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Abstract. We establish new comparison theorems on the oscillation of so-
lutions of a class of perturbed half-linear differential equations. These improve
the work of Elbert and Schneider [6] in which connections are found between half-
linear differential equations and linear differential equations. Our comparison the-
orems are not of Sturm type or Hille–Wintner type which are very famous. We can
apply the main results in combination with Sturm’s or Hille–Wintner’s compari-

son theorem to a half-linear differential equation of the general form (|x′|α−1
x′)′

+ a(t)|x|α−1x = 0.

1. Introduction

Over the past four decades a great deal of articles have been devoted to
the study of oscillation of solutions of half-linear differential equations. For
example, those results can be found in [1, 2, 3, 4, 5, 6, 9, 10, 11, 12]. Espe-
cially, it is well-known that all nontrivial solutions of a half-linear differential
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equation of the form

(1.1)
( |x′|α−1

x′
) ′ + λ

tα+1
|x|α−1x = 0, t > t0

with α > 0, λ > 0 and t0 = 0, are oscillatory if

λ >

(
α

α + 1

)α+1

;

otherwise, they are nonoscillatory. This fact means that
(
α/(α + 1)

)α+1 is
the lower bound for all nontrivial solutions of (1.1) to be oscillatory. Such
a number is generally called the oscillation constant (for example, see [7, 8,
14, 15, 16]).

Let us add a perturbation to equation (1.1) when λ is the oscillation
constant and consider the perturbed half-linear differential equation

(Eα)
( |x′|α−1

x′
) ′ + 1

tα+1

{(
α

α + 1

)α+1

+
(

α

α + 1

)α

δ(t)

}
|x|α−1x = 0,

where δ(t) is positive and continuous on some half-line (t0,∞). Elbert and
Schneider [6] have investigated the asymptotic behaviour of solutions of (Eα).
Using their results, we can present the following statements.

Theorem A. Let α > 1. If equation (Eα) has a nontrivial oscillatory
solution, then all nontrivial solutions of (E1) are oscillatory.

Theorem B. Let 0 < α < 1. If equation (E1) has a nontrivial oscillatory
solution, then all nontrivial solutions of (Eα) are oscillatory.

Remark 1.1. Sturm’s separation theorem holds for half-linear differen-
tial equations as well as for linear differential equations. Hence, if there
exists an oscillatory (respectively, a nonoscillatory) solution of (Eα), then all
nontrivial solutions of (Eα) are oscillatory (respectively, nonoscillatory). In
other words, oscillatory solutions and nonoscillatory solutions cannot coexist
in equation (Eα).

It follows from the fact mentioned in the first paragraph and Sturm’s
comparison theorem for half-linear differential equations that if

(1.2) lim inf
t→∞ δ(t) > 0,

then all nontrivial solutions of (Eα) are oscillatory. As to Sturm’s separation
and comparison theorems, see for example [5, 12, 11]. On the other hand, if
condition (1.2) fails to hold, then there is some possibility that equation (Eα)
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SECOND-ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS 167

has a nonoscillatory solution. One of the most interesting cases is that δ(t)
= λ/(log t)2 with λ > 0. In this case, if λ > 1/2, then all nontrivial solutions
of (Eα) are oscillatory; otherwise, they are nonoscillatory (for details, see [6]).

We may regard Theorems A and B as comparison theorems between the
linear differential equation

(E1) x′′ +
1
t2

{
1
4

+
1
2
δ(t)

}
x = 0

and half-linear differential equations of the form (Eα). Let α and β be pos-
itive numbers satisfying α < 1 < β. Then, combining Theorems A and B,
we get the following conclusion: if equation (Eβ) has a nontrivial oscilla-
tory solution, then all nontrivial solutions of (Eα) are oscillatory. A natural
question now arises as to whether or not the converse proposition is also true.

The first purpose of this paper is to extend Theorems A and B to a
comparison theorem between any two half-linear differential equations. The
second purpose is to give an answer to the above question. Our main results
are stated as follows:

Theorem 1.1. Let 0 < α < β. If equation (Eβ) has a nontrivial oscilla-
tory solution, then all nontrivial solutions of (Eα) are oscillatory.

Remark 1.2. Theorem 1.1 is a generalization of Theorems A and B.
To put it precisely, Theorem 1.1 coincides with Theorem A (respectively,
Theorem B) when α = 1 (respectively, β = 1).

Theorem 1.2. Let 0 < α < β. If equation (Eα) has a nontrivial oscilla-
tory solution, then all nontrivial solutions of

(1.3)
( |x′|β−1

x′
) ′ + 1

tβ+1

{(
β

β + 1

)β+1

+ νδ(t)

}
|x|β−1x = 0

are oscillatory, where ν >
(
β/(β + 1)

)β.

Remark 1.3. It is essential that ν is greater than
(
β/(β + 1)

)β in The-
orem 1.2. Unfortunately, even if equation (Eα) has a nontrivial oscillatory
solution, we cannot judge whether all nontrivial solutions of (Eβ) are oscil-
latory or not.

Remark 1.4. From Theorems 1.1 and 1.2, we see that the oscillation
constant for equation (Eα) with δ(t) = λ/(log t)2 is 1/2 for any α > 0 (for a
detailed explanation, see Section 4).
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2. Riccati technique

Consider the half-linear differential equation

(2.1)
( |x′|p−1

x′
) ′ + 1

tp+1

{(
p

p + 1

)p+1

+ h(t)

}
|x|p−1x = 0

with p > 0 a fixed real number, where h(t) is positive and continuous on
(0,∞). Using Riccati’s transformation, we prepare some lemmas below. To
this end, we denote

Hp(ξ) = p

{
ξ(p+1)/p − ξ +

pp

(p + 1)p+1

}

for ξ > 0 and

γp =
(

p

p + 1

)p

.

Remark 2.1. The number γp is decreasing with respect to p. In fact, if
f(x) = x

(
log x− log (x + 1)

)
for x > 0, then we have

d

dx
f(x) = log

x

x + 1
+ 1− x

x + 1
< 0

for x > 0. Hence, we obtain

log γβ = f(β) < f(α) = log γα < 0,

namely, γβ < γα < 1 for any α and β satisfying 0 < α < β. It is also clear
that γp > 1/e for all p > 0.

Lemma 2.1. Let ξ(s) be a positive function on [s0,∞) with s0 > 0 satis-
fying

(2.2) ξ̇(s) + Hp

(
ξ(s)

)
5 0.

Then it is nonincreasing and tends to γp as s →∞.
Proof. From

Hp(γp) = p

{(
p

p + 1

)p+1

−
(

p

p + 1

)p

+
pp

(p + 1)p+1

}
= 0

and
d

dξ
Hp(ξ) = (p + 1)ξ1/p − p,
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we see that Hp(ξ) = 0 for ξ > 0 and Hp(ξ) = 0 if and only if ξ = γp.
Since ξ(s) is positive for s = s0, we have

ξ̇(s) 5 −Hp

(
ξ(s)

)
5 0

by (2.2), namely, ξ(s) is nonincreasing. Hence, there exists a µ = 0 such
that ξ(s) ↘ µ as s →∞. Suppose that µ 6= γp. If µ > γp, then ξ(s) > µ
> (µ + γp)/2 > γp for s = s0. If µ < γp, then µ < ξ(s) < (µ + γp)/2 < γp for
s sufficiently large. In either case,

ξ̇(s) 5 −Hp

(
ξ(s)

)
5 −Hp

(
(µ + γp)/2

)
< 0

for s sufficiently large, which yields that ξ(s) tends to −∞ as s →∞. This
contradicts the assumption that ξ(s) is positive for s = s0. Thus, ξ(s) tends
to γp as s →∞. ¤

We next give a sufficient condition for all nontrivial solutions of (2.1) to
be nonoscillatory.

Lemma 2.2. Let ξ(s) be a positive function on [s0,∞) with s0 > 0 satis-
fying

(2.3) ξ̇(s) + Hp

(
ξ(s)

)
+ h(es) 5 0,

where h is the function defined in equation (2.1). Then all nontrivial solu-
tions of (2.1) are nonoscillatory.

Proof. Define c(s) = −ξ̇(s)−Hp

(
ξ(s)

)
for s = s0. Then we have

(2.4) c(s) = h(es) for s = s0.

Let u(s) be the positive function defined by

u(s) = exp
( ∫ s

s0

ξ(σ)1/pdσ

)

for s = s0. Then we get u̇(s) = u(s)ξ(s)1/p > 0 for s = s0, namely,

ξ(s) =
(

u̇(s)
u(s)

)p

for s = s0.

Differentiate ξ(s) to obtain

ξ̇(s) =

(
u̇(s)p) · u(s)p − pu(s)p−1u̇(s)p+1

u(s)2p =

(
u̇(s)p) ·
u(s)p − p

(
u̇(s)
u(s)

)p+1
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for s = s0. Hence, we have

c(s) = −
(
u̇(s)p) ·
u(s)p + p

(
u̇(s)
u(s)

)p+1

− p

{(
u̇(s)
u(s)

)p+1

−
(

u̇(s)
u(s)

)p

+
pp

(p + 1)p+1

}

= −
(
u̇(s)p) ·
u(s)p + p

(
u̇(s)
u(s)

)p

−
(

p

p + 1

)p+1

,

and therefore, we see that the positive function u(s) is a nonoscillatory so-
lution of the equation

(2.5)
( |u̇|p−1u̇

) · − p|u̇|p−1u̇ +

{(
p

p + 1

)p+1

+ c(s)

}
|u|p−1u = 0.

Changing variable t = es, we can transform equation (2.5) into the equa-
tion

(2.6)
( |x′|p−1

x′
) ′ + 1

tp+1

{(
p

p + 1

)p+1

+ c(log t)

}
|x|p−1x = 0.

Let x(t) be the solution of (2.6) corresponding to u(s). Then x(t) is posi-
tive for t = es0 . From (2.4) it follows that c(log t) = h(t) for t = es0 . Hence,
by Sturm’s comparison theorem for half-linear differential equations, all non-
trivial solutions of (2.1) are nonoscillatory. ¤

3. Proof of the main theorems

By means of Lemmas 2.1 and 2.2, we can prove our comparison theorems
for half-linear differential equations of the form (Eα).

Proof of Theorem 1.1. By way of contradiction, we suppose that
equation (Eβ) has an oscillatory solution and equation (Eα) has a nonoscilla-
tory solution x(t). We may assume that x(t) is eventually positive, because
the proof of the case that x(t) is eventually negative is carried out in the
same way. Hence, there exists a T > t0 such that x(t) > 0 for t = T , and
therefore,

(
∣∣x′(t)∣∣α−1

x′(t))
′ = − 1

tα+1

{(
α

α + 1

)α+1

+ γαδ(t)

}
∣∣x(t)

∣∣α−1
x(t) < 0

(3.1)
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for t = T . From this we see that x′(t) is also positive for t = T . In fact, if
there exists a t1 = T such that x′(t1) 5 0, then by (3.1) we have

∣∣x′(t)∣∣α−1
x′(t) <

∣∣x′(t1)
∣∣α−1

x′(t1) 5 0

for t > t1. Hence, we can find a t2 > t1 such that x′(t2) < 0. By (3.1) again,
we obtain ∣∣x′(t)∣∣α−1

x′(t) 5
∣∣x′(t2)

∣∣α−1
x′(t2) < 0

for t = t2. We therefore conclude that x′(t) 5 x′(t2) < 0 for t = t2, which
implies that

x(t) 5 x′(t2)(t− t2) + x(t2) → −∞
as t →∞. This is a contradiction to the assumption that x(t) is eventually
positive.

Making the change of variable s = log t, we can rewrite equation (Eα) in
the form

(3.2)
( |u̇|α−1u̇

) · − α|u̇|α−1u̇ +

{(
α

α + 1

)α+1

+ γαδ(es)

}
|u|α−1u = 0.

Let u(s) be the solution of (3.2) which corresponds to x(t). Then u(s) = x(t)
> 0 and u̇(s) = tx′(t) > 0 for s = log T . Define

ξ(s) =
(

u̇(s)
u(s)

)α

and differentiate ξ(s) to obtain

ξ̇(s) =

(
u̇(s)α) ·
u(s)α − α

(
u̇(s)
u(s)

)α+1

.

Using (3.2), we have

ξ̇(s) = α

(
u̇(s)
u(s)

)α

−
(

α

α + 1

)α+1

− γαδ(es)− α

(
u̇(s)
u(s)

)α+1

(3.3)

= −α

{
ξ(s)(α+1)/α − ξ(s) +

αα

(α + 1)α+1

}
− γαδ(es)

= −Hα

(
ξ(s)

) − γαδ(es)
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for s = log T .
Here we show that there exists an ε0 > 0 such that

(3.4)
γα

γβ
Hβ

(
γβ

γα
ξ

)
5 Hα(ξ)

for γα 5 ξ 5 γα + ε0. For this purpose, define

F1(ξ) = Hα(ξ)− γα

γβ
Hβ

(
γβ

γα
ξ

)
.

Then, differentiating F1(ξ) three times, we obtain

d

dξ
F1(ξ) = (α + 1)ξ1/α − α− (β + 1)

(
γβ

γα

)1/β

ξ1/β + β,

d2

dξ2
F1(ξ) =

α + 1
α

ξ(1−α)/α − β + 1
β

(
γβ

γα

)1/β

ξ(1−β)/β,

d3

dξ3
F1(ξ) =

1− α2

α2
ξ(1−2α)/α − 1− β2

β2

(
γβ

γα

)1/β

ξ(1−2β)/β,

so that

(3.5) F1(γα) =
d

dξ
F1(ξ)

∣∣∣∣
ξ=γα

=
d2

dξ2
F1(ξ)

∣∣∣∣
ξ=γα

= 0

and

(3.6)
d3

dξ3
F1(ξ)

∣∣∣∣
ξ=γα

=
β − α

αβ

(
α + 1

α

)2α

> 0.

From (3.6) we can choose an ε0 > 0 such that

d3

dξ3
F1(ξ) > 0 for γα 5 ξ 5 γα + ε0.

Hence, taking account of this estimation and (3.5), we see that F1(ξ) = 0 for
γα 5 ξ 5 γα + ε0, as required.

Because of (3.3), Lemma 2.1 is available for p = α and s0 = log T , and
therefore, there exists an s1 > s0 such that γα 5 ξ(s) 5 γα + ε0 for s = s1.
Hence, together with (3.3) and (3.4), we get

ξ̇(s) +
γα

γβ
Hβ

(
γβ

γα
ξ(s)

)
+ γαδ(es) 5 0
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for s = s1. Let η(s) = γβξ(s)/γα. Then we see that η(s) satisfies

η̇(s) + Hβ

(
η(s)

)
+ γβδ(es) 5 0

for s = s1. Hence, from Lemma 2.2 with p = β and h(es) = γβδ(es) we con-
clude that all nontrivial solutions of (Eβ) are nonoscillatory. This contradicts
the assumption that equation (Eβ) has an oscillatory solution. ¤

Proof of Theorem 1.2. Suppose to the contrary that equation (Eα)
has an oscillatory solution and equation (1.3) has a nonoscillatory solution
x(t). Then, without loss of generality, we may assume that x(t) is eventually
positive. Let T > t0 be a number satisfying x(t) > 0 for t = T . The same
manner as in the proof of Theorem 1.1, we see that x′(t) is also positive for
t = T .

By putting t = es, equation (1.3) becomes

( |u̇|β−1u̇
) · − β|u̇|β−1u̇ +

{(
β

β + 1

)β+1

+ (γβ + ε)δ(es)

}
|u|β−1u = 0

for some ε > 0, where u(s) = x(es) = x(t). Define

ξ(s) =
(

u̇(s)
u(s)

)β

,

which is positive for s = log T . A simple calculation shows that

(3.7) ξ̇(s) = −Hβ

(
ξ(s)

) − (γβ + ε)δ(es)

for s = log T . Hence, it follows from Lemma 2.1 with p = β and s0 = log T
that

(3.8) ξ(s) ↘ γβ as s →∞.

Let

c =
γβ + ε

γα
and η(s) =

ξ(s) + ε

c
.

Then, from (3.7) and (3.8) it turns out that

(3.9) η̇(s) +
1
c
Hβ(cη(s)− ε) + γαδ(es) = 0

for s = s0 and

(3.10) η(s) ↘ γα as s →∞,
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respectively.
To show that there exists an ε0 > 0 such that

(3.11) Hα(η) 5 1
c
Hβ(cη − ε)

for γα 5 η 5 γα + ε0, we define

F2(η) =
1
c
Hβ(cη − ε)−Hα(η).

Differentiating F2(η) twice, we have

d

dη
F2(η) = (β + 1)(cη − ε)1/β − β − (α + 1)η1/α + α,

d2

dη2
F2(η) =

c(β + 1)
β

(cη − ε)(1−β)/β − α + 1
α

η(1−α)/α,

so that

F2(γα) =
d

dξ
F2(η)

∣∣∣∣
η=γα

= 0

and
d2

dξ2
F2(η)

∣∣∣∣
η=γα

=
ε

γαγβ
> 0.

Hence, we can select an ε0 > 0 such that

d2

dξ2
F2(η) > 0 for γα 5 η 5 γα + ε0,

and therefore, F2(η) = 0 for γα 5 η 5 γα + ε0. Thus, the inequality (3.11) is
shown.

By (3.10), there exists an s1 > s0 such that γα 5 η(s) 5 γα +ε0 for s = s1.
Hence, together with (3.9) and (3.11), we have

η̇(s) + Hα

(
η(s)

)
+ γαδ(es) 5 0

for s = s1. Using Lemma 2.2 with p = α and h(es) = γαδ(es), we see that all
nontrivial solutions of (Eα) are nonoscillatory. This is a contradiction to the
assumption that equation (Eα) has an oscillatory solution. ¤
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4. Discussion and another comparison theorem

From Theorem 1.1 it turns out that if equation

(E3)
(
(x′)3

) ′ + 1
t4

{(
3
4

)4

+
(

3
4

)3

δ(t)

}
x3 = 0

has a nontrivial oscillatory solution, then all nontrivial solutions of

(E2)
( |x′|x′) ′ + 1

t3

{(
2
3

)3

+
(

2
3

)2

δ(t)

}
|x|x = 0

are oscillatory. Indeed, as mentioned in Section 1, all nontrivial solutions of
(E3) and those of (E2) are oscillatory in the case that δ(t) = λ/(log t)2 with
λ > 1/2. However, the above relation between equations (E3) and (E2) is
not made clear by Theorems A and B. To be precise, Theorems A and B
are inapplicable to the case that both α and β are greater (respectively, less)
than 1.

When α = 1 and δ(t) = λ/(log t)2, equation (Eα) becomes the linear
equation

(4.1) x′′ +
1
t2

{
1
4

+
λ

2(log t)2

}
x = 0,

which is called the Riemann–Weber version of Euler differential equations.
It is well-known that if λ > 1/2, then all nontrivial solutions of (4.1) are
oscillatory; otherwise they are nonoscillatory (see, for example [7, 13, 14, 16,
17]). To put it another way, the oscillation constant for equation (4.1) is 1/2.

We will show that the situation for equation (Eα) with δ(t) = λ/(log t)2

is the same as that for equation (4.1). Suppose that λ > 1/2. In the case that
0 < α < 1, it is clear from Theorem 1.1 (β = 1) that all nontrivial solutions
of (Eα) with δ(t) = λ/(log t)2 are oscillatory. Consider the case that α > 1.
Let λ̄ be a number satisfying λ > λ̄ > 1/2. Then equation (E1) with δ(t)
= λ̄/(log t)2 has a nontrivial oscillatory solution. Hence, by Theorem 1.2
(α = 1 and β is rewritten as α), all nontrivial solutions of the equation

(4.2)
( |x′|α−1

x′
) ′ + 1

tα+1

{(
α

α + 1

)α+1

+
νλ̄

(log t)2

}
|x|α−1x = 0

are oscillatory, where ν =
(
α/(α + 1)

)α
λ/λ̄ >

(
α/(α + 1)

)α. Since νλ̄ =(
α/(α + 1)

)α
λ, equation (4.2) is equivalent to equation (Eα) with δ(t)
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= λ/(log t)2. Thus, if δ(t) = λ/(log t)2 with λ > 1/2, then all nontrivial so-
lutions of (Eα) are oscillatory for any α > 0. Next, we suppose that 0 < λ
< 1/2. In the case that α > 1, it is obvious from the contraposition of The-
orem 1.1 (α = 1 and β is rewritten as α) that all nontrivial solutions of (Eα)
with δ(t) = λ/(log t)2 are nonoscillatory. Consider the case that 0 < α < 1.
We can choose a λ̂ such that λ < λ̂ < 1/2. Since λ̂ < 1/2, equation (E1) with
δ(t) = λ̂/(log t)2 has a nonoscillatory solution. Let ν = λ̂/(2λ) > 1/2. Then
equation (E1) with δ(t) = λ̂/(log t)2 coincides with

x′′ +
1
t2

{
1
4

+
νλ

(log t)2

}
x = 0.

Hence, by the contraposition of Theorem 1.2 (β = 1), all nontrivial solutions
of (Eα) with δ(t) = λ/(log t)2 are nonoscillatory. Thus, if δ(t) = λ/(log t)2

with 0 < λ < 1/2, then all nontrivial solutions of (Eα) are nonoscillatory for
any α > 0.

Remark 4.1. Elbert and Schneider [6, Corollary 2] have already shown
that if δ(t) = λ/(log t)2, then the oscillation constant for equation (Eα) is
1/2 (their original statement is written in a slightly different form).

Let us now look at Theorem 1.2 from a different angle. To this end,
consider the more general half-linear differential equation

(4.3)
( |x′|α−1

x′
) ′ + a(t)|x|α−1x = 0,

where α > 0 and a(t) is positive and continuous on (t0,∞) for some t0 = 0.
Then, all solutions of (4.3) are continuable in the future (refer to [5] for
details). Hence, it is worth while to discuss whether solutions of (4.3) are
oscillatory or not.

The Hille–Wintner comparison theorem has been widely studied by many
authors. For example, Kusano and Yoshida [9] presented the following com-
parison theorem of Hille–Wintner type for half-linear differential equations
(see also [10]).

Theorem C. Consider

(4.4)
( |x′|α−1

x′
) ′ + b(t)|x|α−1x = 0,

where b(t) is positive and continuous on (t0,∞). Suppose that
∫ ∞

t
a(s) ds 5

∫ ∞

t
b(s) ds

for all sufficiently large t. If all nontrivial solutions of (4.3) are oscillatory,
then those of (4.4) are also oscillatory.
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We can regard the number α in equations (4.3) and (4.4) as a positive
parameter. In Theorem C, needless to say, the parameter α is fixed and
the integral of the coefficient a(t) is compared with that of the coefficient
b(t). Let us fix the coefficient a(t) and move the parameter α to the con-
trary. Then we have another comparison theorem for half-linear differential
equations.

Theorem 4.1. Consider

(4.5)
( |x′|β−1

x′
) ′ + a(t)|x|β−1x = 0,

where a(t) is the same as in equation (4.3). Suppose that 0 < α < β. If
all nontrivial solutions of (4.3) are oscillatory, then those of (4.5) are also
oscillatory.

Proof. The proof is by contradiction. We suppose that all nontrivial
solutions of (4.3) are oscillatory and equation (4.5) has a nonoscillatory so-
lution x(t). Then, without loss of generality, we may assume that x(t) is
eventually positive. As in the proof of Theorem 1.1, we see that x′(t) is also
eventually positive.

Define

ξ(t) =
(

x′(t)
x(t)

)β

.

Then there exists a T > t0 such that ξ(t) > 0 and

(4.6) ξ′(t) = −a(t)− βξ(t)(β+1)/β < 0

for t = T , namely, ξ(t) is decreasing and bounded from below. Hence, we
can find a µ = 0 such that ξ(t) ↘ µ as t →∞, and therefore, we have

ξ′(t) = −a(t)− βξ(t)(β+1)/β 5 −βµ(β+1)/β

for t = T . If µ > 0, then ξ(t) has to tend to −∞ as t →∞. This contradicts
the fact that ξ(t) is eventually positive. Thus, ξ(t) tends to zero as t →∞.
From this property of ξ(t) and the assumption that 0 < α < β, we see that
there exists a t1 > T such that

αξ(t)(α+1)/α 5 βξ(t)(β+1)/β

for t = t1. Hence, together with (4.6), we have

(4.7) ξ′(t) 5 −a(t)− αξ(t)(α+1)/α

for t = t1.
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It is easy to check that the function

y(t) = exp
(∫ t

t1

ξ(τ)1/αdτ

)

is a nonoscillatory solution of
( |x′|α−1

x′
) ′ + b(t)|x|α−1x = 0,

where b(t) = −ξ′(t)− αξ(t)(α+1)/α. From (4.7) it follows that a(t) 5 b(t) for
t = t1. Hence, Sturm’s comparison theorem implies that (4.3) also has a
nonoscillatory solution. This is a contradiction. ¤

In the case that

(4.8) tα+1a(t) >

(
α

α + 1

)α+1

for t sufficiently large, we can rewrite equation (4.3) in the form (Eα) with

δ(t) =
(

α + 1
α

)α

tα+1a(t)− α

α + 1
> 0.

Suppose that all nontrivial solutions of (4.3) are oscillatory. Then, from
Theorem 1.2 we see that all nontrivial solutions of

( |x′|β−1
x′

) ′ + c(t)|x|β−1x = 0

with

c(t) =
1

tβ+1

{(
β

β + 1

)β+1

+

((
β

β + 1

)β

+ ε

)
δ(t)

}

are oscillatory for some ε > 0. Since 0 < α < β, we have

c(t) =
1

tβ+1

{(
β

β + 1

)β+1

+

((
β

β + 1

)β

+ ε

)
δ(t)

}

<
1

tα+1

{(
α

α + 1

)α+1

+
(

α

α + 1

)α

δ(t)

}
= a(t)

for t sufficiently large. Hence, from Theorem C we conclude that all non-
trivial solutions of (4.5) are also oscillatory. This means that Theorem 1.2
is sharper than Theorem 4.1 in the case (4.8).
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