infirnum is attained. 

In what ibllows let; X be a nonempty convex subset of R '~, g : X --+ R ~ 
a vector flmction with convex components and (CQ,)  the constraint qualifi- 
cation ([7], [161) 

( c % )  3 :~:' ~ Fi ( x ) :  [g~@/) < 0, ~: ~ ~\%, 

where 

Lo: { i 6 { 1 ,  k} 9~ : X -+ R is the  res tr ic t i°n t °  X } 
' " ' "  of an affine function ,~:~ : R ~' --> R 

a n d N , . :  { 1 , . . . , k } \ L , .  
Consider the optimization problem 

(P,0 mf /(~-,) 

and its well-known Lagrange dual 

(D~,) sup i r f f ' { f ( : r ) I  t ' rg ( : r ) } ,  
t6R~ a:'6X 

where f "  X - - + R a n d 9 :  X - - + R <  
The next theorem states the Lagrange duality for the problems (P,,,) and 

(U~0. 

THEOr~Em 2.2 (cf. [16]). As~swme that X is a n o n e m p t y  convex subset  

of  R r" and f : X -~ R and th, e cornpone'nfs 9~ i 1 , . . . ,  k% of g " X -4 R ~' 
are co'nve;r ]:~m, ctions, f f  v(P~) > -oc  and t,h,e constraint, q~ta.f~fica.fion (CQ~.) 
is ./:~,(fiHed, the,~, v([q) v(D,,) ~,r~.d ~he & d  proble.,n (D~) h.as a,~. opt imal  
,~olv, tio.n. 

RE>~Am< 2.1. Denote by v(P)  the optinral objective value of the opti- 
mization problem (P). 

Considering the mul t iobjec the  problem (P) assume that  X =c R "  is a 
convex set, Fz, i ] , . . . ,  m., Gj, j 1, . . . ,  l, are convex functions on X and 
fi, i 1 , . . . ,  s, and g3, J 1 , . . . ,  k, are convex and componentwise increasing 

flmctions on R m and R e,, respectively. 
For die muMobjective optimization problem (P) dill>rent notions of so- 

lution are known. Let us recall the definition of the ef~cient and properly 
efficient sohtions.  
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MULTIOBJ]EC]TIVE COMPOSED OPTIMIZ.AfTION PI{OBLEMS 181 

DEFINITION 2.4. An element ~: 6 A is said to be efficient (or Pareto ef- 
*ieient) witt~ respect to (P) if from f(F( , , ' ) )  __%.o f (F( , , ' ) )  for ~' ~ .a follows 

that l ( v ( , ) )  l ( v ( , ) ) .  
DEFINN'ION 2.5. An element z C A is said to be properly eflCicient with 

respect to (P) if there exists k (t : l , . . . ,  t.0ir e int (R; )  (i.e. A{ > 0, i 
1 , . . . , s ) ,  such that aTf (E( , r ) )  < x T f ( / r ( z ) )  for all a: C A. 

REMARK 2.2. It is strNghtforward to realize that  a properly efficient so- 
lution turns out to be e~eient ,  too. 

3. Dual i ty  for  t h e  s ea l a r i z ed  problem 

Inspired by Definition 2.5 we consider the following scalazized problem 
(P~) ~o (p) 

(~>,,) ~nt Air/`(F(:~,)) 
:~:6A ' 

,A~ T where A (A1,.. .  .~) is a fixed vector in int (R~).  
By using the perturbation theory developed by Ekeland and Temam (cf. 

[6]),-Wanka, Bog and Vargyas had introduced in [21] the fbllowing dual prot> 
lem to the scalar problem (PA) 

(D~) sup 
p6R7% q6R. 'n, 
q'6B, z, t6B,~ 

{ . . . .  (£e ' f )*(( l )  (~ 3 ) ( q ' )  (qiriT)x(P) (q n'c)X(-'* P)}" 

REMAaK 3.1. When A 6 R~ ,  f ( f l , . . . ,  .L)ir : R'~ --+ RS and J% i 
1 , . . . ,  s, are componentwise increasing functions it lbllows that Air./`. R "~ 

R is also a componentwise increasing function. 

By Remm'k 3.1 and Proposition 2.1 one can take q c R'~[": q' 6 R! t in (Dx) 
and so the dual problem becomes 

(Dx) sup 
pER'", qEI% ~" , 

q ' e R ~ ,  t e R ~  

{ -- (ATf)*(q) - ({V.q)*(Cl') - (el F ) x ( P )  - ( C l n ' G ) x  (_p) } . ~  * 

Because of Theorem 2.1 we have 

(±) ,  {± ± } (1) (2</)*(q) Aj? q) inf (AJ?)*(<) - ~-~ q 
" i l  'i 1 " i l  
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182 1% L BO% E. ~¢\aJKG~%S and G. V6\NKA 

~md the infimum is at tained %r all q 6 R ~'. According to Proposit ion 2.1, r ~, 
i 1 , . . . ,  s, must belong to R ~  t and the dual (Dx) looks like 

(I),\) 

tT C * sur, - ~ (&J:0*(¢) - (F'q)*(4) - (qrF)]-(f,) - (q G v ( - l , )  
(>q,q','r,00~ i I 

with 

Y,\ { (p, q, q', r, t) : p c R", q c RT, q' c R~,  r ( r l , . . . ,  r~), 

i 1 

Since ke > 0, it follows that; 

( 2 )  
(~.J:~)*0 #) x#:~ \~,~ 7 ,  

l r ~  by r ''i, i 1, , s, we obtain the following for all i 1 , . . . ,  s. Redenoting x~ ,. , " " " 

formulation for the duah 

(3) (D~) 

sup 
(p,q,q',r,t) EY), 

- Z ~ F ( < )  - (Fg)* (4) - ( q r F ) k O )  _ ( q , r c ) k ( _ ~ )  , 

( 

[ 

± } 
i I 

The next theorem states the existence of weak duality between (PA) and 
(Dx). 

THEOREM 3.1 (weak dualRy Ibr (Px)). We have u(l)A) ~ v(Px). 
PROOF. Let (p, q, qr r, t) 6 ~%\ be an arbitrary element. By the Young-  

Fendlel inequMity 
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- ( t~3)*(( / )  < -q'ro(~-,) t t fg(a(:~O),  v:~ e w<, 

- ( ( l r F ) ~ ( p )  < - p %  + qrF(aO, v~ e x ,  

/ T  -~ * -(q <,)x(-P) < p Tz + q'rcc(z), vx ~ x. 

Multiplying e{~ch of the first inequa.lit.ies by l i  > 0, i 1 , . . .  s, respectivdy,  
and adding their sum ;or i l~ . . .  ~ s, to tile edger ones, it follows that  

8 

- ~,,~, , (~ J) (v) - (v rF)k(p) - (Vrc)k(-v) 
i ] 

8 

< Am(~(,:)) +~%~j(c(:~,)) 
i ] 

re,. ~ll ,, < x .  mc~:use (p, q, V, ,~, ~) < Y~, we h~,,e < ~ j ( c ( , 0 )  _-< 0 ror ~ll 
x ~ A, which together  with the inequ'Aity above implies tha t  

8 

-- ~ A ÷'*{r i] ,~,~, , -  ( ~ r g ) * ( q ' )  - -  ( q T F ) * X ( P )  --  (q 'T  " *'G)x(--P). 

i ] 

s 

i ] 

for all x C A. Taldng on the left. side of this ine@mlity the supremum o-per 
(p, g~ q', r~ t) c 7~ and on the  right one the inflmum over x c A, it follows tha~ 
v(D~) =< v(P~). [] 

Fur ther  we s tudy  the  existence of strong du&lity between (P~) and (D,Q, 
n~mely die situ~r.ion when the o p t i m ~  objective v~lues are eqmd and the 
dual has an opt imal  solution. In order to do this~ we introduce a constr&int 
qualification that  guarantees the validity of strong dualiw, but  first, let us 
divide the index set {1 , . . . ,  k} into two subsets, 

L :  { i c {1, . . . k} g.~ o (; : X --+ R is the restriction to X of an 

afiine flmction g,~ o C : R ~ --~ R 

and N :  { l , . . . ~  k} \ L. The  constraint, qualiflc~,tion ibllows (c;. [7], [1617) 

f .¢ ! 
v,,(¢(*)) = <o, e~L, 

(cq) 3 ~ / ~  ri(X): , , 
[ g~ (c ( : , ,  )) < o, ,: ~ ~,,,~. 

ThE<re,Era 3.2 (strong (hmlity for (P~)). Assume  that the cor~.straint quaI- 
"ification ((IQ) is fulfilled,. Then v(P~) v(])~). Mercer(% provided v(P~) 
> - ~ ,  the dual problem,/,as an optimal solution. 
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PaOOF. If ~,'(P,\) --oo, by Theorem 3.1 it follows that  ~'(]),\) - oo .  
Assume that  v(Pa) > -oo .  Because the constraint qualification (CQ) is 

flflfilled, by Theorem 2.2 there exists an element t ~ R2 such that  (cf. La- 
o ' - *  o"  J aaoe duality) 

v(Pa) inf {ATf(F( : r ) )  +{Q](C(:r)) }, 
x 6 X  

where v(P~) denotes the optimal objective value of the problem (P~). Fur- 
ther we at tach to R "~ a greatest element with respect to ' ~ R ; '  " ' denoted ooR-~ 

and let (R"~) ® R 'm' U {~} .  Then fbr any x ~ (R"~) ® one has x ~R2' OOR-~ 

and we consider the fbllowing operations on (R"~) ® " x t OOR-, OOR,,, [ x 
OOR-, and tocR-, OCR-, V~ ~ O. The same will be done for R ~. \~% can 

define now the functions 

[ OOR-~, otherwise,, 

~md 

R - "  mS", I c( O, if C X 

[ OCRl, otherwise. 

\r~ also make the conventions that for all i i .... , & j~(oOR,,,) ~ 
and %r all j i,...,/% gj(c~l~/, ) [ c~. 

Thus the optimal objective value of the primal problem can be wri t ten 
~S 

(4) v(P,0 hff {ATf(F(:r ) )]Eg(5(:r ) )} ,  
xER," 

where Arl'f o P and ~Tg o (~ are functions with values in the extended real- 

valued space with dora (%Tf o ~') dora (~T 9 o (7) X. Since this is a non- 
empty convex set, by Theorem 2.1 there exists p c R"  such that  the infimum 
in (,i) is equal to 

v(P~) -(A~Ff o/w t ~Fg o G) (0) 
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Further, by Proposition 4.11 in [51 (see also [24]), there exist some 0 ~ R<~I' 
and c / ~  R!~ such that  

(~T f o ?)*(p) 
q6 I 

~md 

(r) (~rg o c )*( -~)  rain { (~rj<( , / )  + (,/rO)*(_~,)} 
' q'ER~ 

J ~  ~ f (,'.:~ ,9) (~ ) I (o'rd)*(-~,). 

The relations (4), (5), (6) and (7) imply actually the existence of the 
vectors t C R~i, p C R '~, 0 C R"[" and q' c R! t such that  

v(Px) -(£J 'f)*(O) - ({vg)*(q') - (q b ) v ( P )  - ( q n ' G ) x ( - P )  . 

Applying again Theorem 2.1 one can find some Y~'~ ~ R~ ~, i 1, . . .  s, such 
that 

(ATf)*((I) ( '~k)  (re) and ~ < i  q. 
i 1 i I 

Since A{ > O, we have 

for all i ] , . . . , s .  Redenoting ~:'{ by i'~ i 1 , . . . ,  & we obtain the tuple 

(f4 (L (/, r, 0 which is an optimal solution to the dual problem (D~) fulfilling 

. . . .  (¢ c )x( -7 , )  ~,(D~\), 
i 1 

which actu~ly means that strong duality between (PA) and (D~) holds. [] 

To investigate later the multiobjective duality Ibr (P) we need the op- 
timalRy conditions regarding to the scalar problem (PA) and its dual (I)~). 
These a~e formulated in the following theorem. 
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THSOREm 3.3. (~) Let the ass~m~ptions of Theorem 3.2 be f~,lfilled and 
let .~: be an optirr~,ai solv, t'io.n to (P~). The~, th, e ~  e:r'ists a iv, pie (p, q, (t t, r, t) 
c ~ ,  optimal soIut'ion to (D,\), such that the following optim, al'it:q con(~itions 
are satisfied: 

(ii) (/rFO:) I ((SF)x(p) :,;r~:, 
(iii) ~rq((;(x)) + (~,9)*(q') q'T(;(:r), 

(v) {%(<:0:))  o. 
(b) Let :r be adm, issible to (P2,) and (p, q, q', r, t) be adm, issible to (1)2,) 

satisfyin9 (i)-(v). Then :r is an optimal soluhbn to (Pa), (P, q, q', r, t) is an 
optim.al soh~tion to (D.x) and strong d'~ality holds. 

PROOF. By Theorem 3.2 there exists a tuple (p, q, q', r, t) ~ Yx, optimal 
solution to (l);0, such that 

(8) )J'f(F(.~:)) v(Px) v(Da) 

8 

Equality (8) is equivalent to 

(9) { ; 7  (F('~:)) ~ Adi*(~ #) - q~rF(.~:) 

{:g(<;(.~:)) ~ (F: : ) * (~ ' ) -~ /%' (~- . ) }  ~ {q<%~:) ~ ( q < ~ ) ~ ( ¢ ) - ¢ % : }  

~{q';F(;(~O~(Wc;')k(-~O-(-S~:} ~ { - { ' g ( ( ; ( , , - . ) ) }  o. 

s 

Because (p, q, (/, r, t) c ]Z, we lmve ~ t~r 'i q, and so 
1 

8 

F?(F(.~:)) ~ Z Adi ,*(~#) -(FF(.~:) 

a~{f~(F(~-.)) ~ £ ( / )  - (¢)~F(.~:)}. 
I 

According to t, he ~%ung-Fenchd inequality tile following inequMides hold: 

f*(ri] r 'i TF (), i 1,.. s. 
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T ~ fT (J (¢(,~:)) + ( :g )* (V)  _-> . . . .  - q ( ; ( z )  o~ 

(/~<;(~,) + (Vr<;)~(-p) - ( - S ~ ,  _-> o. 

Because : ~ a~  and :," ~ A tt~ere i~ -Z%~(C(~0) _-> 0, and so, equation (9) 
together with the inequalities above imply tt~e relations (i)-(v). 

(b) By (i)-(v), making the above calculations in the opposite direction 

8 
v(l)x) > g ' ) ,  ÷'*~f~ ~ * = . . . .  /__.. < . , ~  (: : : ) ( ( ) ( ~ T F ) I ~ x : ( ~ )  (:l'T~*C.)x(-;,) 

i 1 

a < : (  F(: .))  >= ~.(P~), 

which together with Theorem 3.1 ensures the strong duality for (P,\) and 
(1),O. [] 

4, The mult iobject ive  dual problem 

By using the duality developed above in the scalar ease, we can fbrmu- 
late now a multiobjective dual (D) t.o the original problem (P) which will be 
actually a vector maximum problem. \~b define the Pareto optimal solutions 
to (D) in the sense of nlaximum mid prove weak and strong duality theorems 
between (P) and its dual. 

The dual multiobjective optinfization problem (D) is introduced by 

(n) 

with 

v-max h(p, q, q', r, t, 3,, u), 
(p~q,ql j,,/,~A/cO CN 

hi(p, q, q:, r, t, ~, v:)l 
h(p, q, qr, r, t., ~, v,) 

\h. , ( l ) ,  q, q', r, t, X, ,~)/ 

h~(p, q, q~, r, ~, t ,  u) 

-] . i (r  ) -  (({rg)*(q')+(q'rf ') i~(p)+(q':r(;)*x(-p)) +'u..i, 

lbr i ] , . . .  s, the dual variables 

P (m,...,P~):z' ~ R,,~ q (q~ , . . . ,q -S '  ~ R'~, (t' ( 4 , . . . , 4 )  ~ ~ a ~, 
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)~ ( ) ~ x , . . . , < ) ~ R  " ~ × . . . x R  "~ t ( h , . . .  t~,) ~ R  ~, 

m~d the set of constraints 

( (~,, q, q', r, t, 5, ~,) - q ~ R"; -~, B 
< 

q ~ R ! ~ ,  r ' ~ R  "-~, i 1 , . . . , s . .  t ~ R ~ ,  

± ± } ;~ ~ ira, (R~), i , y  q, ;~,~,~,,~ 0 . 

i ] i ] 

DEFINITION 4.1. An dement  (p, q, (1 t, r, 2, t ,  '~) c B in said to be efficient 
(or Paret, o efficient;) with respect t;o the problem (D) if fl'om 

h(p, q, q', r, t, A, '~) >Rt  h(p, q, q', ¢% t, i ,  '~.) for (p, q, q', r, t, A, "~) c B 

it %11ows that  h(p, q, q', r, t, A, u) h(~, q, ~', r, t, i ,  u). 
The following dleorem provides the weak d u ality between the vector prob- 

lems (P) and (D). 

THEOREM 4.1. There is no ~: ~ A and no (p, q, q', r, t, A, u) ~ B fulfilli.ng 
f(F(~:)) <R% h(p,q,q%r, t ,a ,~)  and f(F(~:)) ¢ h(p,q,q' ,r ,<a,~O. 

PROOF. Let us assume that  there exist z c A and (p, q, q', r, t, l ,  'u) c B 
such that  ]i(F(.~;)) < h.~(p, q, q', r, t, ),, ~,) for all i 1 . . . .  ,s and ]Ij(F(.~;)) 
< hi(P, q, q', r, t, l ,  'u) lbr at; bast  one j c {1 , . . . ,  s}. This implies 

8 8 

(10) t T f ( F ( ~ 0 )  EXi] ' i i (F (~0)  < E),Jt , i(p,q,q' ,r , t , /k, 'uO 
i 1 g 1 

But 
8 8 8 

X.;j?,.;,(p,q,q',r,l:,A,~1,) - E t r*(r% ~ ((ti) • , - Z ( ( < 9 ) *  
'i 1 i 1 i 1 

s 

,i 1 

i ] 
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~md applying then for fi, i l , . . . ,  s, {F9, qTF ~md qn'G the Young-Fcnchel 
inequality we ha.ve 

- 2 ~ ( / )  ~/ :~(~(~t)  - ( /) :r~(~0, v ~ 1 , . . . ,  ~, 

( ~ ) (q )<  ~ - q  ( ; ( z ) ,  

~T -~" * 

Because of ~ Air i q, l: ~ R~ and x c M, we obtain 
i 1 

itj~.dp, q,q',.r,t, it,~) < ~ it~]:~(F(z)) itd,"~)TF(~:) + 6)j( ~(:~')) 

i 1 i 1 i 1 

- q ~t:r) + qTF(x) - S : r  + q'T<;(x) + S z  

8 S 

i ~ i ] 

s 

But the inequality ~ itih.i(p, q, q', r, t, it, u) < it.zfz(F(x)) contradicts re- 
i 1 i 1 

l a t i o n  (10). Thus the weak duality between (P) and (n) holds. [] 
Theorem 4.2 gives us the strong duality between the multiobjective prob- 

lems (p) and (D). 
THEOREM 4.2. Assume l,h,a~ ~he constraint qual'~/ieation ((?Q) £~ .fi~.Uilled 

and let x be a properly £[#cient elemen~ to (P). Then there exists an ej~cien~ 
solution (fi, q, q~, r, {, A, ~) ~ B to the dual (D) such that the stron9 duality 
f(F(.~:)) h.(¢, q, V, ~', L it, %) holds. 

Pr{.ooF. Let x be a properly efficient element to (P). By Definition 2.5, 

it; %llows ~ha.C there exists ~ vector X (Xl , . . . ,  its) T ~ int (R~) such tt~a.~ x 
solves the scalar problem 

(Px) inf ; ' / (F(~0).  
x E A  

Since the constraint qualification ((~Q) is fulfilled, by Theorem 3.3 there ex- 
ists an optimal solution (Pl #, q~, r, D to the dual problem (D;0 such that  the 
optimality conditions (i)-(v) are satisfied. 

By using the elements :r and (/7, (7, q", F, P) we can construct n o w  an effi- 

cient solution (p, q, q~, r, t, it, u) to (D). In order to do this let it ( i t s , . . . ,  it~)T 
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be the vector given by the proper efficiency of :r~ p (p~ . . . , p~ )T  : 

[ ( ~ , . . . ~  ~ ) f  V ,  'F ( 'FI, ° . . ,  T 's)  : ( : ~ 1  .F~) ~ a n d  [ ([1, . . . .  t~) T 

: (T~,...,~)O "r < ~t remains to define the ,-ector ', (,,,~,...,',,)~. For 
f i,..., s~ let 

i ?T ~ * 

For (p, q~ q', r~ /, A, u) one has q ~ R ~ :  q' eR~b, r '~ ~R~: i l,...,s, 

s s i 

i 1 { 1 

+ ,(7,)+ 

fi 
i 1 

(,:.%)*(4) ~ ( '' * * q F) ~(~,) i (¢ '7c)  ~ ( - ~ )  i L ( ~  #) ~'F(~-.). 

As fi A<f ~i tL fl'om the opthnality conditions derived in Theorem 3.3 we 
i 1 

obtain 
8 

,i 1 

which actually means that the element (I4 q, (/', r~ ~ A~ f~) is feasible to (D). 
Finally~ we show that  f (F(~')) h (~  q, ~'~ r~ {~ A~ u). By Theorem 3.;3 we 

have for all i 1 , . . .~8 

• * "i ] 
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1 ~ t.FC,, 
~((~.:"'.q)*(V) ~ (("F)~(¢)  ~ v~ -~x(-¢))  ~ ( / ) rF( . .0  

- , F ( ¢ )  + (<)r~,(.,) ,/:,(~,(:~.)). 

The  maximal i ty  of (p, q, 0 r, f;, {, ~, '~) follows by Theorem 4.1. [] 

191 

5. Special cases 

5.1. The classical muRiobjective optimization problem with ge- 
ometric and inequality constraints. The  last section of this paper  is 
devoted ~o some special cases of ~he primal problem (P). First,  we consider 
the classical mult iobject ive opt imizat ion problem with inequality constraints  

(P~) inf F(x)  
x6A~ 

where A' x 6 X : G(x) <R ~- 0}, X =C R "  is a convex subset,  

F ( F ~ , . . . , / ~ ) T :  X ~ R  -~, (; ( ( ; 1 , . . . , G ~ )  T. " X - - + R  ~ 

and Fi, i 1 , . . . ,  s, and Cj, j 1 , . . . ,  k, are convex flmctions. 
One may observe tha~ (P~) is a special case of the original problem 

(P). Taking the  f\mctions f ( f - I , . . . ,  o/~)'v : R.~ --+ R.~ and g ( g l , . . . ,  gk) T : 
R ~;--+R ~ ; , such tha t f z (y )  y ~ l b r a l l y ~ R ' a ~ d i  1 , . . . , s , a ~ d g j ( z )  zj 
for all z c R ~: and j 1 , . . . ,  k, we actually obtain the mult iobject ive problem 
(Pg- Defining fz, i 1 , . . . ,  s, and 9j, J 1 , . . . , /% in this way, the flmctions 

f (A, . . . ,  f.~)T and 9 (91 , . . . ,  9~.) T are obviously convex and componen-  
twise increasing. 

Applying the resuRs in the previous sections, one can determine a mul- 
t iobjective dual to (Pg- Let us also menr.ion tha t  the  scalaaized problem 
becomes 

(P9 inf ArF(.:), 

where A (AI, . . . , )%) 'v  is a. fixed vector in int (R'~), and its dual looks like 
(el. (3)) 

f 
(D50 sup ~ - 

0,,q,V #,t) c}'~ [ 
' } fF "~ * A ~*~¢~-(P[9)*(q ' ) - ( (~ 'F)]4f , ) - (q  c )x ( - f , )  i d i  t / 

i 1 
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with 

i ] 

Taking into consideration the definitions of the functions f~, i 1 , . . . ,  s, and 
gj, j 1 , . . . ,  k, respectively, we have for all i 1 , . . . ,  < 

(n) 
< '{ l a n d r  {. 0, j 1, s, j # i ,  ] . , (r{)  (k if ~{ 3 " " ,  , 

oo~ otherwise~ 

0, if  q' t~ 
( 1 2 )  ( tT f ] ) (q ' )  ] ~., otherwise, 

and 

(13) 
i 1 X 

Thus (D~) becomes 

(14) (1)~) 
p 6 R  ~ , t 6 R  ~] 

Let us notice that (D]) is nothing else but the so-called Fenchel-- 
Lagralge dua,l problem whidl has proved to be useflJ in studying the duality 
in vector optimization (cf. [171, [181). 

The constraint qualification which will guarantee the existence of strong 
duality becomes 

(~Q)  3 , ~ / ~ r i ( X ) :  [< , ,~(x)<0,  ~ • '~ ' i ~ A , ,  

where 

L: { i C { 1  ~ k} C ~ : X - ~ R i s t h e r e s t r i c t i ° n t ° X ° f a n  } ~  ' af~nefunction(~i" R " - ~ R  

 ndN: \L. 
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The  vector dual problem of (Pt) can be equivalently wri t ten as 

(D') v-max h'(p, t, A, u), with 
( p , t , , \ , v ) ~  ~ 

1/ (p,  t, 0~, ~) " , 

! ) h,.~(~ , t ,  ~, u)  1 ( (F  + 
s )~i 

i 1 , . . . ,  s, 

the dual variables 

p ( p ~ , . . . , p ~ ) ~ l ' ~  R ~ ,  t ( t , , . . . , t ~ . ) v ' ~  R k, ;~ ( A , , . . . , ; ~ . ~ ) v ' ~  R "~, 

% ( u ~ , . . . , % f f ' ~  PO, 

and the set of constraints  

± } B' p, t, )~, u)  : t c R , )~ ~ int (R ' ] ) ,  )v~'~.~ o . 
i I 

For an overview of mult iobjeet ive dual problems fbr (P') see [2] and [3[. 
The  nex~ ~wo theorems yield t.he weak and st.rong duali ty for ~he muM- 

) I  objective problems I ) and (lY) and can be derived from Theorems 4.1 and 
4.2. 

TVEOaEM ,5.1. Th.ere i.s no x ~ A '  and no (p, t, ~, u) ~ 13' fulfillir~9 F(x)  
<R~ h'(p, t, 5, ,,) ar~J. F(z) ¢ h'(;, t, X, v,). 

THEOREM 5.2. As.sume that the con.sfraints qv, al{fication ~ -~ 
.filled a.nd let :r be a prvperly e~,cient  elemer~,t to (P~). Then there ezists  an 
efficient, solut, ion (p, {, ~, a) c B t to the dual (IY) and t, he strong duaSty  I~'(~5) 

h(~, t, )~, ,,~,) holds. 

5.2. The multiobjective composed optimization problem w i t h  
geometric constraints. In this subsection ate consider the mult iobject ive 
opt imizat ion problem only with geometric constraints  

(P") v-rnin f (F (x ) )  
z f f X  

where X _ C R n .  F (F1,...,F,-r~,)'x': X - ~ R  m and f ( f - j , . . . , f s ) ' v :  
R "  -+ R ~. Assume tha t  F~, i 1 , . . . ,  m,  are convex and ]iJ,~ J 1 , . . . ,  ,s, 
are convex and componentwise increasing functions. 

Problem (P ' )  was already treated by the authors  in [19], the purpose 
hereby is to show how the results obtained in [19] <:an be obtained, as special 
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ease, from the general results %rmulated in Sections 3 and 4 of this paper. 
To this end, let us notice that problem 0? 11) can be obtained from (P) by 
taking the flmctions g~(y) 0, for all i 1~... ,  k and y c R ~. Analogmlsly 
to the previous sections first we give the dual of the scalar primal problem 

(P',0 inf A~rf(F(x)) 
x E X  

associated to (P ' )  where A (A1,. . . ,  A.~) 7' ~ int (R'~) is a fixed vector. By 
(3), the dual of (P~) is 

(D~) su~ / - 
l 

7 '  * 17' ~ *  
E A  r*@'h- ( (Pg)*(q l ) - (q  F)x(p)-(q G)x(-P) i J i  \ / ~, 

i 1 

with 

y/1 { (p ,  q, ql  ~. t) : i~ ~ p o ,  cl ~ P C ,  ( / ~  a!~, r ( r ~ , . . . ,  < ) ,  

1 

Since in t, his case 

(,<.9)*(~/) (o)*(q I) s u p { S q  1} (~°' 
if (/ 0, 

yEW ~ [ +c~, otherwise, 

mad therefore 

17' ~-, * • ) (~. (q ~ , )x( -~) )  o x ( - l O  - ~nf /r~:  x ( - f , )  
:rEX ~" 

the dual problem becomes {s  } 
(I)~() sup Z "*~ A,J~ 0 ' )  (~ITF)]~(P) -* ' - - - ~x( -~ . )  - 

pER", q~R~[!, r~ERT, i 1 
i 1 , _ . 8 ,  ~ A i r  i q 

i ::  1 

Let us mention that this dual has been introduced by B% and Wanka in [1]. 
The multiobjeetive dual to (pH) is then 

(D') v-max h ' (p ,q , r ,  A,u), 
(p,q,r,A,u)EB" 
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hi'0, q, r, .< ~)] 
h" (p, (1, r, ,~, ~u) " , 

\h!'~O, q, r,, a, ..)/ 

- 2 ~ ( r ~ ) - ~ ( ( q T F ) i ~ ( p )  t a ) ( - p ) )  tue,  i 1 , . . . , s ,  h~ ' (p ,q , r , l , u )  
$ i 

the dual variables 

p ( p l , . . . , > , ) : F  c R", q (q~ , . . . ,q , , . ) r  ~ R"", r ( / , . . . , r D ,  r ~ ~ R'% 

i 1 . . . .  ,s,  ;k ( ;k~, . . . , ;h)  T c R  "~, u ( u . u , . . . , < 0  r ~ R %  

and the set of constraints 

{0,~l, 'r,  a,v,) : q ~ R ? ,  < ~ ~ a?, 'i 1,. . . ,  s, t C int m + ) ,  s- B" 

S 8 } 

i 1 i 1 

The next two dleorems provide the weak and strong duality for the mul- 
tiobjeedve problems (P") and (D") and can be derived fl'om Theorem 4.1 
and Theorem 4.2. 

THEOREi~I 5.3. There is no x C X arm no (p, q, r, A, 'u) C B" .fulfilIin9 
/(Y(a,)) ----<R~ h"(p,q,,r,a,..) a~d / (Y(z ) )  ¢ h"(z,,q,'r,a,..). 

THEOKEM 5.4. Let x be a properly e.~,cie'n~ element to (P"). Then ~he're 
exists an e~cier#, solution (p, q, r, A, u) c B" to the d'ua, l (D") and fhe strong 
duality f ( F ( x ) )  h / ' ( p , q , r , a , u )  holds. 
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