Acta Math. Hungar.
110 (3) (2006), 225-239.

ON THE CURVATURE
OF A GENERALIZATION OF CONTACT
METRIC MANIFOLDS

L. DI TERLIZZI (Bari)*

Abstract. We consider a genaralization of contact metric manifolds given
by assignment of 1-forms n',...,n° and a compatible metric g on a manifold.
With some integrability conditions they are called almost S-manifolds. We give a
sufficient condition regarding the curvature of an almost S-manifold to be locally
isometric to a product of a Euclidean space and a sphere.

Introduction

In recent years there has been a very extensive research done in contact
geometry. Within the subject of contact geometry there is also the class of
contact metric geometry and its generalizations [3]. The study of the curva-
ture of such manifolds is of our interest in the present paper.

Let (M?"*$ g) be a Riemannian manifold equipped with a metric f-
structure, i.e. an endomorphism ¢ of the tangent bundle such that ¢ + ¢
= 0 and which is compatible with g; the compatibility means that for each
X,Y e I(T'M) we have g(¢(X),Y) = —g(X,¢(Y)). Such manifolds are a
natural generalization of almost Hermitian manifolds (the case when ¢ is an
isomorphism of T'M). Moreover we assume that the kernel of ¢ is paral-
lelizable, i.e. there exist global vector fields &1, ...,&s spanning ker . The
study of such manifolds was started by D. E. Blair, S. I. Goldberg, K. Yano,
cf. [1, 7, 8]. Let n',...,n° be the dual 1-forms of &1,...,&. According to
the definitions of [6], the set consisting of M with the geometric structures
(0, &,1m7,9) (i,5=1,...,5), g a compatible metric, is called an almost S-
structure if dn® = F for all k = 1,..., s where F is the Sasaki 2-form defined
by g and . The almost S-structures were also studied by J. L. Cabrerizo,
L. M. Fernandez, M. Fernandez [4].
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226 L. DI TERLIZZI

In the present paper we study almost S-structures. In Section 2 we prove
two theorems. In Theorem 2.1 we prove that given an almost S-manifold
(M?7Fs8 0 & 17, g) (n > 1) satisfying Rxy& =0, for X, Y € I(TM) then
M is locally isometric to the product of the flat (n + s)-dimensional Eu-
clidean space and the n-dimensional sphere of curvature 4s. If in the above
theorem we assume that n = 1 then we get that M is flat; this is proved in
Theorem 2.2.

In Section 3 we give a method of constructing a metric almost S-structure
starting from global 1-forms on M satisfying some non-degeneracy condi-
tions. Under these conditions we prove the existence of a compatible Rie-
mannian metric and s global orthonormal vector fields; these vector fields
correspond to the Reeb vector field in the contact case. Then we apply this
method in a construction of an example of an S-structure on R****: we
calculate also the associated Riemannian and Ricci curvature tensors.

1. Preliminaries

Let M be a (2n + s)-dimensional manifold equipped with an f-structure
with a parallelizable kernel, for brevity we call it an f.pk-structure; this means
that there are given on M an f-structure ¢, s global vector fields &1,...,&;
and 1-forms n',...,n° on M satisfying the conditions

P&) =0, nop=0, =-T+> ¥, 1) =7
=1

for all 3,57 =1,...,s. We denote by D the bundle Imy. On such a manifold
a (2,1)-tensor

S
Np:=[op] +2) dn' @&
=1

is defined where [¢, ¢] is the Nijenhuis torsion of ¢, i.e.
[ (X, Y) = [0X, 0Y] = 0[pX,Y] - oX, Y] + @*[X, Y],
for all X,Y € I'(T'M); we denote here by I'(T'M) the module of differentiable

sections of the bundle 7M. The structure (¢, &;,n7) on M (i,j =1,...,5) is
said to be normal if and only if N, = 0.
On a manifold equipped with an f.pk-structure there always exists a com-

patible Riemannian metric ¢ in the sense that for each X,Y € I'(T'M)

(1.1) g(X,Y) = g(p(X),0(Y)) + > _ 0/ (X)n’ (V).
j=1
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GENERALIZATION OF CONTACT METRIC MANIFOLDS 227

However such a metric on M is not unique: we fix one of them; then the
structure obtained is called a metric f.pk-structure. Let F' be the Sasaki form
of ¢ defined by F(X,Y) := g(X, Y ) for X,Y € I'(TM). It may be observed
that D is the orthogonal complement of the bundle ker o = (£1,...,&s). Then
the manifold M is equipped with an f-structure ¢, the complemented frame
&1,...,&, the 1-forms n',...,n° a compatible metric ¢ and the Sasaki 2-
form.
We recall the following definitions fundamental for our paper.

DEFINITION 1.1. The metric f.pk-manifold (M, p,&;,77,g) is said to be
an almost S-manifold if and only if dp' = --- = dn°® = F.

DEFINITION 1.2. The metric f.pk-manifold (M, o, &;,17, g) is said to be
an S-manifold if and only if it is an almost S-manifold and it is normal.

The definition of an S-structure was given by D. E. Blair in his semi-
nal paper, cf. [1]. In that paper K, S, C-structures are also defined which
are direct generalizations of the normal almost contact metric, Sasakian and
cosymplectic manifolds. The almost S-structures were studied, without be-
ing precisely named, by J. L. Cabrerizo, L. M. Ferndndez and M. Fernandez
[4]. Then K. Duggal, S. Ianus and A. M. Pastore [6], also studied such man-
ifolds and gave them the name almost S-manifold.

On an almost S-manifold (M, ¢, &, 17, g) (i,7=1,...,s) the operators
hi == (1/2)L¢,p for i = 1,..., s are defined, cf. [4, (2.5)]. We use extensively
the properties of these operators in the present paper. In particular these
operators are self adjoint, anticommute with ¢ and for each i, =1,...,s

(1.2) hi&; =0,

cf. [4]. Moreover we have the following identities, cf. [6]:

(1.3) Vx& = —pX — phi X,
(1.4) Vo =0,

(1.5) Ve, 6 =0,

(1.6)

(VxQ)Y + (Vox@)pV = 29(0X, oY)+ 0(Y)*X = > 0 (Y)h(X)
k=1

where V is the Levi-Civita connection of g, X € I'(TM) and i,j =1,...,s.
Furthermore, we shall frequently use the following curvature identities re-
lated to the Levi-Civita connection of g:

(1.7) Rex&i — ¢(Repx &) = 2(hi X + ¢°X),
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228 L. DI TERLIZZI
(1.8) Re,x&j — (Repx&i) = 2((hio hyj) X + ¢*X)

for each X e I'(T'M) and i,j = 1,...,s. These immediately follow by com-
bining the first equation on p. 158 of [4] and (1.3).

2. Curvature properties of almost S-structures

Throughout this section we suppose that an almost S-manifold (M, ¢, &;,
,g) (i,j =1,...,s), with dim M = 2n + s is given. We denote by 77 := n' +
oS € =6 4+ &, D :=Imyp and by F the associated Sasaki 2-form.

We use the Levi-Civita connection V associated with g; by R we denote the
induced Riemannian curvature tensor.

LEMMA 2.1. Let (M, g,,&,17) be an almost S-manifold. Then the cur-
vature tensor satisfies the identities

(2'1) g(Rfiva Z) = _(VXF)(Y7 Z) - g((Vy(QOO hz)) ZaX)
+9((Vz(pohi))Y,X)
and

(2.2)  g(Re;xY, Z) — g(Re,x Y, 0Z) + g(Re,oxY, 0 Z) + g(Re,pox0Y, Z)

- ((vhiXF><Y, 7)1 7 Z)g(X + hiX,Y) — 7(V)g(X + hiX, 2)

- kz (D) - )
foreachi=1,...;s and X,Y,Z € T'(TM).
PROOF. From (1.3) we have
Ry 26 = (Vv @) + (V2g)V — (Vy(poh)) 2+ (Va(po ) Y.
Then, since g((Vy¢)Z, X) = (VyF)(X, Z), we get
9(RexY, 2) = g(Ry 76, X) = —~(Vy F)(X, 2) + (V7F)(X,Y)

—9(Vy(pohi))Z,X)+g(Vzlpoh))Y,X).
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GENERALIZATION OF CONTACT METRIC MANIFOLDS 229

Using the last equation and the identity (VxF)(Y,Z)+ (VyF)(Z,X) +
(VzF)(X,Y) =0, we obtain (2.1). We introduce the operators A and B;,
i€ {l,...,s} defined by

(2.3) AX,Y, Z) = —(VxF)Y,Z)+ (VxF)(¢Y, pZ)
— (Vox )Y, 9Z) = (Vox F)(¢Y, Z)
and
(2.4)
Bi(X,Y, Z) = —g(¢X, (Vy(poh)) (9Z)) — g(X, (Vv (pohi)) Z)
—9(X, (Vy(poh)) Z) + g(X, (Vv (p o)) (92))

for each XY, Z € T'(T'M). By a direct computation and using (2.1) we get
that the left hand side of (2.2) equals A(X,Y, Z)+ B;(X,Y,Z)— B;(X,Z,Y).
Since 77 (Vv hi)Z) =17 (Vyy (hiZ)) we can write

(25)  Bi(X,Y,Z) = —g(X,Vy((¢ohi)Z)) + g(X, (¢ o hi)(VyZ))
+9(X, Vv ((pohio9)Z)) +g(X, (¢ o hi)(VeyeZ))
+9(X, (p o hi) (Vv (92))) — (X, Vy ((p o hio9)Z))
+9(2X, (90 hi) (Vy(#2))) = 9(0X, Vv (90 1) Z))
+9(eX, (pohi)(Vey (hiZ))) = —g(X, (Vyo)(hiZ))

+9(X, hi((Vy9)Z)) + g(X, (hio @) ((Vove)Z))

+9(X, o(Voy @) (hi2))) + > ' (Vv hi) Z) nf (X).
j=1

Moreover, from (1.3)—(1.6) it follows that

s

(o (Vex)Y = (Vox¢*)Y — (Voxo)(@Y) = > ((Vexn))YE))
j=1

S

+Y (P (V)Vex&) = (Voxe)(@Y) =Y ((Vex)(9(5,Y)) &
j=1

J=1
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~ (T Vi)8) = S w40 (X = w06
Jj=1 J=1

— 29(pX, V)€ = (Y ) > X + Zn )i X + (Vxep)Y.

Hence
(2.6)
(90 (Tox)) Y = = (905,7) = w007 () )& = Doy X, 1)
j=1 j=1
— (Y < Zn ) (Vxo)Y.
Furthermore, from (1.6), for each j = 1,...,s we have

N ((Veyhy)Z) = 1" (Vey (hiZ)) = (Veyn')(h;Z)
=—9(h;Z,V,v&) = g(h; Z,hY = Y).
Then, using (2.5) and (2.6) we get
Bi(X,Y,Z) = —g(X,(Vyp)(hiZ)) + (X, (hi(Vy)) Z) + 21(Z)g(hiX,Y)
+9(hiX, (Vy@)Z) — g(Y, i Z2)0(X) = g(hiZ, hY ) (X)
j=1

S

+ > P (X)g(hiZ, hY) + g(X, (Vye)(hiZ)) =T(X)g(hiZ,Y)
j=1

=2(g(hiX, (Vyp)Z) +1(Z)g(Y. i X) = 7(X)(Y, hiZ)).

Therefore we obtain
AX,Y,Z)+ Bi(X,Y,Z) — Bi(X,Z,Y) =2(VyF) (X, Z)
— 2AV2F) (X, Y) + 20(Z)g(X + hiX,Y) — 25(Y)g(X + hi X, 2)

=23 P (X)) (F (V)(2) — 0 (Z)7(Y))
and hence (2.2) follows. O
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GENERALIZATION OF CONTACT METRIC MANIFOLDS 231

Lemma 2.1 is a generalization of Lemma 3.2 proved by Z. Olszak [11] in
which he considers contact metric manifolds.

THEOREM 2.1. Let (M, ¢,&,17,g) be an almost S-manifold of dimension
2n+s, n 22, such that Rxy& =0, for each X, Y e '(TM), i=1,...,s.
Then M is locally isometric to E"5 x S™(4s) where E" is the n+ s di-
mensional Euclidean space and S™(4s) is the n dimensional sphere of radius
o

PROOF. Let X € D. From the hypothesis and (1.7) it follows that for each
i=1,...,s wehave g(h?X + ¢%X, X) = 0. Since h; is self-adjoint, cf. [4], and
(1.1) holds then ||h; X || = ||[¢X || = || X]|. It follows that if X is an eigenvector
of h; with respect to the eigenvalue A then |A|||X]|| = || X]|, so that A = +1.
Furthermore, since X is an eigenvector with respect to the eigenvalue —A
and, by virtue of (1.2), (£1,...,&s) is the eigenspace associated to the eigen-
value 0, the multiplicity of the eigenvalues +1 is n. We denote by ’Di the

eigenspace of h; with respect to the eigenvalue 1 and by D’ the eigenspace of
h; with respect to the eigenvalue —1. From (1.8) we get h; o hj = —p? = h;
oh; for each j=1,...,s. Since D:Di@Di_ then X = X + X_ where
X, €D and X_ € D". Hence

hiX = hj(Xo + X) = hi(hi(Xy = X_)) = —p* (X4 — X-)
=X, — X_ = hi( Xy + X_) = X,
i.e. hilp = hj|p. Again from (1.2) we get h; = hj. We put
hi=hy=--=hg, Dp:=D,=---=D, D_:=Dl=...=D%,

Let X,Y € D_. Then from (1.3) it follows that Vx¢& = Vy¢&; = 0 for each
i1=1,...,s. Hence

(2'7) 0= RXY& = _V[X,Y]gi = _90([X7 Y]) - (Ph([X7 Y]) :

On the other hand from (1.2) we get n*(h[X,Y]) =0 for each k=1,...,s;
moreover, since @Y € D, then

n*([X,Y]) = —2dn"(X,Y) = —2F(X,Y) = —2¢(X, ¢Y) = 0.

Then applying ¢ to (2.7) we get h([X,Y]) = —[X,Y]. It follows that
the distribution D_ is integrable. Analogously, since Vi, x1& = —Re, x&i
=0 for X € D_ we have h([&, X]) = —[&, X]| which means that [&, X]
€ D_. Hence, due to [§;,&;] =0 for each i,j =1,..., s, also the distribution
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_®(&1,...,&) is integrable. We can choose local coordinates xy, ..., Ton s
such that

0 0 0 0
61’7@—&—1 Y 8162”’ 81’2n+1 Y axQn—l—s

is a local basis of D_ @ (&1,...,&s). Let p&, ae{l,...,n},je{n+1,...,
2n + s} be local functions such that

2n+s

Xa axa+ > pﬁ“a

j=n+1

Then Xi,...,X, is a local basis of D,. Since [%,Xa] ED_d(&,...,&)
J
foreacha=1,...,nand j =n-+1,...,2n+ s we can locally write [%,Xa]
J

=X+ ijl 07¢; where X € D_ and o', ..., 0* are differentiable functions.
We get

V[%yxa}& =Vx& + Z;Ujvgjfi =0
‘]:

from which we conclude that &; is parallel along [a%j, Xa]. Then from (1.3)

0=V iXﬁ]fi = V%(VXB&) _VXB (V%&) = —ZV%(QOX@))

[az]~

and, since ¢ X, € D_, we have V, x_ ¢pXg = 0. It follows that the integral
manifolds of D_ @ (§,...,&) are totally geodesic and flat. From the hy-
pothesis and (2.2) we have (VxF)(Y,Z) =0 for each X,Y,Z € D and then

g((Vtho)Y, Z) = 0. Since h|p, is an isomorphism we get
(2.8) g((Vxe)Y,Z) =0 for each X,Y,Z € D.
Using (1.3), for each X, Y € Dy, i=1,...,s we have
0= Rxy& = —2(Vxe)Y +2(Vye)X — o([X,Y]) +¢o(h([X,Y])).
Since h o p = —p o h, for each Z € D we obtain
9(=h(e(X,Y])) —o(1X,Y]), 2) =0

and then g([X, Y], goZ) = 0. But ¢ is an isomorphism of D, onto D_, so
[X,Y] is orthogonal to D_. In an analogous way, since

n'([X,Y]) = —2dn'(X,Y) = —2F(X,Y) = —2g9(X,¢Y) =0
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we have that D, is integrable. We want to prove now that the integral sub-
manifolds of Dy are totally geodesic. For this purpose we take X € D_ and
Y € Dy. We have

0= Rxy& = —2Vx(Y) + ¢([X,Y]) +o(h([X,Y]))
= 2(Vxp)Y —o(VxY) = o(VyX) = h(p(VxY)) +h(e(VyX)).
We take the scalar product with Z € D_ and using (2.8) we get
0=—g(¢(VxY).2) = g(#(VyX). Z) = g(h(0(VxY)),Z)

+9(h(0(VyX)),Z) = —29((VyX), Z).

Since ¢ is an isomorphism of D_ onto D, then Vy X is orthogonal to D..
On the other hand, for each i =1,...,s, Y, Z €Dy, X € D_, g(VyZ,&)
=—g(Vv&,Z2) =2¢9(¢Y,Z) =0 and ¢(VyZ,X) = —g(Z,VyX) = 0. It fol-
lows that Vy Z is orthogonal to D_ @ ({1, . ..,&s) and each integral subman-
ifold of Dy is totally geodesic. At this point we can say that M is locally a
Riemannian product and one of the factors is locally isometric to E"¢. We
want to prove now that the second factor is isometric to S™(4s). Since (2.2)
holds and h is an isomorphism of D_ onto D, then for each X, Y € D, and
eachi=1,...,s

9((Vxe)Y, &) = —(VxF)(Y,&) = 7(&)g(X + hX,Y) = 29(X,Y).

From (2.8) it follows that (Vx¢)Y = 2¢(X,Y){. Therefore, by using again
(2.8) we get that for each X, Y, Z, W € D, we have

9(VxVyoZ,oW) — g(VxVy Z, W) =29(Y, Z)g(V x&, W)
+ Q<VX<SO(VYZ)) ; @W) - 9(VxVyZ, W)
=259(Y, 2)g(—pX — phX, pW) = —4dsg(X, W)g(Y, Z).

Finally, from (2.8), 9(Vix,y)¢Z, W) — g(Vix,y}Z, W) = 0 and RxypZ =0
since pZ € V_ & (&1,...,&s). Then we get that
9(RxypZ,oW) — g(Rxy Z,W)

THEOREM 2.2. Let (M, ¢,&,17,g) be an almost S-manifold of dimension
2+4s. If Rxy& =0 for each X, Y € I'(TM) and each i =1,...,s then M
1s flat.
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PROOF. With the same argument as in the proof of Theorem 2.1 we
get that hy = --- = hy = h has eigenvalues =1 and 0. In such a case the
eigenspaces distibutions D4 and D_ are 1-dimensional and hence integrable.
If we put D_ = (X) then Dy = (pX). From equation (3.2) of [5] we have
(Ve,h)X = X — ph?X =0 and then V¢, X € D_. Using (1.5) we get that
the distribution D_ @ (1, ..., &s) is integrable. With the same reasoning as
in Theorem 2.1 we conclude that VxX = 0. We choose X such that || X|| =
1. Then [|pX|| =1 and g(Vyx(9X), pX) = 0. Moreover, g(Veox (9X),&) =
—9(Vox&i, oX) = —29(X, ¢ X) = 0. Since g(Vyox(9X),9X) =0 it follows
that V,x(pX) = 0. Therefore from (1.4) by easy calculations we get

Vex& =2X, Vx§=0, V xX= —25,

VchX = O, VgiX = 0, VgigDX =0.

Using the ¢-basis {X, 0 X, &1,...,&}, and the formulas above we easily cal-
culate the Riemannian curvature tensor and find that it vanishes. In such a
way we obtain that the manifold M is flat. ([

Theorems 2.1 and 2.2 are generalizations for almost S-manifolds of the
D. E. Blair’s results proved for contact metric manifolds, cf. [2].

REMARK 2.1. There exist examples of manifolds considered in Theo-
rem 2.2. In fact, in our previous paper [5, Example 6.2], we have constructed
a flat almost S-manifold (M?2+5,p, &, 17, g) on a toroidal bundle.

3. Almost S-structures determined by 1-forms

The following two lemmas are generalizations of the existence theorem
of the Reeb vector field on a contact manifold.

LEMMA 3.1. Let M be a manifold and let n',...,n° be 1-forms on M
such that n* A ... An* # 0 at each point of M. Then there exist vector fields
&1,...,& on M such that n'(&;) = (5;» for each i, =1,...,8; thus &1,...,&;s
are usually not unique.

PROOF. D :=kern' N...Nkern® is a vector subbundle of TM of rank
dim M — s. Hence there exists a vector subbundle V' of T M such that V & D
= TM. Then consider ® := (n!,...,7°): V — R* which is an isomorphism
on each fibre of V. Hence there exist vector fields &1, . ..,& € ['(V) such that
®(¢;) is the i-th element of the canonical basis of R*, that is n'(¢;) = 5; The

vector fields &1, ..., &s depend on the choice of the complementary bundle V.
O
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LEMMA 3.2. Let M?"*% be a manifold, let n',...,n° be 1-forms on M

and let F be a 2-form of constant rank 2n such that n* A... A0 NF™ #0 at
each point of M. Then there exist unique vector fields &1, ...,&s on M such

that n'(&;) = 6; and ig, ' =0 for each i,j =1,...,s.

PROOF. Let W ={X € TM | ixF = 0} be the F-nullity subbundle of
TM. Then W is a vector subbundle of TM of rank s. Moreover the map
U= (n',...,n°) : W — R® is an isomorphism on each fibre of W. Then we
proceed as in Lemma 3.1 and obtain vector fields &1, .. ., & which satisfy the
requirements of our lemma. The uniqueness of the existence of &1,...,&;
follows from the unicity of W. O

THEOREM 3.1. Let M be a manifold of dimension 2n +s. Suppose
there exist 1-forms n',...,n° on M such that dn' = --- = dn® is a 2-form
of constant rank 2n and n* A...An* A (dn')" # 0. Then there exists an f.pk-
structure (p,&,1m7,9) (i,7=1,...,8) on M where &1,...,& are the unique
vector fields provided by Lemma 3.2 with respect to n',...,n° and F = dn'
= ... =dn°. Moreover, for each X,Y € T(TM), g(X,pY) = dn'(X,Y) i.e.
dn' is the Sasaki 2-form of the f.pk-structure and hence (M, @, &, 17, g) is an
almost S-manifold.

PROOF. We obtain the vector fields &1, .. .,&s from Lemma 3.2. Let gg be
any Riemannian metric on M. Put D :=kern' N...Nkern®. Define the 2-
form on D by Q(X,Y) := dn*(X,Y); observe that  is non-degenerate on D.
There exists a bundle isomorphism A : D — D such that for all X,Y € D,
go(AX,Y) = Q(X,Y). Then A is anti-adjoint with respect to go, i.e. A® =
—A. We have the polar decomposition A = JG where J is an isometry of D
and G is self-adjoint and positive definite with respect to gg. Furthermore,

observe that J'G.J is similar to G and then it is positive definite. Since J is
an isometry, GG is adjoint and A is anti-adjoint and we have

JG=A=—At = _QJ.

Hence G = (—J?)J!GJ. From the uniqueness of polar decomposition of G
we have J? = —Id, J!GJ = G and J = —J ! = —J!. Then define a metric
tensor on M by

9(GX,Y) if XY eT'(D)
g(X,Y):=40 if Xel(D),YeTl({,...,&))
ij if X=¢,Y=¢
and an f-structure
—-J(X) if X eI'(D)
X):=
o {0 if X eD((&,....6)).
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It is easy to observe that (M, g,,&,n’) is an almost S-manifold. It may
be proved, similarly as in the symplectic case, that the set of such metric
f-structures is path connected [13]. O

As an application of Theorem 3.1 we give the following example of an S-
structure on R?"*5 that generalizes the Sasakian structure on R*"*! given
by S. Sasaki [12]. It is well known that this Sasakian structure on R***! is of
constant ¢-sectional curvature —3 and that it is n-Einstein [10]. Our example
is neither of constant y-sectional curvature nor n-Einstein, according to the
definition given by M. Kobayashi and S. Tsuchiya in [9].

EXAMPLE 3.1. Let (z',..., 2™ y',...,y™ 2',...,2%) be the natural co-
ordinates of M := R?"*%, For each i =1,...,s, put

i 1 % & fo "% e . 0
n .—2<dz —az::ly dx >, & '_25)21"

We have

AL ADE A (dnt)" #£0, dnlz---:dnS:dea/\dya

a=1

and dn'(&;,X) =0, for each i,j € {1,...,s}, X € (T M) so that &,...,&
are the unique s vector fields provided by Theorem 3.1. Let

9= 30+ 0 (@) 4 ()

=1 a=1

The matrix of g with respect to the canonical basis of vector fields on T'M is

(A 0 B
(3.1) o 1, o
4\pt o 1,

where Ang = 645 + sY*Y°, Bai = —y*, o, B€{1,...,n}, i€ {1,...,s} and
I, I are the identity matrices of order n and s, respectively. The inverse
matrix of (3.1) is

I, 0 -B
41 0 I, O
-B* 0 C
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where Cjj = 8;; + 3", (y*)?, 4,5 =1,..., 5. Define the metric f-structure
© by giving its matrix with respect to the canonical basis of vector fields
of TM:

0 I, O
-I, 0 0
0 B' O
From Theorem 3.1 it follows that (M, ¢, &, 17, g) (i,j =1,...,s) is an almost

S-manifold. By a direct verification it may be proved that Nsa = (0 and hence
(M, p,&,17,g) is an S-manifold. We observe that in this case

0 0 0 0
(3.2) D:span{ <8l+y§> <8" §> 81’”"283/”}’

where & = Z;zl §j. The f-structure ¢ may be also characterized by ob-

serving that the generators of D in (3.2) constitute a ¢-basis, i.e. they are
orthonormal and

o9 4z i 9 gy =9
P\ gt 7Y a0 P\ G Y g

We are going to write down the components of the Riemannian curvature
tensor of g. For generic indices i, j, r put

. 1 (0gr; Ogir 0gi
Gy = <8xi T ow )

We use the Greek letters v, 3, . .. as the indices relative to 2!, ..., 2", then we
use o*, 3*, ... as the indices relative to y',...,y", and 7, j,... as the indices
relative to z!,..., z%. We get

1 * 1
Gg’}’* = g(éﬁ’Yya + 50‘73/5) ) G%’y = _g(éozﬁy7 + 50@95) )

OL* 1 l ]- [0 1
is = glapi Gapr = —glag;  Gig = —glap

the other G7,’s are zero. It follows that the non zero Christoffel’s symbols of
the Riemannian structure are

1 * 1 1
g'y* = iéavyﬂS ng = _5(5aﬁy’y + 6a7yﬁ) ) F%*i = _idam

4 1 .1
(497 = 0ap)i Tjor = =54 Thi = 0as.

Tl =

N =
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Finally the non zero components of the Riemannian curvature tensor are

1
— (Saryyy — Sasy®y" — 56,8y" Y + 5035y°Y") ;

Raﬁ'ﬂs = 16

1
Ra*ﬁ*75 = E((s - 1)(5a7yﬁy6 - 5a6yﬂy7) + 3(6a55'yﬁ - 5ﬁ66a7) );

1 1
Rogeyes = 15 (200800 + 50p500y = 503y°4") s Rigeyrs = 75080

1 1 s 1
Raijo = —{g0ai  Ripys = ﬁ((sﬁ’yy —035y7);  Rarijer = ~1g%0-
Observe that for each o € {1,...,n} the p-sectional curvature of the planes

generated by {83%’ cp(ayia)} is —2— s+ s(s —1)(y®)?. Hence the p-sectional
curvature of M is not constant. The components of the Ricci tensor are

1 1 3
Ra/)’ = 5(Snyo‘yﬁ — 604,3) + Z <(8 — 1)yay + (S — 1)26aﬂ Z (yp)2)7
p=1

1 n
Rorpe = 45a6< —24s(s—1)) (y”)2>, Rop- =0,
p=1

1 1
Ryi=—zny®+-(1—-9)y*, Rij= 3™ R+ = 0.

Comparing with (1.12) of [9] we conclude that R?"** is not n-Einstein.
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