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Abstract In this study, we derive the sharp bounds of certain Toeplitz determinants whose

entries are the coefficients of holomorphic functions belonging to a class defined on the unit

disk U. Furthermore, these results are extended to a class of holomorphic functions on the

unit ball in a complex Banach space and on the unit polydisc in Cn. The obtained results

provide the bounds of Toeplitz determinants in higher dimensions for various subclasses of

normalized univalent functions.
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1 Introduction

Coefficient problems play a significant role in the growth of Geometric function theory.

In fact, Bieberbach conjecture, which deals with the bounds of the coefficients of normalized

analytic univalent functions defined on the unit disk, took 68 years to prove. While solving

the conjecture, various new concepts were developed. Koebe one-quarter theorem illustrates

an application of the coefficient problem, as it is proved using the second coefficient bound.

However, Cartan [4] stated that Bieberbach conjecture does not hold in case of several complex

variables. There are counterexamples, which show that many results in the Geometric function

theory of one complex variable are not applicable for several complex variables (see [6]). We

use the following notations for functions of one complex variable:

Let S be the class of analytic univalent functions in the unit disk U = {z ∈ C : |z| < 1},
having the series expansion of the form g(z) = z +

∞∑
n=2

bnz
n. Let S∗, S∗(α) and SS∗(γ)

respectively denote the subclasses of S, which contain starlike functions, starlike functions of

order α (0 ≤ α < 1) and strongly starlike functions of order γ (0 < γ ≤ 1). For more details

about these classes, we refer [9].

For the class S and its subclasses, various coefficient problems are studied. In particular,

Ali et al. [2] obtained the sharp bounds of Toeplitz determinants, when the entries of the

Toeplitz matrix are the coefficients of function g ∈ S and certain of its subclasses.
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For the coefficients {bk}k≥2 of the function g(z) = z +
∞∑
n=2

bnz
n, the Toeplitz matrix is

defined by

Tm,n(g) =


bn bn+1 · · · bn+m−1

bn+1 bn · · · bn+m−2

...
...

...
...

bn+m−1 bn+m−2 · · · bn

 .

Thus, the second order Toeplitz determinant is

detT2,2(g) = b22 − b23 (1.1)

and the third order Toeplitz determinant is given by

detT3,1(g) =

∣∣∣∣∣∣∣∣
1 b2 b3

b2 1 b2

b3 b2 1

∣∣∣∣∣∣∣∣ = 2b22b3 − 2b22 − b23 + 1. (1.2)

Ye and Lim [24] showed that any n×n matrix over C generically can be written as the product

of some Toeplitz matrices or Hankel matrices. Toeplitz matrices and Toeplitz determinants

have numerous applications in the field of pure as well as applied mathematics. They arise

in partial differential equations, algebra, signal processing and time series analysis. For more

applications of Toeplitz matrices and Toeplitz determinants, we refer [24] and the references

cited therein.

In 2017, Ali et al. [2] determined the bound of |detT2,2(g)| and |detT3,1(g)|, when entries

of Tm,n(g) are the coefficients of starlike functions. Recently, Ahuja et al. [1] obtained the

bounds for various subclasses of starlike functions.

Theorem A ([2]) If g ∈ S∗, then the following sharp bounds hold:

|detT2,2(g)| ≤ 13 and |detT3,1(g)| ≤ 24.

Theorem B ([1]) If g ∈ S∗(α), then

|detT2,2(g)| ≤ (1− α)2(4α2 − 12α+ 13).

For α ∈ [0, 2/3], the following inequality holds:

|detT3,1(g)| ≤ 12α4 − 52α3 + 91α2 − 74α+ 24.

All these estimations are sharp.

Theorem C ([1]) Let g ∈ S∗[D,E], then the following sharp estimations hold:

(i) If |D − 2E| ≥ 1, then

|detT2,2(g)| ≤ (D − E)2(D2 + 4E2 − 4DE + 4)

4
.

(ii) If E ≤ min{(D − 1)/2, (3D − 1)/2}, then

|detT3,1(g)| ≤ 1 + 2(D − E)2 + (3D2 − 5DE + 2E2)(D2 − 3DE + 2E2)/4.
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The class S∗[D,E] denotes the class of Janowski starlike functions [14], where −1 ≤ E <

D ≤ 1.

Coefficient problems are also studied in the case of several variables. For instance, Xu

and Liu [18] solved the Fekete-Szegö problem for a subclass of normalized starlike mappings

on the unit ball of a complex Banach space. Xu et al. [23] obtained the bound of the same

for a subclass of normalized quasi-convex mappings of type B on the unit ball of complex

Banach space. Generalizing this work, Hamada et al. [12, 23] also determined the bound of

Feketo-Szegö type inequality. Contrary to Feketo-Szegö inequality for various subclasses of S,

very few results are known for the inequalities of homogeneous expansions for subclasses of

biholomorphic mappings in several complex variables [8, 10, 11, 21]. Numerous best-possible

results concerning the coefficient estimates for subclasses of holomorphic mappings in higher

dimensions are obtained in [3, 5, 7, 15, 17, 19, 20].

In higher dimensions, the following notations are used throughout the paper. Let X be

a complex Banach space with respect to a norm ‖ · ‖ and Cn denote the space of n complex

variables z = (z1, z2, · · · , zn)′. Also, let B = {z ∈ X : ‖z‖ < 1} be the unit ball in X and Bn

be the Euclidean unit ball in Cn. Further, the boundary and distinguished boundary of Un is

denoted by ∂Un and ∂0Un, respectively.

For each z ∈ X \ {0}, consider the set

Tz = {lz ∈ L(X,C) : lz(z) = ‖z‖, ‖lz‖ = 1},

where L(X,Y ) denotes the set of continuous linear operators from X into a complex Banach

space Y . Let I denote the identity in L(X,X). This set is non-empty according to the Hahn-

Banach theorem.

Let H(Ω) denote the set of all holomorphic mappings from Ω into X. If g ∈ H(B), then for

each k = 1, 2, · · · , there is a bounded symmetric linear mapping

Dkg(z) :
k∏
j=1

X → X,

called the k-th order Fréchet derivative of g at z such that

g(w) =
∞∑
k=0

1

k!
Dkg(z)((w − z)k)

for all w in some neighborhood of z. It is understood that

D0g(z)((w − z)0) = g(z),

and for k ≥ 1,

Dkg(z)((w − z)k) = Dkg(z) (w − z, w − z, · · · , w − z)︸ ︷︷ ︸
k-times

.

We say that g is normalized if g(0) = 0 and Dg(0) = I. A holomorphic mapping g : Ω→ X is

said to be biholomorphic on the domain Ω if g(Ω) is a domain in X and the inverse g−1 exists and

is holomorphic on g(Ω). If for each z ∈ Ω, Dg(z) has a bounded inverse, the mapping g is said to

be locally biholomorphic. As in the finite dimensional case, let S(B) denote the set of normalized

biholomorphic mappings from B into X. The class S(B) of normalized biholomorphic mappings

is not a normal family on the unit ball in Cn.
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On a bounded circular domain Ω ⊂ Cn, the first and the m-th Fréchet derivative of a

holomorphic mapping g : Ω→ X are written by Dg(z) and Dmg(z)(am−1, ·), respectively. The

matrix representations are

Dg(z) =

(
∂gj
∂zk

)
1≤j,k≤n

,

Dmg(z)(am−1, ·) =

( n∑
p1,p2,··· ,pm−1=1

∂mgj(z)

∂zk∂zp1 · · · ∂zpm−1

ap1 · · · apm−1

)
1≤j,k≤n

,

where g(z) = (g1(z), g2(z), · · · , gn(z))′, a = (a1, a2, · · · , an)′ ∈ Cn.
The following class was defined by Hamada et al. [13].

Definition 1.1 Let g : B → X be a normalized locally biholomorphic mapping and

α ∈ (0, 1). We say that g is starlike of order α if∣∣∣∣ 1

‖z‖
lz([Dg(z)]−1g(z))− 1

2α

∣∣∣∣ < 1

2α
, ∀z ∈ B \ {0}, lz ∈ T (z).

In case of X = Cn and B = Un, the above condition is equivalent to∣∣∣∣qk(z)

zk
− 1

2α

∣∣∣∣ < 1

2α
, ∀z ∈ Un \ {0},

where

q(z) = (q1(z), q2(z), · · · , qn(z))′ = (D(g(z)))−1g(z)

is a column vector in Cn and k satisfies

|zk| = ‖z‖ = max
1≤j≤n

{|zj |}.

For B = U and X = C, the relation is equivalent to

Re
zg′(z)

g(z)
> α, z ∈ U.

Let S∗α(B) denote the class of starlike mappings of order α on B. When X = C and B = U, the

class S∗α(U) is denoted by S∗(α).

Definition 1.2 ([16]) Let g : B→ X be a normalized locally biholomorphic mapping and

γ ∈ (0, 1]. We say that f is strongly starlike mapping of order γ if∣∣arg lz([Dg(z)]−1g(z))
∣∣ < π

2
γ, ∀z ∈ B \ {0}, lz ∈ T (z).

In case of B = Un and X = Cn, the above condition is equivalent to∣∣∣∣arg
qj(z)

zj

∣∣∣∣ < π

2
γ, z ∈ Un \ {0}.

where

q(z) = (q1(z), q2(z), · · · , qn(z))′ = (D(g(z)))−1g(z)

is a column vector in Cn and j satisfies

|zj | = ‖z‖ = max
1≤k≤n

{|zk|}.

In case of B = U and X = C, the relation is equivalent to∣∣∣∣arg
zg′(z)

g(z)

∣∣∣∣ < π

2
γ, z ∈ U.
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Let SS∗γ(B) denote the class of starlike mappings of order γ on B. When X = C and B = U,

the class SS∗γ(U) is denoted by SS∗(γ).

For a biholomorphic function Φ : U → C, which satisfies Φ(0) = 1 and Re Φ(z) > 0, Kohr

[15] introduced the class MΦ containing the functions p ∈ H(B) such that Dp(0) = I and

‖z‖/lz(p(z)) ∈ Φ(U). Here, we additionally take Φ′(0) > 0, Φ′′(0) ∈ R and define the following:

Definition 1.3 Let Φ : U→ C be a biholomorphic function such that Φ(0) = 1, Re Φ(z) >

0, Φ′(0) > 0 and Φ′′(0) ∈ R. We define MΦ to be the class of mappings given by

MΦ =

{
p ∈ H(B) : p(0) = 0, D(p(0)) = I,

‖z‖
lz(p(z))

∈ Φ(U), z ∈ B \ {0}, lz ∈ T (z)

}
.

For B = Un and X = Cn, the above relation is equivalent to

MΦ =

{
p ∈ H(Un) : p(0) = 0, D(p(0)) = I,

zk
pk(z)

∈ Φ(U), z ∈ Un \ {0}
}
,

where p(z) = (p1(z), p2(z), · · · , pn(z))′ is a column vector in Cn and k satisfies

|zk| = ‖z‖ = max
1≤j≤n

{|zj |}.

For B = U and X = C, the relation is equivalent to

MΦ =

{
p ∈ H(U) : p(0) = 0, p′(0) = 1,

z

p(z)
∈ Φ(U), z ∈ U

}
.

Also, note that, if g ∈ H(B) and D(g(z))−1g(z) ∈ MΦ, then suitable choices of Φ in

Definition 1.3 provide different subclasses of holomorphic mappings. For instance, when Φ(z) =

(1 + z)/(1− z), Φ(z) = (1 + (1− 2α)z)/(1− z) and Φ(z) = ((1 + z)/(1− z))γ , we easily obtain

that g ∈ S∗(B), g ∈ S∗α(B) and g ∈ SS∗γ(B), respectively.

In this paper, we obtain the sharp bounds of |detT2,2(g)| and |detT3,1(g)| for a class of

holomorphic functions in the unit disk, which contain the above results as special cases. Further,

these results are generalized in higher dimensions.

2 Main Results

First, we find the bounds of |detT2,2(g)| and |detT3,1(g)| for a class of holomorphic map-

pings defined on U.

Theorem 2.1 Let g(z) = z + b2z
2 + b3z

3 + · · · ∈ Φ(U), where Φ is same as given in

Definition 1.3 and satisfy

|Φ′′(0) + 2(Φ′(0))2| ≥ 2Φ′(0) > 0.

If g(z)/g′(z) ∈MΦ, then

|T2,2(g)| ≤ (Φ′(0))2

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

+ (Φ′(0))2.

The bound is sharp.

Proof Since g(z)/g′(z) ∈MΦ, therefore we have

G(z) :=
zg′(z)

g(z)
∈ Φ(U),
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which yields G ≺ Φ. For g(z) = z + b2z
2 + b3z

3 + · · · , the Taylor series expansion of G(z) is

given by

G(z) = 1 + b2z + (2b3 − b22)z2 + · · · .

Xu et al. [22] proved that

|b3 − λb22| ≤
|Φ′(0)|

2
max

{
1,

∣∣∣∣12 Φ′′(0)

Φ′(0)
+ (1− 2λ)Φ′(0)

∣∣∣∣} , λ ∈ C. (2.1)

Thus, whenever |Φ′′(0) + 2(Φ′(0))2| ≥ 2Φ′(0), the equation (2.1) yields

|b3| ≤
Φ′(0)

2

∣∣∣∣12 Φ′′(0)

Φ′(0)
+ Φ′(0)

∣∣∣∣ . (2.2)

Further, using the bound |G′(0)| ≤ Φ′(0), we obtain

|b2| ≤ Φ′(0). (2.3)

From (1.1), we have

|detT2,2(g)| = |b23 − b22| ≤ |b3|2 + |b2|2.

Clearly, the required bound follows directly from the above relation together with the bounds

of |b3| and |b2| given in (2.2) and (2.3), respectively.

To see the sharpness of the bound, consider the function gΦ : U→ C given by

gΦ(z) = z exp

∫ z

0

(Φ(it)− 1)

t
dt = 1 + iΦ′(0)z − 1

2

(
(Φ′(0))2 +

Φ′′(0)

2

)
z2 + · · · . (2.4)

It can be easily seen that gΦ(z)/g′Φ(z) ∈MΦ and

|detT2,2(gΦ)| = 1

4

(
(Φ′(0))2 +

Φ′′(0)

2

)2

+ (Φ′(0))2,

which shows that the bound is sharp and completes the proof.

Theorem 2.2 Let g(z) = z + b2z
2 + b3z

3 + · · · ∈ Φ(U), where Φ is same as given in

Definition 1.3 and satisfy

2Φ′(0)− 2(Φ′(0))2 ≤ Φ′′(0) ≤ 6(Φ′(0))2 − 2Φ′(0).

If g(z)/g′(z) ∈MΦ, then

|detT3,1(g)| ≤ 1 + 2(Φ′(0))2 +
(Φ′(0))2

4

(
3Φ′(0)− Φ′′(0)

2Φ′(0)

)(
Φ′′(0)

2Φ′(0)
+ Φ′(0)

)
.

The bound is sharp.

Proof Since Φ′′(0) + 2(Φ′(0))2 ≥ 2Φ′(0), by (2.2), we obtain

|b3| ≤
Φ′(0)

2

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)
. (2.5)

Also, 6(Φ′(0))2 − Φ′′(0) ≥ 2Φ′(0) holds, hence (2.1) gives

|b3 − 2b22| ≤
Φ′(0)

2

(
3Φ′(0)− 1

2

Φ′′(0)

Φ′(0)

)
. (2.6)

From (1.2), we have

|detT3,1(g)| = |2b22b3 − 2b22 − b23 + 1|
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≤ 1 + 2|b2|2 + |b3||b3 − 2b22|.

Using the estimates for the second and third coefficients given in (2.5) and (2.2) together with

the bound of |b3 − 2b22| given in (2.6), required bound follows.

The estimate is sharp for the function gΦ(z) = z+
∞∑
n=2

bnz
n given by (2.4). For this function,

we have

1− 2b22 − b3(b3 − 2b22) = 1 + 2(Φ′(0))2 +
(Φ′(0))2

4

(
3Φ′(0)− Φ′′(0)

2Φ′(0)

)(
Φ′′(0)

2Φ′(0)
+ Φ′(0)

)
,

which proves the sharpness of the bound. �

Remark 2.3 By taking Φ(z) = (1 + z)/(1 − z), Φ(z) = (1 + (1 − 2α)z)/(1 − z) and

Φ(z) = (1 + Dz)/(1 + Ez), Theorems 2.1 and 2.2 can be deduced to Theorem A, Theorem B

and Theorem C, respectively.

The bounds for other classes can also be obtained by changing the corresponding function

Φ. For Φ(z) = ((1 + z)/(1− z))γ , the following result follows for the class SS∗(γ).

Corollary 2.4 If g ∈ SS∗(γ), then for γ ∈ [1/3, 1], the followings sharp inequalities hold:

|detT2,2(g)| ≤ 9γ4 + 4γ2 and |detT3,1(g)| ≤ 15γ4 + 8γ2 + 1.

Next, we extend the above results on the unit ball B and on the unit polydisc Un.

Theorem 2.5 Let g ∈ H(B,C) with g(0) = 1 and suppose that G(z) = zg(z). If

(DG(z))−1G(z) ∈MΦ such that Φ satisfy

|Φ′′(0) + 2(Φ′(0))2| ≥ 2Φ′(0),

then∣∣∣∣( lz(D2G(0)(z2))

2!||z||2

)2

−
(
lz(D

3G(0)(z3))

3!||z||3

)2∣∣∣∣ ≤ (Φ′(0))2

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

+ (Φ′(0))2.

The bound is sharp.

Proof Xu et al. [22, Theorem 3.2] proved that∣∣∣∣ lz(D3G(0)(z3))

3!||z||3
− λ
(
lz(D

2G(0)(z2))

2!||z||2

)2∣∣∣∣
≤ |Φ

′(0)|
2

max

{
1,

∣∣∣∣12 Φ′′(0)

Φ′(0)
+ (1− 2λ)Φ′(0)

∣∣∣∣} , λ ∈ C, z ∈ B \ {0}.
(2.7)

Since |Φ′′(0) + 2(Φ′(0))2| ≥ 2Φ′(0), the above inequality gives∣∣∣∣ lz(D3G(0)(z3))

3!||z||3

∣∣∣∣ ≤ Φ′(0)

2

∣∣∣∣12 Φ′′(0)

Φ′(0)
+ Φ′(0)

∣∣∣∣ . (2.8)

On the other hand, applying a similar method as in [9, Theorem 7.1.14] (also see [22, Theorem

3.2]), we obtain

(DG(z))−1 =
1

g(z)

(
I −

zDg(z)
g(z)

1 + Dg(z)z
g(z)

)
.

Therefore

(DG(z))−1G(z) = z

(
zg(z)

g(z) +Dg(z)z

)
, z ∈ B,
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which directly gives
‖z‖

lz((DG(z))−1G(z))
= 1 +

Dg(z)z

g(z)
. (2.9)

For fix z ∈ X \ {0} and z0 = z
‖z‖ , define the function h : U→ C such that

h(ζ) =


ζ

lz((DG(ζz0))−1G(ζz0))
, ζ 6= 0,

1, ζ = 0.

Then h ∈ H(U) and h(0) = 1 = Φ(0). Moreover, since (DG(z))−1G(z) ∈MΦ, we find that

h(ζ) =
ζ

lz((DG(ζz0))−1G(ζz0))
=

ζ

lz0((DG(ζz0))−1G(ζz0))

=
‖ζz0‖

lζz0((DG(ζz0))−1G(ζz0))
∈ Φ(U), ζ ∈ U.

Taking (2.9) into consideration, we obtain

h(ζ) =
‖ζz0‖

lζz0((Dg(ζz0))−1g(ζz0))
= 1 +

Dg(ζz0)ζz0

g(ζz0)
. (2.10)

In view of the Taylor series expansions of h(ζ) and g(ζz0), the above equation gives(
1 + h′(0)ζ +

h′′(0)

2
ζ2 + · · ·

)(
1 +Dg(0)(z0)ζ +

D2g(0)(z2
0)

2
ζ2 + · · ·

)
=

(
1 +Dg(0)(z0)ζ +

D2g(0)(z2
0)

2
ζ2 + · · ·

)(
Dg(0)(z0)ζ +D2g(0)(z2

0)ζ2 + · · ·
)
.

Comparison of homogeneous expansions yield that h′(0) = Dg(0)(z0). That is

h′(0)‖z‖ = Dg(0)(z). (2.11)

Since G(z) = zg(z), therefore, we have

D2G(0)(z2)

2!
= Dg(0)(z)z. (2.12)

Moreover, from (2.12), we conclude that

lz(D
2G(0)(z2))

2!
= Dg(0)(z)‖z‖. (2.13)

Thus, equation (2.13) together with (2.11) gives∣∣∣∣ lz(D2G(0)(z2))

2!

∣∣∣∣ = |Dg(0)(z)‖z‖| = |h′(0)‖z‖2|.

Since h ≺ Φ, therefore |h′(0)| ≤ Φ′(0). Consequently, we obtain∣∣∣∣ lz(D2G(0)(z2))

2!‖z‖2

∣∣∣∣ ≤ Φ′(0). (2.14)

Using the bounds given in (2.14) and (2.8) together with∣∣∣∣( lz(D2G(0)(z2))

2!‖z‖2

)2

−
(
lz(D

3G(0)(z3))

3!||z||3

)2∣∣∣∣ ≤ ∣∣∣∣ lz(D3G(0)(z3))

3!||z||3

∣∣∣∣2 +

∣∣∣∣ lz(D2G(0)(z2))

2!‖z‖2

∣∣∣∣2
the required bound follows.

To see the sharpness, consider the mapping G given by

G(z) = z exp

∫ lu(z)

0

(Φ(it)− 1)

t
dt, z ∈ B, ||u|| = 1. (2.15)
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It is a simple exercise to see that (DG(z))−1G(z) ∈MΦ and a quick calculation reveals that

D2G(0)(z2)

2!
= iΦ′(0)lu(z)z and

D3G(0)(z3)

3!
= −1

2

(
Φ′′(0)

2
+ (Φ′(0))2

)
(lu(z))2z.

In view of the above equations, we have

lz(D
2G(0)(z2))

2!
= iΦ′(0)lu(z)‖z‖

and
lz(D

3G(0)(z3))‖z‖
3!

= −1

2

(
Φ′′(0)

2
+ (Φ′(0))2

)
(lu(z))2‖z‖2.

Setting z = ru (0 < r < 1), we get

lz(D
2G(0)(z2))

2!‖z‖2
= iΦ′(0) and

lz(D
3G(0)(z3))

3!‖z‖3
= −1

2

(
Φ′′(0)

2
+ (Φ′(0))2

)
. (2.16)

Thus for the mapping G, we have∣∣∣∣( lz(D2G(0)(z2))

2!||z||2

)2

−
(
lz(D

3G(0)(z3))

3!||z||3

)2∣∣∣∣ =
(Φ′(0))2

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

+ |Φ′(0)|2,

which proves the sharpness of the bound. �

Theorem 2.6 Let g ∈ H(B,C) with g(0) = 1 and suppose that G(z) = zg(z). If

(DG(z))−1G(z) ∈MΦ such that Φ satisfy

2Φ′(0)− 2(Φ′(0))2 ≤ Φ′′(0) ≤ 6(Φ′(0))2 − 2Φ′(0),

then

|2b22b3 − b23 − 2b22 + 1| ≤ 1 + 2(Φ′(0))2 +
(Φ′(0))2

4

(
3Φ′(0)− Φ′′(0)

2Φ′(0)

)(
Φ′′(0)

2Φ′(0)
+ Φ′(0)

)
,

where

b3 =
lz(D

3G(0)(z3))

3!||z||3
and b2 =

lz(D
2G(0)(z2))

2!||z||2
.

The bound is sharp.

Proof Since 2Φ′(0) < Φ′′(0) + 2(Φ′(0))2, from (2.7), we have∣∣∣∣ lz(D3G(0)(z3))

3!||z||3

∣∣∣∣ ≤ Φ′(0)

2

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)
. (2.17)

And, since 2Φ′(0) + Φ′′(0) ≤ 6(Φ′(0))2, the inequality (2.7) directly gives∣∣∣∣ lz(D3G(0)(z3))

3!||z||3
− 2

(
lz(D

2G(0)(z2))

2!||z||2

)2∣∣∣∣ ≤ Φ′(0)

2

(
3Φ′(0)− 1

2

Φ′′(0)

Φ′(0)

)
. (2.18)

Also, we have

|2b22b3 − b23 − 2b22 + 1| ≤ 1 + 2|b2|2 + |b3||b3 − 2b22|. (2.19)

The required bound is derived by using the estimates given in (2.14) and (2.17), and the bound

given by (2.18) in the above inequality.

The equality case holds for the mapping G(z) defined by (2.15). It follows from (2.16) that

for this mapping, we have b2 = iΦ′(0), b3 = −(Φ′′(0) + 2(Φ′(0))2)/4 and hence

1− b3(b3 − 2b22)− 2b22 = 1 + 2(Φ′(0))2 +
(Φ′(0))2

4

(
3Φ′(0)− Φ′′(0)

2Φ′(0)

)(
Φ′′(0)

2Φ′(0)
+ Φ′(0)

)
,

which shows the sharpness of the bound. �
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Theorem 2.7 Let g ∈ H(Un,C) with g(0) = 1 and suppose that G(z) = zg(z). If

(DG(z))−1G(z) ∈MΦ such that Φ satisfies

|Φ′′(0) + 2(Φ′(0))2| ≥ 2Φ′(0),

then ∥∥∥∥ 1

3!
D3G(0)

(
z2,

D3G(0)(z3)

3!

)
− 1

2!
D2G(0)

(
z,
D2G(0)(z2)

2!

)∥∥∥∥
≤ (Φ′(0))2‖z‖5

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

+ (Φ′(0))
2 ‖z‖3, z ∈ Un. (2.20)

The bound is sharp.

Proof For z ∈ Un \ {0}, let z0 = z
‖z‖ . Define hk : U→ C such that

hk(ζ) =


ζzk

pk(ζz0)‖z0‖
, ζ 6= 0,

1, ζ = 0,
(2.21)

where p(z) = (DG(z))−1G(z) and k satisfies |zk| = ‖z‖ = max
1≤j≤n

{|zj |}. Since (D(G(z)))−1G(z) ∈

MΦ, we have hk(ζ) ∈ Φ(U). Furthermore, using (2.10), we have

hk(ζ) = 1 +
Dg(ζz0)ζz0

g(ζz0)

or equivalently,

hk(ζ)g(ζz0) = g(ζz0) +Dg(ζz0)ζz0.

A comparison of homogeneous expansions obtained by the Taylor series expansions of g and hk

about ζ gives

h′k(0) = Dg(0)(z0),
h′′k(0)

2
= D2g(0)(z2

0)− (Dg(0)(z0))2. (2.22)

Also, using G(z0) = z0g(z0), we have

D3Gk(0)(z3
0)

3!
=
D2g(0)(z2

0)

2!

zk
‖z‖

and
D2Gk(0)(z2

0)

2!
= Dg(0)(z0)

zk
‖z‖

. (2.23)

In view of (2.22) and (2.23), we get∣∣∣ 1

2!
D2Gk(0)

(
z0,

D2G(0)(z2
0)

2!

)‖z‖
zk

∣∣∣ =
∣∣∣ 1

2!
D2Gk(0)(z0, Dg(0)(z0)z0)

‖z‖
zk

∣∣∣
=
∣∣∣Dg(0)(z0)

1

2!
D2Gk(0)(z0, z0)

‖z‖
zk

∣∣∣
=
∣∣∣Dg(0)(z0)

1

2!
D2Gk(0)(z2

0)
‖z‖
zk

∣∣∣
= |(Dg(0)(z0))2|.

(2.24)

Since Dg(0)(z0) = h′k(0) and |h′k(0)| ≤ Φ′(0), therefore∣∣∣∣ 1

2!
D2Gk(0)

(
z0,

D2G(0)(z2
0)

2!

)
‖z‖
zk

∣∣∣∣ = |Dg(0)(z0)|2 ≤ (Φ′(0))2. (2.25)

If z0 ∈ ∂0Un, then ∣∣∣∣ 1

2!
D2Gk(0)

(
z0,

D2G(0)(z2
0)

2!

)∣∣∣∣ ≤ (Φ′(0))2.
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Moreover, since
1

2!
D2Gk(0)

(
z0,

D2G(0)(z2
0)

2!

)
, k = 1, 2, · · · , n

are holomorphic functions on Un, by virtue of the maximum modulus theorem of holomorphic

functions on the unit polydisc, we obtain∣∣∣∣ 1

2!
D2Gk(0)

(
z,
D2G(0)(z2)

2!

)∣∣∣∣ ≤ (Φ′(0))2‖z‖3, k = 1, 2, · · · . (2.26)

Using the same arguments as in (2.24), we get∣∣∣∣ 1

3!
D3Gk(0)

(
z2

0 ,
D3G(0)(z3

0)

3!

)
‖z‖
zk

∣∣∣∣ =

∣∣∣∣(D2g(0)(z2
0)

2!

)∣∣∣∣2. (2.27)

According to the result established by Xu et al. [22, Theorem 3.3], we have∣∣∣∣D3Gk(0)(z3
0)

3!

‖z‖
zk
− λ1

2
D2Gk(0)

(
z0,

D2G(0)(z2
0)

2!

‖z‖
zk

)∣∣∣∣
≤ |Φ

′(0)|
2

max

{
1,

∣∣∣∣12 Φ′′(0)

Φ′(0)
+ (1− 2λ)Φ′(0)

∣∣∣∣ }. (2.28)

Since |Φ′′(0) + 2(Φ′(0))2| ≥ 2Φ′(0), therefore from (2.23) and (2.28), it follows that∣∣∣∣D3Gk(0)(z3
0)

3!

‖z‖
zk

∣∣∣∣ =

∣∣∣∣D2g(0)(z2
0)

2!

∣∣∣∣ ≤ |Φ′(0)|
2

∣∣∣∣12 Φ′′(0)

Φ′(0)
+ Φ′(0)

∣∣∣∣. (2.29)

Thus, from (2.27) and (2.29), we obtain∣∣∣∣ 1

3!
D3Gk(0)

(
z2

0 ,
D3G(0)(z3

0)

3!

)
‖z‖
zk

∣∣∣∣ ≤ (Φ′(0))2

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

.

For z0 ∈ ∂0Un, we get∣∣∣∣ 1

3!
D3Gk(0)

(
z2

0 ,
D3G(0)(z3

0)

3!

)∣∣∣∣ ≤ (Φ′(0))2

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

.

Again, since
1

3!
D3Gk(0)

(
z2

0 ,
D3G(0)(z3

0)

3!

)
, k = 1, 2, · · · , n

are holomorphic functions on Un, therefore the maximum modulus principle on the unit polydisc

yields ∣∣∣∣ 1

3!
D3Gk(0)

(
z2,

D3G(0)(z3)

3!

)∣∣∣∣ ≤ (Φ′(0))2‖z‖5

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

. (2.30)

Now, using the bounds given in (2.26) and (2.30), we obtain∣∣∣∣ 1

3!
D3Gk(0)

(
z2,

D3G(0)(z3)

3!

)
− 1

2!
D2Gk(0)

(
z,
D2G(0)(z2)

2!

)∣∣∣∣
≤ (Φ′(0))2‖z‖3 +

(Φ′(0))2‖z‖5

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

for k = 1, 2, · · · , n. Therefore,∥∥∥∥ 1

3!
D3Gk(0)

(
z2,

D3G(0)(z3)

3!

)
− 1

2!
D2Gk(0)

(
z,
D2G(0)(z2)

2!

)∥∥∥∥
≤ (Φ′(0))2‖z‖3 +

(Φ′(0))2‖z‖5

4

(
1

2

Φ′′(0)

Φ′(0)
+ Φ′(0)

)2

.
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which is the required bound.

To prove the sharpness, consider the mapping

G(z) = z exp

∫ z1

0

Φ(it)− 1

t
dt, z ∈ Un. (2.31)

It is a simple exercise to check that D(G(z))−1G(z) ∈MΦ. From the above relation, we deduce

that
D2G(0)(z2)

2!
= iΦ′(0)z1z,

D3G(0)(z3)

3!
= −1

2

(
Φ′′(0)

2
+ (Φ′(0))2

)
(z1)2z.

By taking z = (r, 0, · · · , 0), the equality in (2.20) holds. �

Remark 2.8 (i) When B = U and X = C, Theorem 2.5 and Theorem 2.7 are equivalent

to Theorem 2.1.

(ii) In case of B = U and X = C, Theorem 2.6 is equivalent to Theorem 2.2.

3 Applications for Various Subclasses

If we take Φ(z) = (1+z)/(1−z), Φ(z) = (1+(1−2α)z)/(1−z) and Φ(z) = ((1+z)/(1−z))γ ,

Theorems 2.5–2.7 give the following bounds (the branch of the power function is taken such

that ((1 + z)/(1− z))γ =1 at z = 0).

Corollary 3.1 Let g ∈ H(B,C) with g(0) = 1 and G(z) = zg(z) ∈ S∗(B). Then the

following holds:∣∣∣( lz(D2G(0)(z2))

2!||z||2
)2

−
( lz(D3G(0)(z3))

3!||z||3
)2∣∣∣ ≤ 13, z ∈ B \ {0}, lz ∈ Tz.

If B = Un and X = Cn, then∥∥∥ 1

3!
D3G(0)

(
z2,

D3G(0)(z3)

3!

)
− 1

2!
D2G(0)

(
z,
D2G(0)(z2)

2!

)∥∥∥ ≤ 9‖z‖5 + 4‖z‖3, z ∈ Un.

All the estimates are sharp.

Corollary 3.2 Let g ∈ H(B,C) with g(0) = 1 and G(z) = zg(z) ∈ S∗α(B). Then the

following holds:∣∣∣( lz(D2G(0)(z2))

2!||z||2
)2

−
( lz(D3G(0)(z3))

3!||z||3
)2∣∣∣ ≤ (1− α)2(4α2 − 12α+ 13), z ∈ B \ {0}.

If B = Un and X = Cn, then∥∥∥ 1

3!
D3G(0)

(
z2,

D3G(0)(z3)

3!

)
− 1

2!
D2G(0)

(
z,
D2G(0)(z2)

2!

)∥∥∥
≤ (1− α)2((3− 2α)2‖z‖5 + 4‖z‖3), z ∈ Un.

All the estimates are sharp.

Corollary 3.3 Let g ∈ H(B,C) with g(0) = 1 and G(z) = zg(z) ∈ SS∗γ(B). Then for

γ ∈ [1/3, 1], the following holds:∣∣∣( lz(D2G(0)(z2))

2!||z||2
)2

−
( lz(D3G(0)(z3))

3!||z||3
)2∣∣∣ ≤ 9γ4 + 4γ2, z ∈ B \ {0}, lz ∈ Tz.

If B = Un and X = Cn, then∥∥∥ 1

3!
D3G(0)

(
z2,

D3G(0)(z3)

3!

)
− 1

2!
D2G(0)

(
z,
D2G(0)(z2)

2!

)∥∥∥ ≤ 9‖z‖5γ4 + 4‖z‖3γ2, z ∈ Un.

All the estimates are sharp.
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Corollary 3.4 Let g ∈ H(B,C) with g(0) = 1 and G(z) = zg(z) ∈ S∗(B). Then the

following holds:

|2b22b3 − b23 − 2b22 + 1| ≤ 24,

where

b3 =
lz(D

3G(0)(z3))

3!||z||3
, b2 =

lz(D
2G(0)(z2))

2!||z||2
, lz ∈ Tz.

The estimate is sharp.

Corollary 3.5 Let g ∈ H(B,C) with g(0) = 1 and G(z) = zg(z) ∈ S∗α(B). Then for

α ∈ [0, 2/3], the following holds:

|2b22b3 − b23 − 2b22 + 1| ≤ 12α4 − 52α3 + 91α2 − 74α+ 24,

where

b3 =
lz(D

3G(0)(z3))

3!||z||3
and b2 =

lz(D
2G(0)(z2))

2!||z||2
, lz ∈ Tz.

The estimate is sharp.

Corollary 3.6 Let g ∈ H(B,C) with g(0) = 1 and G(z) = zg(z) ∈ SS∗γ(B). Then for

γ ∈ [1/3, 1], the following holds:

|2b22b3 − b23 − 2b22 + 1| ≤ 15γ4 + 8γ2 + 1,

where

b3 =
lz(D

3G(0)(z3))

3!||z||3
and b2 =

lz(D
2G(0)(z2))

2!||z||2
, lz ∈ Tz.

The estimate is sharp.
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