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ON THE CURVATURE
OF A GENERALIZATION OF CONTACT

METRIC MANIFOLDS

L. DI TERLIZZI (Bari)∗

Abstract. We consider a genaralization of contact metric manifolds given

by assignment of 1-forms η1, . . . , ηs and a compatible metric g on a manifold.
With some integrability conditions they are called almost S-manifolds. We give a
sufficient condition regarding the curvature of an almost S-manifold to be locally
isometric to a product of a Euclidean space and a sphere.

Introduction

In recent years there has been a very extensive research done in contact
geometry. Within the subject of contact geometry there is also the class of
contact metric geometry and its generalizations [3]. The study of the curva-
ture of such manifolds is of our interest in the present paper.

Let (M2n+s, g) be a Riemannian manifold equipped with a metric f -
structure, i.e. an endomorphism ϕ of the tangent bundle such that ϕ3 + ϕ
= 0 and which is compatible with g; the compatibility means that for each
X, Y ∈ Γ(TM) we have g

(
ϕ(X), Y

)
= −g

(
X, ϕ(Y )

)
. Such manifolds are a

natural generalization of almost Hermitian manifolds (the case when ϕ is an
isomorphism of TM). Moreover we assume that the kernel of ϕ is paral-
lelizable, i.e. there exist global vector fields ξ1, . . . , ξs spanning kerϕ. The
study of such manifolds was started by D. E. Blair, S. I. Goldberg, K. Yano,
cf. [1, 7, 8]. Let η1, . . . , ηs be the dual 1-forms of ξ1, . . . , ξs. According to
the definitions of [6], the set consisting of M with the geometric structures
(ϕ, ξi, η

j , g) (i, j = 1, . . . , s), g a compatible metric, is called an almost S-
structure if dηk = F for all k = 1, . . . , s where F is the Sasaki 2-form defined
by g and ϕ. The almost S-structures were also studied by J. L. Cabrerizo,
L. M. Fernández, M. Fernández [4].
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In the present paper we study almost S-structures. In Section 2 we prove
two theorems. In Theorem 2.1 we prove that given an almost S-manifold
(M2n+s, ϕ, ξi, η

j , g) (n > 1) satisfying RXY ξi = 0, for X,Y ∈ Γ(TM) then
M is locally isometric to the product of the flat (n + s)-dimensional Eu-
clidean space and the n-dimensional sphere of curvature 4s. If in the above
theorem we assume that n = 1 then we get that M is flat; this is proved in
Theorem 2.2.

In Section 3 we give a method of constructing a metric almost S-structure
starting from global 1-forms on M satisfying some non-degeneracy condi-
tions. Under these conditions we prove the existence of a compatible Rie-
mannian metric and s global orthonormal vector fields; these vector fields
correspond to the Reeb vector field in the contact case. Then we apply this
method in a construction of an example of an S-structure on R2n+s; we
calculate also the associated Riemannian and Ricci curvature tensors.

1. Preliminaries

Let M be a (2n + s)-dimensional manifold equipped with an f -structure
with a parallelizable kernel, for brevity we call it an f.pk-structure; this means
that there are given on M an f -structure ϕ, s global vector fields ξ1, . . . , ξs

and 1-forms η1, . . . , ηs on M satisfying the conditions

ϕ(ξi) = 0, ηi ◦ ϕ = 0, ϕ2 = −I +
s∑

j=1

ηj ⊗ ξj , ηi(ξj) = δi
j

for all i, j = 1, . . . , s. We denote by D the bundle Imϕ. On such a manifold
a (2, 1)-tensor

Nϕ := [ϕ,ϕ] + 2
s∑

i=1

dηi ⊗ ξi

is defined where [ϕ,ϕ] is the Nijenhuis torsion of ϕ, i.e.

[ϕ,ϕ](X, Y ) = [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X, ϕY ] + ϕ2[X, Y ].

for all X,Y ∈ Γ(TM); we denote here by Γ(TM) the module of differentiable
sections of the bundle TM . The structure (ϕ, ξi, η

j) on M (i, j = 1, . . . , s) is
said to be normal if and only if Nϕ = 0.

On a manifold equipped with an f.pk-structure there always exists a com-
patible Riemannian metric g in the sense that for each X,Y ∈ Γ(TM)

(1.1) g(X,Y ) = g
(
ϕ(X), ϕ(Y )

)
+

s∑

j=1

ηj(X)ηj(Y ).
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However such a metric on M is not unique: we fix one of them; then the
structure obtained is called a metric f.pk-structure. Let F be the Sasaki form
of ϕ defined by F (X,Y ) := g(X,ϕY ) for X,Y ∈ Γ(TM). It may be observed
that D is the orthogonal complement of the bundle kerϕ = 〈ξ1, . . . , ξs〉. Then
the manifold M is equipped with an f -structure ϕ, the complemented frame
ξ1, . . . , ξs, the 1-forms η1, . . . , ηs, a compatible metric g and the Sasaki 2-
form.

We recall the following definitions fundamental for our paper.
Definition 1.1. The metric f.pk-manifold (M, ϕ, ξi, η

j , g) is said to be
an almost S-manifold if and only if dη1 = · · · = dηs = F .

Definition 1.2. The metric f.pk-manifold (M, ϕ, ξi, η
j , g) is said to be

an S-manifold if and only if it is an almost S-manifold and it is normal.
The definition of an S-structure was given by D. E. Blair in his semi-

nal paper, cf. [1]. In that paper K, S, C-structures are also defined which
are direct generalizations of the normal almost contact metric, Sasakian and
cosymplectic manifolds. The almost S-structures were studied, without be-
ing precisely named, by J. L. Cabrerizo, L. M. Fernández and M. Fernández
[4]. Then K. Duggal, S. Ianus and A. M. Pastore [6], also studied such man-
ifolds and gave them the name almost S-manifold.

On an almost S-manifold (M, ϕ, ξi, η
j , g) (i, j = 1, . . . , s) the operators

hi := (1/2)Lξiϕ for i = 1, . . . , s are defined, cf. [4, (2.5)]. We use extensively
the properties of these operators in the present paper. In particular these
operators are self adjoint, anticommute with ϕ and for each i, j = 1, . . . , s

(1.2) hiξj = 0,

cf. [4]. Moreover we have the following identities, cf. [6]:

∇Xξi = −ϕX − ϕhiX,(1.3)

∇ξiϕ = 0,(1.4)

∇ξiξj = 0,(1.5)

(∇Xϕ)Y + (∇ϕXϕ)ϕY = 2g(ϕX, ϕY )ξ + η(Y )ϕ2X −
s∑

k=1

ηk(Y )hk(X)

(1.6)

where ∇ is the Levi-Civita connection of g, X ∈ Γ(TM) and i, j = 1, . . . , s.
Furthermore, we shall frequently use the following curvature identities re-
lated to the Levi-Civita connection of g:

RξiXξi − ϕ(RξiϕXξi) = 2(h2
i X + ϕ2X),(1.7)
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RξiXξj − ϕ(RξiϕXξj) = 2
(
(hi ◦ hj)X + ϕ2X

)
(1.8)

for each X ∈ Γ(TM) and i, j = 1, . . . , s. These immediately follow by com-
bining the first equation on p. 158 of [4] and (1.3).

2. Curvature properties of almost S-structures

Throughout this section we suppose that an almost S-manifold (M,ϕ, ξi,

ηj , g) (i, j = 1, . . . , s), with dimM = 2n + s is given. We denote by η := η1 +
· · ·+ ηs, ξ := ξ1 + · · ·+ ξs, D := Imϕ and by F the associated Sasaki 2-form.
We use the Levi-Civita connection ∇ associated with g; by R we denote the
induced Riemannian curvature tensor.

Lemma 2.1. Let (M,g,ϕ, ξi, η
j) be an almost S-manifold. Then the cur-

vature tensor satisfies the identities

g(RξiXY, Z) = −(∇XF )(Y, Z)− g(
(∇Y (ϕ ◦ hi)

)
Z,X)(2.1)

+ g(
(∇Z(ϕ ◦ hi)

)
Y, X)

and

g(RξiXY, Z)− g(RξiXϕY, ϕZ) + g(RξiϕXY, ϕZ) + g(RξiϕXϕY,Z)(2.2)

= 2
(

(∇hiXF )(Y,Z) + η(Z)g(X + hiX, Y )− η(Y )g(X + hiX,Z)

−
s∑

k=1

ηk(X)
(
ηk(Y )η(Z)− ηk(Z)η(Y )

))

for each i = 1, . . . , s and X, Y, Z ∈ Γ(TM).

Proof. From (1.3) we have

RY Zξi = −(∇Y ϕ)Z + (∇Zϕ)Y − (∇Y (ϕ ◦ hi)
)
Z +

(∇Z(ϕ ◦ hi)
)
Y.

Then, since g
(
(∇Y ϕ)Z, X

)
= (∇Y F )(X,Z), we get

g
(
RξiXY,Z

)
= g(RY Zξi, X) = −(∇Y F )(X,Z) + (∇ZF )(X, Y )

− g
(∇Y (ϕ ◦ hi)

)
Z,X) + g

(∇Z(ϕ ◦ hi)
)
Y, X).
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GENERALIZATION OF CONTACT METRIC MANIFOLDS 229

Using the last equation and the identity (∇XF )(Y, Z) + (∇Y F )(Z, X) +
(∇ZF )(X, Y ) = 0, we obtain (2.1). We introduce the operators A and Bi,
i ∈ {1, . . . , s} defined by

A(X,Y, Z) := −(∇XF )(Y, Z) + (∇XF )(ϕY, ϕZ)(2.3)

− (∇ϕXF )(Y, ϕZ)− (∇ϕXF )(ϕY, Z)

and

Bi(X, Y, Z) := −g(ϕX,
(∇Y (ϕ ◦ hi)

)
(ϕZ))− g(ϕX,

(∇ϕY (ϕ ◦ hi)
)
Z)

(2.4)

− g(X,
(∇Y (ϕ ◦ hi)

)
Z) + g(X,

(∇ϕY (ϕ ◦ hi)
)
(ϕZ))

for each X, Y, Z ∈ Γ(TM). By a direct computation and using (2.1) we get
that the left hand side of (2.2) equals A(X,Y,Z)+Bi(X,Y,Z)−Bi(X,Z,Y ).
Since ηj

(
(∇ϕY hi)Z

)
= ηj

(∇ϕY (hiZ)
)

we can write

Bi(X,Y, Z) = −g(X,∇Y

(
(ϕ ◦ hi)Z

)
) + g

(
X, (ϕ ◦ hi)(∇Y Z)

)
(2.5)

+ g(X,∇ϕY

(
(ϕ ◦ hi ◦ ϕ)Z

)
) + g

(
X, (ϕ ◦ hi)(∇ϕY ϕZ)

)

+ g(X, (ϕ ◦ hi)
(∇ϕY (ϕZ)

)
)− g(ϕX,∇Y

(
(ϕ ◦ hi ◦ ϕ)Z

)
)

+ g(ϕX, (ϕ ◦ hi)
(∇Y (ϕZ)

)
)− g(ϕX,∇ϕY

(
(ϕ ◦ hi)Z

)
)

+ g(ϕX, (ϕ ◦ hi)
(∇ϕY (hiZ)

)
) = −g

(
X, (∇Y ϕ)(hiZ)

)

+ g(X,hi

(
(∇Y ϕ)Z

)
) + g(X, (hi ◦ ϕ)

(
(∇ϕY ϕ)Z

)
)

+ g(X, ϕ
(
(∇ϕY ϕ)(hiZ)

)
) +

s∑

j=1

ηj
(
(∇ϕY hi)Z

)
ηj(X).

Moreover, from (1.3)–(1.6) it follows that

(
ϕ ◦ (∇ϕXϕ)

)
Y = (∇ϕXϕ2)Y − (∇ϕXϕ)(ϕY ) =

s∑

j=1

(
(∇ϕXηj)Y ξj

)

+
s∑

j=1

(
ηj(Y )∇ϕXξj

) − (∇ϕXϕ)(ϕY ) =
s∑

j=1

((∇ϕX)
(
g(ξj , Y )

)
ξj
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− g(∇ϕXY, ξj)ξj)−
s∑

j=1

ηj(Y )hjX + η(Y )
(

X −
s∑

j=1

ηj(X)ξj

)

− 2g(ϕX, ϕY )ξ − η(Y )ϕ2X +
s∑

j=1

ηj(Y )hjX + (∇Xϕ)Y.

Hence

(
ϕ ◦ (∇ϕXϕ)

)
Y = −

(
g(X, Y )−

s∑

j=1

ηj(X)ηj(Y )
)

ξ −
s∑

j=1

g(hjX,Y )ξj

(2.6)

− 2η(Y )
(

X −
s∑

j=1

ηj(X)ξj

)
+ (∇Xϕ)Y.

Furthermore, from (1.6), for each j = 1, . . . , s we have

ηi
(
(∇ϕY hj)Z

)
= ηi

(∇ϕY (hjZ)
)

= (∇ϕY ηi)(hjZ)

= −g(hjZ,∇ϕY ξi) = g(hjZ, hiY − Y ).

Then, using (2.5) and (2.6) we get

Bi(X,Y, Z) = −g
(
X, (∇Y ϕ)(hiZ)

)
+ g(X,

(
hi(∇Y ϕ)

)
Z) + 2η(Z)g(hiX, Y )

+ g(hiX, (∇Y ϕ)Z)− g(Y, hiZ)η(X)−
s∑

j=1

g(hiZ, hjY )ηj(X)

+
s∑

j=1

ηj(X)g(hiZ, hjY ) + g
(
X, (∇Y ϕ)(hiZ)

) − η(X)g(hiZ, Y )

= 2(g
(
hiX, (∇Y ϕ)Z

)
+ η(Z)g(Y, hiX)− η(X)(Y, hiZ)).

Therefore we obtain

A(X, Y, Z) + Bi(X,Y, Z)−Bi(X, Z, Y ) = 2(∇Y F )(hiX, Z)

− 2(∇ZF )(hiX, Y ) + 2η(Z)g(X + hiX, Y )− 2η(Y )g(X + hiX,Z)

− 2
s∑

k=1

ηk(X)
(
ηk(Y )η(Z)− ηk(Z)η(Y )

)

and hence (2.2) follows. ¤
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GENERALIZATION OF CONTACT METRIC MANIFOLDS 231

Lemma 2.1 is a generalization of Lemma 3.2 proved by Z. Olszak [11] in
which he considers contact metric manifolds.

Theorem 2.1. Let (M,ϕ, ξi, η
j , g) be an almost S-manifold of dimension

2n + s, n = 2, such that RXY ξi = 0, for each X,Y ∈ Γ(TM), i = 1, . . . , s.
Then M is locally isometric to En+s × Sn(4s) where En+s is the n + s di-
mensional Euclidean space and Sn(4s) is the n dimensional sphere of radius

1
2
√

s
.

Proof. Let X ∈ D. From the hypothesis and (1.7) it follows that for each
i = 1, . . . , s we have g(h2

i X +ϕ2X,X) = 0. Since hi is self-adjoint, cf. [4], and
(1.1) holds then ‖hiX‖ = ‖ϕX‖ = ‖X‖. It follows that if X is an eigenvector
of hi with respect to the eigenvalue λ then |λ| ‖X‖ = ‖X‖, so that λ = ±1.
Furthermore, since ϕX is an eigenvector with respect to the eigenvalue −λ
and, by virtue of (1.2), 〈ξ1, . . . , ξs〉 is the eigenspace associated to the eigen-
value 0, the multiplicity of the eigenvalues ±1 is n. We denote by Di

+ the
eigenspace of hi with respect to the eigenvalue 1 and by Di− the eigenspace of
hi with respect to the eigenvalue −1. From (1.8) we get hi ◦ hj = −ϕ2 = hj

◦ hi for each j = 1, . . . , s. Since D = Di
+ ⊕Di− then X = X+ + X− where

X+ ∈ Di
+ and X− ∈ Di−. Hence

hjX = hj(X+ + X−) = hj

(
hi(X+ −X−)

)
= −ϕ2(X+ −X−)

= X+ −X− = hi(X+ + X−) = hiX,

i.e. hi|D = hj |D. Again from (1.2) we get hi = hj . We put

h := h1 = · · · = hs, D+ := D1
+ = · · · = Ds

+, D− := D1
− = · · · = Ds

−.

Let X,Y ∈ D−. Then from (1.3) it follows that ∇Xξi = ∇Y ξi = 0 for each
i = 1, . . . , s. Hence

(2.7) 0 = RXY ξi = −∇[X,Y ]ξi = −ϕ
(
[X, Y ]

) − ϕh
(
[X,Y ]

)
.

On the other hand from (1.2) we get ηk
(
h[X, Y ]

)
= 0 for each k = 1, . . . , s;

moreover, since ϕY ∈ D+ then

ηk
(
[X, Y ]

)
= −2dηk(X, Y ) = −2F (X, Y ) = −2g(X, ϕY ) = 0.

Then applying ϕ to (2.7) we get h
(
[X, Y ]

)
= −[X,Y ]. It follows that

the distribution D− is integrable. Analogously, since ∇[ξk,X]ξi = −RξkXξi

= 0 for X ∈ D− we have h
(
[ξk, X]

)
= −[ξk, X] which means that [ξk, X]

∈ D−. Hence, due to [ξi, ξj ] = 0 for each i, j = 1, . . . , s, also the distribution

Acta Mathematica Hungarica 110, 2006



232 L. DI TERLIZZI

D−⊕〈ξ1, . . . , ξs〉 is integrable. We can choose local coordinates x1, . . . , x2n+s

such that {
∂

∂xn+1
, . . . ,

∂

∂x2n
,

∂

∂x2n+1
, . . . ,

∂

∂x2n+s

}

is a local basis of D− ⊕ 〈ξ1, . . . , ξs〉. Let ρj
α, α ∈ {1, . . . , n}, j ∈ {n + 1, . . . ,

2n + s} be local functions such that

Xα =
∂

∂xα
+

2n+s∑

j=n+1

ρj
α

∂

∂xj
∈ D+.

Then X1, . . . , Xn is a local basis of D+. Since [ ∂
∂xj

, Xα] ∈ D− ⊕ 〈ξ1, . . . , ξs〉
for each α = 1, . . . , n and j = n + 1, . . . , 2n + s we can locally write [ ∂

∂xj
,Xα]

= X +
∑s

j=1 σjξj where X ∈ D− and σ1, . . . , σs are differentiable functions.
We get

∇[ ∂
∂xj

,Xα]ξi = ∇Xξi +
s∑

j=1

σj∇ξjξi = 0

from which we conclude that ξi is parallel along [ ∂
∂xj

, Xα]. Then from (1.3)

0 = ∇[ ∂
∂xj

,Xβ]ξi = ∇ ∂
∂xj

(∇Xβ
ξi)−∇Xβ

(
∇ ∂

∂xj

ξi

)
= −2∇ ∂

∂xj

(ϕXβ)

and, since ϕXα ∈ D−, we have ∇ϕXαϕXβ = 0. It follows that the integral
manifolds of D− ⊕ 〈ξ1, . . . , ξs〉 are totally geodesic and flat. From the hy-
pothesis and (2.2) we have (∇hXF )(Y,Z) = 0 for each X,Y,Z ∈ D and then
g
(
(∇hXϕ)Y, Z

)
= 0. Since h|D is an isomorphism we get

(2.8) g
(
(∇Xϕ)Y, Z

)
= 0 for each X,Y, Z ∈ D.

Using (1.3), for each X,Y ∈ D+, i = 1, . . . , s we have

0 = RXY ξi = −2(∇Xϕ)Y + 2(∇Y ϕ)X − ϕ
(
[X,Y ]

)
+ ϕ(h

(
[X, Y ]

)
).

Since h ◦ ϕ = −ϕ ◦ h, for each Z ∈ D+ we obtain

g(− h(ϕ
(
[X, Y ]

)
)− ϕ

(
[X, Y ]

)
, Z) = 0

and then g
(
[X,Y ], ϕZ

)
= 0. But ϕ is an isomorphism of D+ onto D−, so

[X, Y ] is orthogonal to D−. In an analogous way, since

ηi
(
[X,Y ]

)
= −2dηi(X, Y ) = −2F (X,Y ) = −2g(X,ϕY ) = 0
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we have that D+ is integrable. We want to prove now that the integral sub-
manifolds of D+ are totally geodesic. For this purpose we take X ∈ D− and
Y ∈ D+. We have

0 = RXY ξi = −2∇X(ϕY ) + ϕ
(
[X, Y ]

)
+ ϕ(h

(
[X, Y ]

)
)

= −2(∇Xϕ)Y − ϕ(∇XY )− ϕ(∇Y X)− h
(
ϕ(∇XY )

)
+ h

(
ϕ(∇Y X)

)
.

We take the scalar product with Z ∈ D− and using (2.8) we get

0 = −g
(
ϕ(∇XY ), Z

) − g
(
ϕ(∇Y X), Z

) − g(h
(
ϕ(∇XY )

)
, Z)

+ g(h
(
ϕ(∇Y X)

)
, Z) = −2g

(
ϕ(∇Y X), Z

)
.

Since ϕ is an isomorphism of D− onto D+ then ∇Y X is orthogonal to D+.
On the other hand, for each i = 1, . . . , s, Y,Z ∈ D+, X ∈ D−, g(∇Y Z, ξi)
= −g(∇Y ξi, Z) = 2g(ϕY,Z) = 0 and g(∇Y Z, X) = −g(Z,∇Y X) = 0. It fol-
lows that ∇Y Z is orthogonal to D− ⊕ 〈ξ1, . . . , ξs〉 and each integral subman-
ifold of D+ is totally geodesic. At this point we can say that M is locally a
Riemannian product and one of the factors is locally isometric to En+s. We
want to prove now that the second factor is isometric to Sn(4s). Since (2.2)
holds and h is an isomorphism of D− onto D+ then for each X,Y ∈ D+ and
each i = 1, . . . , s

g
(
(∇Xϕ)Y, ξi

)
= −(∇XF )(Y, ξi) = η(ξi)g(X + hX, Y ) = 2g(X, Y ).

From (2.8) it follows that (∇Xϕ)Y = 2g(X, Y )ξ. Therefore, by using again
(2.8) we get that for each X, Y, Z, W ∈ D+ we have

g(∇X∇Y ϕZ,ϕW )− g(∇X∇Y Z,W ) = 2g(Y, Z)g(∇Xξ, ϕW )

+ g(∇X

(
ϕ(∇Y Z)

)
, ϕW)− g(∇X∇Y Z,W )

= 2sg(Y,Z)g(−ϕX − ϕhX, ϕW ) = −4sg(X,W )g(Y,Z).

Finally, from (2.8), g(∇[X,Y ]ϕZ,ϕW)− g(∇[X,Y ]Z,W) = 0 and RXY ϕZ = 0
since ϕZ ∈ V− ⊕ 〈ξ1, . . . , ξs〉. Then we get that

g(RXY ϕZ, ϕW )− g(RXY Z, W )

= −4s
(
g(X, W )g(Y, Z)− g(Y,W )g(X, Z)

)
. ¤

Theorem 2.2. Let (M,ϕ, ξi, η
j , g) be an almost S-manifold of dimension

2 + s. If RXY ξi = 0 for each X,Y ∈ Γ(TM) and each i = 1, . . . , s then M
is flat.
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Proof. With the same argument as in the proof of Theorem 2.1 we
get that h1 = · · · = hs = h has eigenvalues ±1 and 0. In such a case the
eigenspaces distibutions D+ and D− are 1-dimensional and hence integrable.
If we put D− = 〈X〉 then D+ = 〈ϕX〉. From equation (3.2) of [5] we have
(∇ξih)X = ϕX − ϕh2X = 0 and then ∇ξiX ∈ D−. Using (1.5) we get that
the distribution D− ⊕ 〈ξ1, . . . , ξs〉 is integrable. With the same reasoning as
in Theorem 2.1 we conclude that ∇XX = 0. We choose X such that ‖X‖ =
1. Then ‖ϕX‖ = 1 and g(∇ϕX(ϕX), ϕX) = 0. Moreover, g(∇ϕX(ϕX), ξi) =
−g(∇ϕXξi, ϕX) = −2g(X,ϕX) = 0. Since g(∇ϕX(ϕX), ϕX) = 0 it follows
that ∇ϕX(ϕX) = 0. Therefore from (1.4) by easy calculations we get

∇ϕXξi = 2X, ∇Xξi = 0, ∇ϕXX = −2ξ,

∇XϕX = 0, ∇ξiX = 0, ∇ξiϕX = 0.

Using the ϕ-basis {X,ϕX, ξ1, . . . , ξs}, and the formulas above we easily cal-
culate the Riemannian curvature tensor and find that it vanishes. In such a
way we obtain that the manifold M is flat. ¤

Theorems 2.1 and 2.2 are generalizations for almost S-manifolds of the
D. E. Blair’s results proved for contact metric manifolds, cf. [2].

Remark 2.1. There exist examples of manifolds considered in Theo-
rem 2.2. In fact, in our previous paper [5, Example 6.2], we have constructed
a flat almost S-manifold (M2+s, ϕ, ξi, η

j , g) on a toroidal bundle.

3. Almost S-structures determined by 1-forms

The following two lemmas are generalizations of the existence theorem
of the Reeb vector field on a contact manifold.

Lemma 3.1. Let M be a manifold and let η1, . . . , ηs be 1-forms on M
such that η1 ∧ . . .∧ ηs 6= 0 at each point of M . Then there exist vector fields
ξ1, . . . , ξs on M such that ηi(ξj) = δi

j for each i, j = 1, . . . , s; thus ξ1, . . . , ξs

are usually not unique.

Proof. D := ker η1 ∩ . . . ∩ ker ηs is a vector subbundle of TM of rank
dimM − s. Hence there exists a vector subbundle V of TM such that V ⊕D
= TM . Then consider Φ := (η1, . . . , ηs) : V → Rs which is an isomorphism
on each fibre of V . Hence there exist vector fields ξ1, . . . , ξs ∈ Γ(V ) such that
Φ(ξi) is the i-th element of the canonical basis of Rs, that is ηi(ξj) = δi

j . The
vector fields ξ1, . . . , ξs depend on the choice of the complementary bundle V .
¤
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Lemma 3.2. Let M2n+s be a manifold, let η1, . . . , ηs be 1-forms on M
and let F be a 2-form of constant rank 2n such that η1 ∧ . . .∧ ηs ∧Fn 6= 0 at
each point of M . Then there exist unique vector fields ξ1, . . . , ξs on M such
that ηi(ξj) = δi

j and iξjF = 0 for each i, j = 1, . . . , s.

Proof. Let W = {X ∈ TM | iXF = 0} be the F -nullity subbundle of
TM . Then W is a vector subbundle of TM of rank s. Moreover the map
Ψ := (η1, . . . , ηs) : W → Rs is an isomorphism on each fibre of W . Then we
proceed as in Lemma 3.1 and obtain vector fields ξ1, . . . , ξs which satisfy the
requirements of our lemma. The uniqueness of the existence of ξ1, . . . , ξs

follows from the unicity of W . ¤
Theorem 3.1. Let M be a manifold of dimension 2n + s. Suppose

there exist 1-forms η1, . . . , ηs on M such that dη1 = · · · = dηs is a 2-form
of constant rank 2n and η1 ∧ . . .∧ ηs ∧ (dη1)n 6= 0. Then there exists an f.pk-
structure (ϕ, ξi, η

j , g) (i, j = 1, . . . , s) on M where ξ1, . . . , ξs are the unique
vector fields provided by Lemma 3.2 with respect to η1, . . . , ηs and F = dη1

= · · · = dηs. Moreover, for each X, Y ∈ Γ(TM), g(X, ϕY ) = dη1(X, Y ) i.e.
dη1 is the Sasaki 2-form of the f.pk-structure and hence (M,ϕ, ξi, η

j , g) is an
almost S-manifold.

Proof. We obtain the vector fields ξ1, . . . , ξs from Lemma 3.2. Let g0 be
any Riemannian metric on M . Put D := ker η1 ∩ . . . ∩ ker ηs. Define the 2-
form on D by Ω(X,Y ) := dη1(X,Y ); observe that Ω is non-degenerate on D.
There exists a bundle isomorphism A : D → D such that for all X,Y ∈ D,
g0(AX,Y ) = Ω(X,Y ). Then A is anti-adjoint with respect to g0, i.e. At =
−A. We have the polar decomposition A = JG where J is an isometry of D
and G is self-adjoint and positive definite with respect to g0. Furthermore,
observe that J tGJ is similar to G and then it is positive definite. Since J is
an isometry, G is adjoint and A is anti-adjoint and we have

JG = A = −At = −GJ t.

Hence G = (−J2)J tGJ . From the uniqueness of polar decomposition of G

we have J2 = −Id, J tGJ = G and J = −J−1 = −J t. Then define a metric
tensor on M by

g(X, Y ) :=





g0(GX, Y ) if X,Y ∈ Γ(D)

0 if X ∈ Γ(D), Y ∈ Γ
(〈ξ1, . . . , ξs〉

)

δij if X = ξi, Y = ξj

and an f -structure

ϕ(X) :=

{
−J(X) if X ∈ Γ(D)

0 if X ∈ Γ
(〈ξ1, . . . , ξs〉

)
.
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It is easy to observe that (M, g, ϕ, ξi, η
j) is an almost S-manifold. It may

be proved, similarly as in the symplectic case, that the set of such metric
f -structures is path connected [13]. ¤

As an application of Theorem 3.1 we give the following example of an S-
structure on R2n+s that generalizes the Sasakian structure on R2n+1 given
by S. Sasaki [12]. It is well known that this Sasakian structure on R2n+1 is of
constant ϕ-sectional curvature −3 and that it is η-Einstein [10]. Our example
is neither of constant ϕ-sectional curvature nor η-Einstein, according to the
definition given by M. Kobayashi and S. Tsuchiya in [9].

Example 3.1. Let (x1, . . . , xn, y1, . . . , yn, z1, . . . , zs) be the natural co-
ordinates of M := R2n+s. For each i = 1, . . . , s, put

ηi :=
1
2

(
dzi −

n∑

α=1

yαdxα

)
, ξi := 2

∂

∂zi
.

We have

η1 ∧ . . . ∧ ηs ∧ (dηi)n 6= 0, dη1 = · · · = dηs =
n∑

α=1

dxα ∧ dyα

and dηi(ξj , X) = 0, for each i, j ∈ {1, . . . , s}, X ∈ Γ(TM) so that ξ1, . . . , ξs

are the unique s vector fields provided by Theorem 3.1. Let

g :=
s∑

i=1

(ηi)2 +
1
4

n∑

α=1

(dxα)2 + (dyα)2.

The matrix of g with respect to the canonical basis of vector fields on TM is

(3.1)
1
4




A 0 B
0 In 0
Bt 0 Is




where Aαβ = δαβ + syαyβ, Bαi = −yα, α, β ∈ {1, . . . , n}, i ∈ {1, . . . , s} and
In, Is are the identity matrices of order n and s, respectively. The inverse
matrix of (3.1) is

4




In 0 −B
0 In 0

−Bt 0 C



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where Cij = δij +
∑n

α=1 (yα)2, i, j = 1, . . . , s. Define the metric f -structure
ϕ by giving its matrix with respect to the canonical basis of vector fields
of TM : 


0 In 0
−In 0 0
0 Bt 0


 .

From Theorem 3.1 it follows that (M,ϕ, ξi, η
j , g) (i, j = 1, . . . , s) is an almost

S-manifold. By a direct verification it may be proved that Nϕ = 0 and hence
(M, ϕ, ξi, η

j , g) is an S-manifold. We observe that in this case

(3.2) D = span
{

2
(

∂

∂x1
+ y1ξ

)
, . . . , 2

(
∂

∂xn
+ ynξ

)
, 2

∂

∂y1
, . . . , 2

∂

∂yn

}
,

where ξ =
∑s

j=1 ξj . The f -structure ϕ may be also characterized by ob-
serving that the generators of D in (3.2) constitute a ϕ-basis, i.e. they are
orthonormal and

ϕ

(
∂

∂x1
+ y1ξ

)
=

∂

∂y1
, . . . , ϕ

(
∂

∂xn
+ ynξ

)
=

∂

∂yn
.

We are going to write down the components of the Riemannian curvature
tensor of g. For generic indices i, j, r put

Gr
ij =

1
2

(
∂grj

∂xi
+

∂gir

∂xj
− ∂gij

∂xr

)
.

We use the Greek letters α,β, . . . as the indices relative to x1, . . . , xn, then we
use α∗, β∗, . . . as the indices relative to y1, . . . , yn, and i, j, . . . as the indices
relative to z1, . . . , zs. We get

Gα
βγ∗ =

1
8
(
δβγyα + δαγyβ

)
; Gα∗

βγ = −1
8
(
δαβyγ + δαγyβ

)
;

Gα∗
iβ =

1
8
δαβ; Gi

αβ∗ = −1
8
δαβ; Gα

iβ∗ = −1
8
δαβ ;

the other Gr
ij ’s are zero. It follows that the non zero Christoffel’s symbols of

the Riemannian structure are

Γα
βγ∗ =

1
2
δαγyβ; Γα∗

βγ = −1
2
(
δαβyγ + δαγyβ

)
; Γα

β∗i = −1
2
δαβ;

Γi
αβ∗ =

1
2
(
yαyβ − δαβ

)
; Γi

jα∗ = −1
2
yα; Γα∗

βi =
1
2
δαβ.
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Finally the non zero components of the Riemannian curvature tensor are

Rαβγδ =
1
16

(
δαγyβyδ − δαδy

βyγ − sδγβyαyδ + sδβδy
αyγ

)
;

Rα∗β∗γδ =
1
16(

(s− 1)
(
δαγyβyδ − δαδy

βyγ
)

+ s
(
δαδδγβ − δβδδαγ

)
);

Rαβ∗γ∗δ =
1
16

(
2δαβδγδ + sδβδδαγ − sδβγyαyδ

)
; Riβ∗γ∗δ =

1
16

δβγyδ;

Rαijδ = − 1
16

δαδ; Riβγδ =
1
16

(
δβγyδ − δβδy

γ
)
; Rα∗ijδ∗ = − 1

16
δαδ.

Observe that for each α ∈ {1, . . . , n} the ϕ-sectional curvature of the planes
generated by { ∂

∂yα , ϕ( ∂
∂yα )} is −2− s+ s(s− 1)(yα)2. Hence the ϕ-sectional

curvature of M is not constant. The components of the Ricci tensor are

Rαβ =
1
2
(snyαyβ − δαβ) +

1
4

(
(s− 1)yαyβ + (s− 1)2δαβ

n∑

ρ=1

(yρ)2
)

,

Rα∗β∗ =
1
4
δαβ

(
− 2 + s(s− 1)

n∑

ρ=1

(yρ)2
)

, Rαβ∗ = 0,

Rαi = −1
2
nyα +

1
4
(1− s)yα, Rij =

1
2
n, Rα∗i = 0.

Comparing with (1.12) of [9] we conclude that R2n+s is not η-Einstein.
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