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A NOTE ON STRONG β-I-SETS AND
STRONGLY β-I-CONTINUOUS FUNCTIONS

E. HATIR, A. KESKIN (Konya) and T. NOIRI (Yatsushiro)

Abstract. In [6], we introduced and investigated the notions of strong β-I-
open sets and strong β-I-continuous functions in ideal topological spaces. In this
paper, we investigate further their important properties.

1. Introduction

Throughout the present paper, spaces always mean topological spaces
on which no separation property is assumed unless explicitly stated. In a
topological space (X, τ), the closure and the interior of any subset A of X
will be denoted by Cl (A) and Int (A), respectively. An ideal is defined as a
nonempty collection I of subsets of X satisfying the following two conditions:
(1) If A ∈ I and B ⊂ A, then B ∈ I; (2) If A ∈ I and B ∈ I, then A∪B ∈ I.
Let (X, τ) be a topological space and I an ideal of subsets of X. An ideal
topological space is a topological space (X, τ) with an ideal I on X and is
denoted by (X, τ, I). For a subset A ⊂ X, A∗(I) = {x ∈ X | U ∩A 6∈ I for
each neighbourhood U of x} is called the local function of A with respect to
I and τ [11]. X∗ is often a proper subset of X. The hypothesis X = X∗ [8]
is equivalent to the hypothesis τ ∩ I = {∅} [14]. The ideal topological spaces
which satisfy this hypothesis are called Hayashi–Samuels spaces. We simply
write A∗ instead of A∗(I) in case there is no chance for confusion. For every
ideal topological space (X, τ, I), there exists a topology τ∗(I), finer than τ ,
generated by β(I, τ) = {U\I | U ∈ τ and I ∈ I}, but in general β(I, τ) is not
always a topology [10]. Additionally, Cl∗(A) = A ∪A∗ defines a Kuratowski
closure operator for τ∗(I).
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2. Preliminaries

Lemma 1 (Janković and Hamlett [10]). Let (X, τ, I) be an ideal topolog-
ical space and A, B subsets of X. Then the following properties hold:

a) If A ⊂ B, then A∗ ⊂ B∗.
b) A∗ = Cl (A∗) ⊂ Cl (A).
c) (A∗)∗ ⊂ A∗.
d) If U ∈ τ , then U ∩A∗ ⊂ (U ∩A)∗.

Definition 1. A subset A of an ideal topological space (X, τ, I) is said
to be

a) I-open [1] if A ⊂ Int (A∗),

b) strong β-I-open [6] A ⊂ Cl∗ (Int
(
Cl∗(A)

)
).

The subset A is said to be strong β-I-closed if (X−A) is strong β-I-open.

Lemma 2 ( Hatir et al. [6]). Let (X, τ, I) be an ideal topological space
and {Aα : α ∈ ∆} a family of subsets of X. Then the following properties
hold:

a) If {Aα : α ∈ ∆} ⊂ sβI(X, τ), then
⋃
{Aα : α ∈ ∆} ∈ βI(X, τ).

b) If A ∈ sβI(X, τ) and U ∈ τ , then (U ∩A) ∈ sβI(X, τ).

By sβI(X,τ), we denote the family of all strong β-I-open sets of (X,τ, I).
We obtain a slight improvement of Lemma 2b) in Section 3.

Definition 2 (Husain [9]). A set X with a family U ⊂ P (X) is called
supratopological space, if U contains X, ∅ and is closed under arbitrary
union.

3. Strong β-I-open sets

Theorem 1. For a Hayashi–Samuels space (X, τ, I), the class sβI(X, τ)
forms a supratopology.

Proof. This follows by using Definition 2 and the fact that ∅∗ = {x ∈ X |
∅ ∩ U 6∈ I for each neighbourhood U of x} (given in [10]) and by definition
of Hayashi–Samuels space with Lemma 2. �

Specially, if I = N , where N is the ideal of all nowhere dense sets, the
above theorem holds for an ideal topological space (X, τ,N). Because, in the
ideal topological space (X, τ,N), X coincides with its local function i.e. X∗.
This is given in [10].
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Definition 3 (Dontchev [2]). A subset S of a space (X, τ, I) is a topo-
logical space with an ideal IS = {I ∈ I | I j S} = {I ∩ S | I ∈ I} on S.

Lemma 3 (Dontchev et al. [3]). Let (X, τ, I) be an ideal topological space
and A ⊂ S ⊂ X. Then, A∗(IS , τ | S) = A∗(I, τ) ∩ S holds.

Definition 4. Let (X, τ, I) be an ideal topological space and A ⊂ S
⊂ X. Then, Cl∗S(A) = A ∪A∗(IS , τ | S) is a Kuratowski closure operator.

It is not difficult, however, to verify directly that Cl∗S , where τ | S is the
original topology on S, that is, (τ | S)∗(IS) = {U j S | Cl∗S(S−U) = S−U}.
When no ambiguity is present we will simply write (τ | S)∗.

Lemma 4. Let A be a subset of an ideal topological space (X, τ, I).
a) If U ∈ τ , then U ∩ Cl∗(A) ⊂ Cl∗(U ∩A).
b) If A ⊂ S ⊂ X, then Cl∗S(A) = Cl∗(A) ∩ S.

Proof. a) Since U ∈ τ , by Lemma 1 we obtain U ∩ Cl∗(A) = U ∩ (A
∪A∗) = (U ∩A) ∪ (U ∩A∗) ⊂ (U ∩A) ∪ (U ∩A)∗ = Cl∗(U ∩A).

b) It is shown in [3, Lemma 2.7] that A∗(τ |S , IS) = A∗(τ, I)∩ S. There-
fore, we obtain Cl∗S(A) = A∗

(
τ |S , IS

)
∪A = (A∗ ∩ S) ∪A = (A∗ ∩ S) ∪ (A

∩ S) = (A ∪A∗) ∩ S = Cl∗(A) ∩ S and hence Cl∗S(A) = Cl∗(A) ∩ S. �

Proposition 1. Let (X, τ, I) be an ideal topological space. If U ∈ τ and
A ∈ sβI(X, τ), then (A ∩ U) ∈ sβI

(
U, τ |U

)
.

Proof. By using Lemmas 1 and 4, we obtain the following. Since U ∈ τ
and A ∈ sβI(X, τ), then A ⊂ Cl∗ (Int

(
Cl∗(A)

)
). Therefore, we have

(U ∩A) j (U ∩ Cl∗ (Int
(
Cl∗(A)

)
)) ⊂ Cl∗ (U ∩ (Int

(
Cl∗(A)

)
)) ∩ U

= Cl∗U (U ∩ (Int
(
Cl∗(A)

)
)) = Cl∗U (IntU (U ∩ (Int

(
Cl∗(A)

)
))

⊂ Cl∗U (IntU

(
U ∩ Cl∗(A)

)
) ⊂ Cl∗U (IntU

(
Cl∗(U ∩A) ∩ U

)
)

= Cl∗U (IntU

(
Cl∗U (U ∩A)

)
).

Thus, (A∩U) ⊂ Cl∗U (IntU

(
Cl∗U (U ∩A)

)
) and hence (A∩U) ∈ sβI

(
U, τ |U

)
.

�

Proposition 2. Let (X, τ, I) be an ideal topological space. If A ⊂ U

⊂ X, U ∈ τ and A ∈ sβI
(
U, τ |U

)
, then A ∈ sβI(X, τ).
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Proof. Since A ∈ sβI
(
U, τ |U

)
, we have A j Cl∗U (IntU

(
Cl∗U (A)

)
).

Thus, by using Lemma 4, we obtain that

A j Cl∗U (IntU

(
Cl∗U (A)

)
) ⊂ Cl∗ (IntU

(
Cl∗U (A)

)
)

= Cl∗ (Int
(
Cl∗U (A)

)
) ⊂ Cl∗ (Int

(
Cl∗(A)

)
).

Thus, we obtain A ⊂ Cl∗ (Int
(
Cl∗(A)

)
) and hence A ∈ sβI(X, τ). �

Corollary 1. Let (X, τ, I) be an ideal topological space and A ⊂ U ∈ τ .
Then A ∈ sβI(X, τ) if and only if A ∈ sβI

(
U, τ |U

)
.

Proof. This is an immediate consequence of Propositions 1 and 2. �

A subset A of an ideal topological space (X, τ, I) is said to be an α-I-
open set [7] if A ⊂ Int (Cl∗

(
Int (A)

)
). Every open set is α-I-open but the

converse is not necessarily true as shown by the following simple example:

Let X = {a, b, c, }, τ =
{
X, ∅, {a}, {a, b}

}
and I = {∅}. Then the sub-

set {a, c} is an α-I-open set which is not open. Therefore, the following
proposition is an improvement of Lemma 2b).

Proposition 3. Let (X, τ, I) be an ideal topological space. If U is α-I-
open and A ∈ sβI(X, τ), then (U ∩A) ∈ sβI(X, τ).

Proof. Let U be α-I-open and A ∈ sβI(X, τ). Then

U ⊂ Int (Cl∗
(
Int (U)

)
) and A ⊂ Cl∗ (Int

(
Cl∗(A)

)
)

and hence by using Lemma 4, we have

(U ∩A) ⊂
[
Int (Cl∗

(
Int (U)

)
) ∩ Cl∗ (Int

(
Cl∗(A)

)
)
]

⊂ Cl∗
[
Int (Cl∗

(
Int (U)

)
) ∩ (Int

(
Cl∗(A)

)
)
]

⊂ Cl∗
(
Int [Cl∗

(
Int (U)

)
∩ (Int

(
Cl∗(A)

)
)]

)
⊂ Cl∗

(
Int

(
Cl∗ [ Int (U) ∩ (Int

(
Cl∗(A)

)
)]

))
⊂ Cl∗

(
Int

(
Cl∗ [ Int (U) ∩

(
Cl∗(A)

)
]
))

⊂ Cl∗
(
Int

(
Cl∗ [Cl∗

(
Int (U) ∩A

)
]
))

⊂ Cl∗ (Int
(
Cl∗(U ∩A)

)
).

Thus, we obtain that (U ∩A) ⊂ Cl∗ (Int
(
Cl∗(U ∩A)

)
). This shows that

(U ∩A) ∈ sβI(X, τ). �
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Definition 5. A subset A of an ideal topological space (X, τ, I) is said
to be

a) semi-I-open [7] if A ⊂ Cl∗
(
Int (A)

)
,

b) pre-I-open [4] if A ⊂ Int
(
Cl∗(A)

)
.

Remark 1. In Proposition 3, the assumption “α-I-open” on U cannot
be replaced by semi-I-open nor by pre-I-open instead of α-I-open as the
following examples show respectively.

Example 1. Let X = {a, b, c, d, e}, τ =
{
∅, X, {a}, {c}, {a, c}, {a, b},

{a, b, c}
}

and I =
{
∅, {b}

}
. Then A = {a, d, e} is a semi-I-open set and B =

{c, d} is a strong β-I-open set. However, C = A∩B = {d} is not a strong β-I-
open set. For A = {a, d, e}, since Int (A) = {a} and

(
Int (A)

)∗ = {a, b, d, e},
Cl∗

(
Int (A)

)
= Int (A) ∪

(
Int (A)

)∗ = {a, b, d, e} ⊃ {a, d, e} = A. Hence, A
is a semi-I-open set. For B = {c, d}, since B∗ = {c, d, e} and Cl∗(B) = B

∪B∗ = {c, d, e}, we have Int
(
Cl∗(B)

)
= {c} and (Int

(
Cl∗(B)

)
)
∗ = {c, d, e}.

Therefore, we obtain Cl∗ (Int
(
Cl∗(B)

)
) = Int

(
Cl∗(B)

)
∪ (Int

(
Cl∗(B)

)
)
∗ =

{c, d, e} ⊃ {c, d} = B. Hence, B is a strong β-I-open set. Consequently,
for C = A ∩B = {d}, since C∗ =

(
{d}

)∗ = {d, e} and Cl∗(C) = C ∪ C∗ =
{d, e}, we have Int

(
Cl∗(C)

)
= Int

(
{d, e}

)
= ∅. Since ∅∗ = ∅, we have

(Int
(
Cl∗(C)

)
)
∗ = ∅ and

Cl∗ (Int
(
Cl∗(C)

)
) = (Int

(
Cl∗(C)

)
) ∪ (Int

(
Cl∗(C)

)
)
∗ = ∅

and hence C  Cl∗ (Int
(
Cl∗(C)

)
). This shows that C is not strong β-I-open.

Example 2. Let X = {a, b, c, d}, τ =
{
∅, X, {a, c}, {d}, {a, c, d}

}
and

I =
{
∅, {b}

}
. Then A = {b, c, d} is a pre-I-open set and B = {a, b} is a

strong β-I-open set. However, C = A ∩B = {b} is not a strong β-I-open
set. For A = {b, c, d}, since A∗ = X and Cl∗(A) = A ∪A∗ = X, we have
Int

(
Cl∗(A)

)
= X ⊃ A. Hence, A is a pre-I-open set. For B = {a, b},

since B∗ = {a, b, c} and Cl∗(B) = B ∪B∗ = {a, b, c}, we have Int
(
Cl∗(B)

)
=

{a, c}. Therefore, we have (Int
(
Cl∗(B)

)
)
∗ = {a, b, c} and Cl∗ (Int

(
Cl∗(B)

)
)

⊃ B and hence B is a strong β-I-open set. Consequently, for C = A

∩B = {b}, since C∗ =
(
{b}

)∗ = ∅ and Cl∗(C) = C ∪ C∗ = {b}, we have
Int

(
Cl∗(C)

)
= Int

(
{b}

)
= ∅. Since ∅∗ = ∅, we have (Int

(
Cl∗(C)

)
)
∗ = ∅ and

Cl∗ (Int
(
Cl∗(C)

)
) = (Int

(
Cl∗(C)

)
) ∪ (Int

(
Cl∗(C)

)
)
∗ = ∅ and hence C  

Cl∗ (Int
(
Cl∗(C)

)
). This shows that C is not strong β-I-open.
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4. Strongly β-I-continuous functions

In [6], we defined a function f : (X, τ, I) → (Y, σ) to be strongly-β-I-
continuous if for every V ∈ σ, f−p(V ) is a strong β-I-open set of (X, τ, I).

Theorem 2. For a function f : (X, τ, I) → (Y, σ), the following proper-
ties are equivalent:

a) f is strongly-β-I-continuous.
b) The inverse image of each closed set in (Y, σ) is strong β-I-closed.
c) For each x ∈ X and V ∈ σ containing f(x), there exists U ∈ sβI(X,τ)

containing x such that f(U) ⊂ V .

Proof. The proof is obvious from Lemma 2 and is thus omitted. �

Theorem 3. The restriction of a strongly-β-I-continuous function to an
open set is also strongly-β-I-continuous.

Proof. Let f : (X, τ, I) → (Y, σ) be a strongly-β-I-continuous function
and U ∈ τ . We show that f |U is strongly-β-I-continuous. Let V ∈ σ, then
since f is strongly-β-I-continuous, f−p(V)∈ sβI(X, τ). On the other hand,
since U ∈ τ , we have

(
f |U

)−p(V ) =
(
U ∩ f−p(V )

)
∈ sβI

(
U, τ |U

)
by using

Proposition 1. Consequently, f |U is strongly-β-I-continuous. �

Theorem 4. A function f : (X, τ, I) → (Y, σ) is strongly-β-I-continuous
if and only if for any open cover {Uα : α ∈ ∆} of X, the restriction f |Uα

:(
Uα, τ |Uα

, IUα

)
→ (Y, σ) is strongly-β-I-continuous for each α ∈ ∆.

Proof. This follows immediately by using Lemma 2, Proposition 2 and
Theorem 3. �

Theorem 5. A function is strongly-β-I-continuous if and only if its graph
function is strongly-β-I-continuous.

Proof. Necessity. Let f : (X, τ, I) → (Y, σ) be strongly-β-I-continuous,
x ∈ X and H an open set in X × Y containing g(x). Then, there exist U ∈ τ
and V ∈ σ such that g(x) =

(
x, f(x)

)
∈ U × V ⊂ H. By hypothesis, there

exists W ∈ sβI(X, τ) containing x such that f(W ) ⊂ V . We have x ∈ (U
∩W ) ∈ sβI(X, τ) by using Lemma 2b). So,

(
(U ∩W )× V

)
⊂ U × V ⊂ H

and hence g(U ∩W ) ⊂ H. This shows that g : (X, τ, I) → (X × Y, τ × σ) is
strongly-β-I-continuous by Theorem 2.

Sufficiency. Let x ∈ X and V ∈ σ containing f(x), then g(x) ∈ (X × V )
∈ τ × σ. Since g is strongly-β-I-continuous, there exists W ∈ sβI(X, τ) con-
taining x such that g(W ) ⊂ X×V . Therefore, we obtain f(W ) ⊂ V , because
g(W ) =

(
W,f(W )

)
. Hence f is strongly-β-I-continuous by Theorem 2. �
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Proposition 4. If f : (X, τ, I) → (Y, σ, J) is a strongly-β-I-continuous
function and g : (Y, σ, J) → (Z,ψ) is a continuous function, then g ◦ f :
(X, τ, I) → (Z,ψ) is a strongly-β-I-continuous function.

Proof. Let V ∈ ψ. Since g is continuous, then g−p(V ) ∈ σ. On the
other hand, since f is strongly-β-I-continuous, we have f−p(g−p(V )

)
∈

sβI(X,τ). Since (g ◦ f)−p(V ) = f−p(g−p(V )
)
, we obtain that g◦f is strongly-

β-I-continuous. �

5. Strongly β-I-compact spaces

Definition 6. An ideal topological space (X, τ, I) is said to be strongly
β-I-compact (resp. I-compact [12] and [13]) if for every strong β-I-open
(resp. I-open) cover {Wα : α ∈ ∆}, there exists a finite subset ∆0 of ∆ such
that (X −

⋃
{Wα : α ∈ ∆0}) ∈ I.

Lemma 5 (Hamlett and Janković [5]). For any surjective function f :
(X, τ, I) → (Y, σ), f(I) is an ideal on Y .

Theorem 6. The image of a strongly β-I-compact space under a strongly-
β-I-continuous surjection is f(I)-compact.

Proof. Let f : (X,τ, I) → (Y,σ) be a strongly-β-I-continuous surjection
and {Vα : α ∈ ∆} be an open cover of Y . Then,

{
f−p(Vα) : α ∈ ∆

}
is a

strong β-I-open cover of X. From the assumption, there exists a finite subset
∆0 of ∆ such that (X −

⋃{
f−p(Vα) : α ∈ ∆0

}
) ∈ I. Therefore, (Y −

⋃
{Vα :

α ∈ ∆0}) ∈ f(I) which shows that
(
Y, σ, f(I)

)
is f(I)-compact. �

Theorem 7. Every strongly β-I-compact space is I-compact.

Proof. The proof is obvious since every I-open set is strong β-I-open.
�
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