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Abstract In this paper, we reconstruct strongly-decaying block sparse signals by the block

generalized orthogonal matching pursuit (BgOMP) algorithm in the l2-bounded noise case.

Under some restraints on the minimum magnitude of the nonzero elements of the strongly-

decaying block sparse signal, if the sensing matrix satisfies the the block restricted isometry

property (block-RIP), then arbitrary strongly-decaying block sparse signals can be accurately

and steadily reconstructed by the BgOMP algorithm in iterations. Furthermore, we conjec-

ture that this condition is sharp.
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1 Introduction

Compressive Sensing (CS), pioneered by Donoho and Candes, Romberg and Tao [1–4], is

an efficient data acquisition paradigm. The framework focuses on recovering unknown signals

from an undetermined system of linear equations

y = Φx + v. (1.1)

Here y ∈ Rm is a measurement vector, Φ ∈ Rm×n(m � n), is a sensing matrix, v ∈ Rm is a

l2-bounded noise vector (‖v‖2 ≤ ε, for any constant ε) and x is an original and K-sparse signal

that needs to be reconstructed. Compressed sensing is also known as compression sampling, and

is widely used in fields of radar systems [5], signal processing [6], communication [7], medical

imaging [8, 9], and so on.

There are various sparse reconstruction methods which have excellent reconstruction perfor-

mance. In order to analyze the reconstruction performance of sparse reconstruction algorithms,

an important and frequently used concept is the block restricted isometry property (block-RIP)

[10]. For arbitrary block K-sparse signals, the Φ has the block-RIP with a parameter δBK which

satisfies that

(1− δBK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δBK)‖x‖22, (1.2)
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where 0 < δBK < 1, and the smallest constant δBK is called the block restricted isometry

constant (block-RIC). The block-RIP is a special case of the restricted isometry property (RIP)

[11, 12].

The BgOMP algorithm first proposed in [13] is a natural extension of the block orthogonal

matching pursuit (BOMP) algorithm [14] for reconstructing sparse signals x from (1.1). In this

paper, we principally focus on reconstructing the σ-strongly-decaying block K-sparse signal x

by the BgOMP algorithm from (1.1). The BgOMP algorithm is also called the block orthogonal

multi-matching pursuit (BOMMP); it can be expressed as follows:

Algorithm 1 BgOMP algorithm

Input: measurement vector y, sparsity K, sensing matrix Φ, stopping rule.

Initialize: k = 0, r0 = y, Λ0 = ∅.

Iterate until the stopping criterion is met

Step 1: k = k + 1,

Step 2: Select N block subscripts {Γi}|N corresponding to N largest entries consisted in

{‖〈rk−1,Φ[j]〉‖2, j ∈ S = {1, 2, · · · , L}},

Step 3: Λk = Λk−1
⋃
{Γ1,Γ2 · · ·ΓN},

Step 4: x̂[Λk] = arg min
x:supp(x)=Λk

‖y −Φx‖2,

Step 5: rk = y −Φ[Λk]x̂[Λk],

Output: x̂ = arg min ‖y −Φx‖2, where supp(x) = Λk.

It is easy to see that if N = 1, the BgOMP algorithm degenerates to the BOMP algorithm.

Now we give a definition of the σ-strongly-decaying block K-sparse signal [15, 16]. For

x ∈ Rn,

x = [x1, x2, · · · , xd1︸ ︷︷ ︸
x[1]

, xd1+1, xd1+2, · · ·xd1+d2︸ ︷︷ ︸
x[2]

, · · · , xn−dL+1, · · · , xn]T︸ ︷︷ ︸
x[L]

,

where x[i] represents the i-th block of x, and di represents the block size for the homologous

block. Now we define the l2/l0-norm as

‖x‖2,0 =
K∑
i=1

I(‖x[i]‖2 > 0), (1.3)

where I(·) is an indicator function; that is,

I(‖x[i]‖2 > 0) =

1, ‖x[i]‖2 > 0,

0, ‖x[i]‖2 = 0.
(1.4)

If ‖x‖2,0 ≤ K, then x is block K-sparse. In this paper, we mainly investigate the reconstruction

of a block sparse signal with even block size, i.e., d1 = d2 = · · · = dL = d, so that

n = Ld,x[i] = (xd(i−1)+1, xd(i−1)+2, · · · , xdi)T .

If the block of x also satisfies that ‖x[i]‖2 ≥ σ‖x[i+ 1]‖2, 1 ≤ i ≤ K − 1, where σ > 1, then x

is a σ-strongly-decaying block K-sparse signal.
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When d = 1 and σ = 1, the block K-sparse signals degenerate into ordinary K-sparse sig-

nals. There are many examples of strongly-decaying signals, including communication signals,

ultrasonic detection, current propagation, etc.

In recent years, there have been a series of significant achievements for accurately and

steadily reconstructing block K-sparse signals x by the BgOMP algorithm. In [17], it was

proven that if Φ satisfies the block-RIP with δNK+1 <
1√
K
N +1

, then every ordinary block K-

sparse signal x can be accurately and steadily reconstructed by the BgOMP algorithm. In

[18], it was shown that δNK+1 <
1√
K
N +1

is a sharp sufficient condition. It was also shown that

δNK+1 <
1√
K
N +1

together with a condition on the minimum l2 norm of nonzero blocks of block

K-sparse signals is sufficient to ensure that the BgOMP algorithm selects at least one true

block index at each iteration until all true block indices are selected in the noisy case. In [19],

Chen and Ge found that δKN−N+1 +
√

K
N θKN−N+1 < 1 is a sufficient condition for the stable

reconstruction of block sparse signals using the BgOMP algorithm under l2 and l∞ bounded

noise environments.

Some papers are about reconstructing ordinary block K-sparse signals x by the Bgomp

algorithm. At present, there are few results about reconstructing the σ-strongly-decaying block

K-sparse signal x by the BgOMP algorithm. Consequently, in this paper, we show that the

condition with the block-RIC satisfying δNK+1 <
√

2
2 of order NK + 1 is sufficient to perfectly

recover any σ-strongly-decaying block K-sparse signals via the BgOMP algorithm in the l2 noisy

case. Moreover, we also conjecture that there exists a matrix Φ satisfying that δNK+1 =
√

2
2 ,

which makes the BgOMP algorithm fail in terms of reconstructing some σ-strongly-decaying

block K-sparse signals x.

The rest of this paper is organized as follows: In Section 2, we introduce some notations

and lemmas. In Section 3, we draw conclusions and present evidence. In Section 4, we give

some numerical simulation results.

2 Preliminaries

In what follows, we present some notations and useful lemmas that will be used throughout

the paper.

Notations We usually use R to represent the real field. Vectors are in boldface lowercase

letters, and matrices are in boldface uppercase letters, e.g., x ∈ Rn and Φ ∈ Rm×n. Let S be

the support of a vector x such that x[i], i ∈ S are nonzero vectors for a σ-strongly-decaying

block K-sparse signal x, so |S| ≤ K, where |S| stand for the cardinality of S. Λ is the index set

selected by the BgOMP algorithm iteration. Let S \ Λ = {i | i ∈ S, i 6∈ Λ} and |S ∩ Λ| = l. In

this paper, Λc with Sc stands for the complementarity of Λ and S, and Λc = {1, 2, 3, · · · , L}\Λ,

Sc = {1, 2, 3, · · · , L} \S as well. Let Φ[Λ] be a submatrix of Φ that only comprises the column

blocks indexed by the Λ. Similarly, x[Λ] is a subvector of Λ that only comprises the atom

blocks indexed by the S. For example, if Λ = {2, 3, 5}, then Φ[Λ] = [Φ[2],Φ[3],Φ[5]] and

x[Λ] = [x[2]T ,x[3]T ,x[5]T ]T . Let ΦT [Λ] be the transpose matrix of Φ[Λ], where Φ[Λ] is an

arbitrary full column rank matrix. Let P [Λ] = Φ[Λ](ΦT [Λ]Φ[Λ])−1ΦT [Λ] show the projector

and let P⊥[Λ] = I − P [Λ] denote the orthogonal complementary projection on the column

space of Φ[Λ]. Let I be a unit matrix and let the ei represent the i-th column of I.
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l2/lp-norm ([20, 21]) For any x ∈ Rn, we define the l2/lp-norm (where p = 1, 2,∞) as

‖x‖2,p = ‖ω‖p, (2.1)

where ω ∈ RL and ωi = ‖x[i]‖2, with any 1 ≤ i ≤ L. It is easy to see that ‖x‖2,2 = ‖x‖2. In

addition, if d = 1, then x[i] = xi. Thus, we have that ‖x‖2,p = ‖x‖p, with p = 1, 2,∞.

Lemma 2.1 ([22]) When K1 > K2, if the matrix Φ satisfies the block-RIP of orders K1

and K2, then δK1
> δK2

.

Lemma 2.2 ([23]) Let Φ satisfy the block-RIP of order K. Then, for any x ∈ Rm,

‖ΦT [Λ]x‖22 ≤ (1 + δK)‖x‖22.
Lemma 2.3 ([16]) Let S1, S2 satisfy |S2 \ S1| ≥ 1 and the block-RIP of order |S1 ∪ S2|.

Then, for any vector x ∈ R|S2\S1|×d, (1 − δ|S1∪S2|)‖x‖22 ≤ ‖P⊥[S1]Φ[S1 ∪ S2]x‖22 ≤ (1 +

δ|S1∪S2|)‖x‖22.

3 Main Results

In this section, we give a detailed description of the BgOMP algorithm to reconstruct the

σ-strongly-decaying block K-sparse signal.

Lemma 3.1 For y = Φx + v, let S be the support of the block K-sparse signal x,

Λ ⊂ {1, 2, · · · , L} and W ⊂ Sc, where |W | ≤ N , |Λ| = kN and 0 ≤ k ≤ |S ∩ Λk| = l ≤ |S| − 1.

Let

‖x[S \ Λ]‖22,1 ≤ ρ‖x[S \ Λ]‖22 (3.1)

for some ρ ≥ 1. Then

|Λ ∪ (S \ Λ) ∪W | ≤ NK + 1

and

‖ΦT [S \ Λ]q[Λ]‖2,∞ −
1

N

∑
j∈W
‖ΦT [j]q[Λ]‖2 ≥

(1−
√

ρ
N + 1δNK+1)‖x[S \ Λ]‖2√

ρ
, (3.2)

where

q[Λ] = P⊥[Λ]Φ[S \ Λ]x[S \ Λ]. (3.3)

The proof of this lemma is shown in Appendix.

Lemma 3.2 ([24]) For each 1 ≤ i ≤ K, define that

ϕi(t) =
(ti − 1)(t+ 1)

(ti + 1)(t− 1)
(t > 1). (3.4)

Then

1 = ϕ1(t) < ϕ2(t) < · · · < ϕK(t). (3.5)

Moreover, ϕi(t) is strictly monotonically decreasing with t and 1 < ϕi(t) < i for 2 < i < K.

By Lemma 3.2, if 1 < z < NK,ϕK(t) = z has a sole solution tz. To predigest the notation,

we let that

ϕ−1
K (z) =

tz, 1 < z < K,

1, z ≥ K.
(3.6)
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Lemma 3.3 ([16, 25]) Let σ > 1 and µ ≥ ν ≥ 1 give positive constants and give that

ϕ̂i(t1, t2, · · · , ti, µ, ν) =
(
∑i−1
j=1 tj + µti)

2∑i−1
j=1 t

2
j + νt2i

, (3.7)

where

t1 ≥ σt2 ≥ · · · ≥ σK−1tK > 0,
0∑
j=1

· = 0 (3.8)

for 1 ≤ i ≤ K, ϕ̂i increasing with ti and

ϕ̂i(t1, t2, · · · , ti, 1, 1) ≤ ϕi(σ), (3.9)

where function ϕi is defined as in Lemma 3.2.

Theorem 3.4 For y = Φx + v, suppose that v satisfies ‖v‖2 ≤ ε, and Φ satisfies the

block-RIP of order NK + 1 with

δNK+1 <

√
2

2
, (3.10)

assuming that x ∈ Rn is a block σ-strongly-decaying K-sparse signal with a satisfying

σ > ϕ−1
K (δ−2

NK+1 − 1). (3.11)

Then the BgOMP algorithm with the stopping criterion ‖rk‖2 ≤ ε selects at least one true

block index of block K-sparse signals x at each iteration until all true block indices are selected

if all the nonzero blocks x[i] satisfy

min
i∈S
‖x[i]‖2 >

2ε

1−
√

1 + min(s−2 − 1, |S|N )δNK+1

, (3.12)

where s satisfies that

δNK+1 < s <

√
2

2
, ϕ−1

K [(δ−2
NK+1 − 1)N ] < ϕ−1

K [(s−2 − 1)N ] ≤ σ. (3.13)

Thus, the reconstruct error can be bounded according to

‖x̂− x‖2 ≤
2ε√

1− δNK+1

. (3.14)

Proof First, if s−2 − 1 ≥ |S|N , then s ≤ 1√
|S|
N +1

. Then according to the assumption, we

have that δNK+1 < s ≤ 1√
|S|
N +1

. Thus, the BgOMP algorithm accurately reconstructs block

K-sparse signals in [18].

Second, if s−2 − 1 < |S|
N , then (s−2 − 1)N < |S|. By Lemma 3.2, we can easily find out

that ϕK(ϕ−1
K ((s−2 − 1)N)) = (s−2 − 1)N , and according to the characteristics of the block

σ-strongly-decaying K-sparse signal, we have that

‖(x[S \ Λk])[1]‖2 ≥ σ‖(x[S \ Λk])[2]‖2 ≥ σ2‖(x[S \ Λk])[3]‖2 ≥ · · ·

≥ σ|S\Λ
k|−1‖(x[S \ Λk])[S \ Λk]‖2.

Next, we obtain that

‖x[S \ Λk]‖22,1
‖x[S \ Λk]‖22

= ϕ̂K−l(‖(x[S \ Λk])[1]‖2, ‖(x[S \ Λk])[2]‖2, · · · , ‖(x[S \ Λk])[|S \ Λk|]‖2, 1, 1)
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≤ ϕK−l(σ) < ϕK−l(ϕ
−1
K ((s−2 − 1)N))

< ϕK(ϕ−1
K ((s−2 − 1)N)) = (s−2 − 1)N. (3.15)

By the Cauchy-Schwarz inequality, we also have that

‖x[S \ Λk]‖22,1 ≤ (|S| − l)‖x[S \ Λk]‖22. (3.16)

Combining (3.15) and (3.16)

‖x[S \ Λk]‖22,1 ≤ min {(s−2 − 1)N, |S| − l}‖x[S \ Λk]‖22. (3.17)

Let us define that g(t) = min((s−2 − 1)N, t). Thus, it is not hard to see that g(t) is a non-

decreasing function with t > 0, and by simple calculation, we have that 0 < g(t) ≤ t. Then,

letting g(|S \ Λk|) = min {(s−2 − 1)N, |S \ Λk|} gives that

‖x[S \ Λk]‖22,1 ≤ g(|S \ Λk|)‖x[S \ Λk]‖22. (3.18)

Let us give two definitions: αk+1
j denotes the j-th largest correlation between rk and

Φ[j], j ∈W , and βk+1
i denotes the i-th largest correlation between rk and Φ[S \Λk]. To prove

Theorem 3.1, let us first claim that βk+1
1 > αk+1

N .

On account of

βk+1
1 = ‖ΦT [S \ Λk]rk‖2,∞, (3.19)

αk+1
N = min

[∣∣〈Φ[j], rk〉
∣∣ , j ∈W ] ≤ 1

N

∑
j∈W
‖Φ[j]Trk‖2, (3.20)

it suffices to claim that

‖ΦT [S \ Λk]rk‖2,∞ >
1

N

∑
j∈W
‖Φ[j]Trk‖2. (3.21)

By the BgOMP algorithm, we have that

rk = y −Φ[Λk]x̂[Λk] = (I −Φ[Λk](ΦT [Λk]Φ[Λk])−1ΦT [Λk])y

= P⊥[Λk](Φx + v) = P⊥[Λk](Φ[S]x[S] + v)

= P⊥[Λk](Φ[S ∩ Λk]x[S ∩ Λk] + Φ[S \ Λk]x[S \ Λk] + v)

= P⊥[Λk]Φ[S \ Λk]x[S \ Λk] + P⊥[Λk]v, (3.22)

where substituting (3.22) into (3.19) and (3.20) gives that

‖ΦT [S \ Λk]rk‖2,∞ ≥ ‖ΦT [S \ Λk]P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2,∞
− ‖ΦT [S \ Λk]P⊥[Λk]v‖2,∞, (3.23)

and

1

N

∑
j∈W
‖Φ[j]Trk‖2 ≤

1

N

∑
j∈W
‖ΦT [j]P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2 +

1

N

∑
j∈W
‖ΦT [j]P⊥[Λk]v‖2

≤ 1

N

∑
j∈W
‖ΦT [j]P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2 + ‖ΦT [j]P⊥[Λk]v‖2,∞.

(3.24)

Thus, we just need to verify that

‖ΦT [S \ Λk]P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2,∞
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− 1

N

∑
j∈W
‖ΦT [j]P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2

> ‖ΦT [S \ Λk]P⊥[Λk]v‖2,∞ + ‖ΦT [W ]P⊥[Λk]v‖2,∞. (3.25)

According to the properties of g(t) above, we have that

‖x[S \ Λk]‖2 ≥
√
|S| − l min

i∈S\Λk
‖x[i]‖2

≥
√
|S| − lmin

i∈S
‖x[i]‖2 ≥

√
g(|S| − l) min

i∈S
‖x[i]‖2. (3.26)

Therefore, by Lemma 3.1, and through the simple calculation, the left-hand side of (3.25)

becomes

‖ΦT [S \ Λk]P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2,∞ −
1

N

∑
j∈W
‖ΦT [j]P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2

≥
(1−

√
g(|S|−l)

N + 1δNK+1)‖x[S \ Λk]‖2√
g(|S| − l)

(a)

≥
(1−

√
g(|S|)
N + 1δNK+1)‖x[S \ Λk]‖2√

g(|S| − l)
(b)

≥ (1−
√
g(|S|)
N

+ 1δNK+1) min
i∈S
‖x[i]‖2. (3.27)

Here (a) comes from the fact that g(t) is a nondecreasing function, and (b) follows from (3.26).

i0 ∈ S \ Λk and j0 ∈W ⊂ Sc can be used to get that

‖ΦT [S \ Λk]P⊥[Λk]v‖2,∞ = ‖ΦT [i0]P⊥[Λk]v‖2,

‖ΦT [W ]P⊥[Λk]v‖2,∞ = ‖ΦT [j0]P⊥[Λk]v‖2. (3.28)

Then, the left-hand side of (3.25) becomes

‖ΦT [S \ Λk]P⊥[Λk]v‖2,∞ + ‖ΦT [W ]P⊥[Λk]v‖2,∞
= ‖ΦT [i0]P⊥[Λk]v‖2 + ‖ΦT [j0]P⊥[Λk]v‖2

= ‖ΦT [i0 ∪ j0]P⊥[Λk]v‖2,1
(a)

≤
√

2‖ΦT [i0 ∪ j0]P⊥[Λk]v‖2
(b)

≤
√

2(1 + δNK+1)‖P⊥[Λk]v‖2
(c)

≤
√

2(1 + δNK+1)ε. (3.29)

Here the (a) and (b) are obtained from the Cauchy-Schwarz inequality and Lemma 2.2, respec-

tively. (c) follows from

‖P⊥[Λk]v‖2 ≤ ‖P⊥[Λk]‖2‖v‖2 ≤ ‖v‖2 ≤ ε.

By combining (3.27) and (3.29), we can find that (3.25) is guaranteed by

(1−
√
g(|S|)
N

+ 1δNK+1) min
i∈S
‖x[i]‖2 >

√
2(1 + δNK+1)ε. (3.30)

From s−2 − 1 < |S|
N , we can get that g(|S|) = (s−2 − 1)N < |S|. Then, it is easy to see that

1√
g(|S|)

N +1
= 1√

s−2
= s.

Based on this assumption, it can be concluded that

δNK+1 <
1√

g(|S|)
N + 1

<

√
2

2
,
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and thus that

min
i∈S
‖x[i]‖2 >

√
2(1 + δNK+1)ε

1−
√

g(|S|)
N + 1δNK+1

. (3.31)

Therefore, if (3.12) holds, the BgOMP algorithm has selected at least one correct block index

in the (k+1)-th iteration.

Next, it needs to be verified that the BgOMP algorithm selects all correct block indexes

under the stop criterion of ‖rk‖2 ≤ ε. This can be discussed in two situations.

When S\Λk = ∅, that is, after k iterations, all correct block indexes are selected. According

to formula (3.22), rk = P⊥[Λk]v, so that

‖rk‖2 = ‖P⊥[Λk]v‖2 ≤ ‖P⊥[Λk]‖2‖v‖2 ≤ ε (3.32)

When S \Λk 6= ∅, that is, after k iterations, there are some correct block indexes that have

not been selected. Similarly,

‖rk‖2 ≥ ‖P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2 − ‖P⊥[Λk]v‖2
≥ ‖P⊥[Λk]Φ[S \ Λk]x[S \ Λk]‖2 − ε

≥
√

1− δNK+1‖x[S \ Λk]‖2 − ε

>
√

1− δNK+1 min
i∈S
‖x[i]‖2 − ε > ε. (3.33)

Therefore, under the stop criterion, the BgOMP algorithm can stably reconstruct block σ-

strongly-decaying K-sparse signals.

With the fourth step of the BgOMP algorithm, we can get that

‖x− x̂‖2 ≤
1√

1− δNK+1

‖Φ(x− x̂)− y + y‖2

≤ 1√
1− δNK+1

‖Φx− y + y −Φx̂‖2

≤ 1√
1− δNK+1

(‖Φx− y‖2 + ‖y −Φx̂‖2)

≤ 1√
1− δNK+1

(‖v‖2 + ‖r‖2) ≤ 2ε√
1− δNK+1

.

Hence, we can verify that Theorem 3.1 is accurate. �

Remark 3.5 In the special case of N = 1, the conclusion of Theorem 3.1 will regress into

the BOMP algorithm [16]. If d = 1, this conclusion will degenerate into the relevant conclusions

of the gOMP algorithm.

Our results show that the BgOMP algorithm recovery of the σ-strongly-decaying block

K-sparse signal in the l2-bounded noise is guaranteed if δNK+1 <
√

2
2 . Inspired by the BOMP

algorithm, it is then natural to ask the question: is the block-RIP condition sharp?

Conjecture 3.6 For any given positive integers d ≥ 1, there is a σ-strongly-decaying

block K-sparse signal x and a matrix Φ satisfying that

δNK+1 =

√
2

2
(3.34)

such that the BgOMP algorithm fails to recover.
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Next, we will provide a special counterexample to further explain the aforementioned con-

jecture.

We set that N = 2,K = 4 and Φ(d) ∈ Rd(NK+1)×d(NK+1) for any positive integer d.

ΦT (d)Φ(d) =



1
2Id 0 0 − 1

6Id 0 · · · 0 − 1
6Id −

1
6Id

0 1
2Id 0 − 1

6Id 0 · · · 0 − 1
6Id −

1
6Id

0 0 1
2Id −

1
6Id 0 · · · 0 − 1

6Id −
1
6Id

− 1
6Id −

1
6Id −

1
6Id

3
2Id 0 · · · 0 0 0

0 · · · · · · 0 1
2Id 0 0 0 0

0 · · · · · · 0 0 1
2Id 0

...
...

0 · · · · · · 0 0 0 1
2Id 0 0

− 1
6Id −

1
6Id −

1
6Id 0 0 · · · 0 3

2Id 0

− 1
6Id −

1
6Id −

1
6Id 0 0 · · · 0 0 3

2Id



.

By a simple calculation, we get that

|ΦT (d)Φ(d)− λId(NK+1)| = (
1

2
− λ)4d(

3

2
− λ)3d(λ2 − 2λ+

1

2
)d.

Hence, it is clear that 1
2 , 3

2 , 1−
√

2
2 and 1 +

√
2

2 are eigenvalues of ΦT (d)Φ(d). Thus, we easily

claim that, for each x ∈ Rd(NK+1),

(1−
√

2

2
)‖x‖22 ≤ xTΦTΦx ≤ (1 +

√
2

2
)‖x‖22; (3.35)

i.e.,

(1−
√

2

2
)‖x‖22 ≤ ‖Φx‖22 ≤ (1 +

√
2

2
)‖x‖22.

It follows from the above inequality that we have that δNK+1 ≤
√

2
2 . Next, we let h ∈

Rd(NK+1) be the eigenvector of ΦT (1)Φ(1), corresponding to the eigenvalue 1 +
√

2
2 , and x ∈

Rd(NK+1) with x[i] = hie1 (e1 ∈ Rd be the first coordinate unit vector) for 1 ≤ i ≤ NK + 1.

Then we gain that

xTΦTΦx = hTΦ(1)Φ(1)h = (1 +

√
2

2
)‖h‖22 = (1 +

√
2

2
)‖x‖22. (3.36)

Therefore, Φ satisfies the block-RIP with δNK+1 =
√

2
2 .

Consider the σ-strongly-decaying block K-sparse signal

x(d) = (eT1 , σ
−1eT1 , σ

−2eT1 , σ
−3eT1 , 0, · · · 0)T ∈ Rd(NK+1);

i.e., S = supp(x) = {1, 2, 3, 4} and σ = 50
41 . For the first iteration, we have that

‖ΦT [i]r0‖2 = ‖ΦT [i]Φx‖2 =



0.4081, i = 1,

0.3181, i = 2,

0.2439, i = 3,

0.4117, i = 4,

0, i ∈ {K + 1, · · · , NK + 1−N},

0.4154, i ∈ {NK + 2−N,NK + 1}.

(3.37)
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Then it follows from the definitions of β1
1 and α1

N that β1
1 = 0.4117, α1

N = 0.4154 and

β1
1 < α1

N . This indicates that if N = 2,K = 4, then the BgOMP algorithm may fail to recover

the σ-strongly-decaying block K-sparse signal x. Thus, it is reasonable to conjecture that the

sufficient condition given in Theorem 3.1 may be sharp.

Due to the complexity of the BgOMP algorithm, the constructed matrix will be exception-

ally complex for general N , and this is what we are committed to achieving in the future.

4 Numerical Simulation

This section provides some numerical simulation results to visually analyze the performance

of the BgOMP algorithm.

Figure 1 Performance of BgOMP and BOMP algorithms recovering a σ-strongly-decaying block

K-sparse signal under the l2-bounded noise with d = 4,m = 80, n = 256, σ = 1.1.

Figure 2 Performance of BgOMP (N = 4) algorithm recovering a σ-strongly-decaying block

K-sparse signal under the l2-bounded noise with d = 4,m = 80, n = 256.
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Figure 1 shows that the BgOMP algorithm performs better in reconstructing a strongly-

decaying signal compared to the BOMP algorithm. The different values of N can lead to

differences in the performance of the BgOMP algorithm in recovering a strongly-decaying signal.

When the block sparsity is K > 4, the larger the N , the worse the reconstruction performance

of the BgOMP algorithm. Figure 2 shows that the greater the degree of strongly-decaying

signal, the better the recovery performance of the BgOMP algorithm. Therefore, the BgOMP

algorithm is better suited for recovering a high-dimensional strongly-decaying signal.
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Appendix Proof of Lemma 3.1

This proof includes two parts. In part one, we prove that

‖q[Λ]‖22 ≤
√
ρ‖x[S \ Λ]‖2‖ΦT [S \ Λ]P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖2,∞. (A.1)

In the second part, we prove that

‖q[Λ]‖22 −
√

ρ

N
‖x[S \ Λ]‖2

∑
j∈W
‖ΦT [j]q[Λ]‖2 ≥ (1−

√
ρ

N
+ 1δNK+1)‖x[S \ Λ]‖22. (A.2)

First of all, let us prove (A.1). According to the idempotent property of orthogonal opera-

tors,

(P⊥[Λ])TP⊥[Λ] = P⊥[Λ]P⊥[Λ] = P⊥[Λ].

For each i ∈ S \ Λ, it is easy to observe that

‖ΦT [S \ Λ]q[Λ]‖2,∞ ≥ ‖ΦT [i]q[Λ]‖2.

In what follows, we have that
√
ρ‖x[S \ Λ]‖2‖ΦT [S \ Λ]P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖2,∞

≥ ‖x[S \ Λ]‖2,1‖ΦT [S \ Λ]P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖2,∞

= (
∑

i∈[S\Λ]

‖x[i]‖2)‖ΦT [S \ Λ]P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖2,∞

≥
∑

i∈[S\Λ]

(‖x[i]‖2‖ΦT [i]P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖2)

≥
∑

i∈[S\Λ]

(‖xT [i]ΦT [i]P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖2)

=
∑

i∈[S\Λ]

(xT [i]ΦT [i](P⊥[Λ])TP⊥[Λ]Φ[S \ Λ]x[S \ Λ])

= ‖P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖22 = ‖q[Λ]‖22.

(A.3)

So far, the first part is fully verified. Then we define that

α = −
√

ρ
N + 1− 1√

ρ
N

,

so that
2α

1− α2
= −

√
ρ

N
,

1 + α2

1− α2
=

√
ρ

N
+ 1. (A.4)

To avoid complex notation, let us define e ∈ RNd as

e = (e11, e12, · · · , e1d, e21, · · · , e2d, · · · , eN1, eN2 · · · , eNd)T .
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According to the foregoing, W ⊂ Sc when 1 ≤ j ≤ N, 1 ≤ i ≤ d, so we have that

eij =
(ΦT [j])iP

⊥[Λ]Φ[S \ Λ]x[S \ Λ]

‖ΦT [j]P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖2
. (A.5)

Therefore, it is pretty obvious that

eT [j]ΦT [j]P⊥[Λ]Φ[S \ Λ]x[S \ Λ] = ‖ΦT [j]P⊥[Λ]Φ[S \ Λ]x[S \ Λ]‖2.

Expanding the above conclusions from local to global and combining them with (3.3), we

can further obtain that

eTΦT [W ]q[Λ] =
∑
j∈W
‖ΦT [j]q[Λ]‖2. (A.6)

Subsequently, we get that

B = P⊥[Λ] [Φ[S \ Λ] Φ[W ]] . (A.7)

u = [x[S \ Λ] 0]T ∈ R(|S\Λ|+N)d,

w = [0
α‖x[S \ Λ]‖2e√

N
]T ∈ R(|S\Λ|+N)d.

(A.8)

It is just a simple calculation to get that

Bu = P⊥[Λ]Φ[S \ Λ]x[S \ Λ] = q[Λ], (A.9)

‖u + w‖22 = (1 + α2)‖x[S \ Λ]‖22,

‖α2u−w‖22 = α2(1 + α2)‖x[S \ Λ]‖22.
(A.10)

In addition, we have that

wTBTBu
(a)
=

α‖x[S \ Λ]‖2eT√
N

ΦT [W ](P⊥[Λ])Tq[Λ]

=
α‖x[S \ Λ]‖2eT√

N
ΦT [W ]q[Λ]

=
α‖x[S \ Λ]‖2√

N

∑
j∈W
‖ΦT [j]q[Λ]‖2.

(A.11)

Here (a) comes from the operation of the l2-norm and inner product. Therefore, we have that

‖B(u + w)‖22 − ‖B(α2u−w)‖22
= (1− α4)‖Bu‖22 + 2(1 + α2)wTBTBu

= (1− α4)(‖Bu‖22 +
2

1− α2
wTBTBu)

= (1− α4)(‖Bu‖22 +
2α

1− α2

‖x[S \ Λ]‖2√
N

∑
j∈W
‖ΦT [j]q[Λ]‖2)

= (1− α4)(‖Bu‖22 −
√
ρ

N
‖x[S \ Λ]‖2

∑
j∈W
‖ΦT [j]q[Λ]‖2).

(A.12)

On the flip side,

‖B(u + w)‖22 − ‖B(α2u−w)‖22
(a)

≥ (1− δN(k+1)+|S|−l)‖u + w‖22 − (1 + δN(k+1)+|S|−l)‖α2u−w‖22
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(b)
= (1− δN(k+1)+|S|−l)(1 + α2)‖x[S \ Λ]‖22 − (1 + δN(k+1)+|S|−l)α

2(1 + α2)‖x[S \ Λ]‖22
= (1 + α2)‖x[S \ Λ]‖22[(1− δN(k+1)+|S|−l)− α2(1 + δN(k+1)+|S|−l)]

= (1− α4)‖x[S \ Λ]‖22(1− 1 + α2

1− α2
δN(k+1)+|S|−l)

(c)

≥ (1− α4)‖x[S \ Λ]‖22(1− 1 + α2

1− α2
δNK+1)

= (1− α4)‖x[S \ Λ]‖22(1−
√

ρ

N
+ 1δNK+1), (A.13)

where (a) follows from Lemma 2.3 and (b) and (c) are from (A.10) and the inequality

|Λ ∪ (S \ Λ) ∪W | ≤ Nk + |S| − l +N ≤ (N − 1)k + |S|+N

≤ (N − 1)(|S| − 1) + |S|+N = N |S|+ 1 ≤ NK + 1.

Then, by (A.9), (A.12), (A.13) and the fact that 1− α4 > 0, we get that

‖q[Λ]‖22 −
√
ρ

N
‖x[S \ Λ]‖2

∑
j∈W
‖ΦT [j]q[Λ]‖2 ≥ ‖x[S \ Λ]‖22(1−

√
ρ

N
+ 1δNK+1).

Next, the beginning of the expression is replaced with (A.3), so that

√
ρ‖x[S \ Λ]‖2‖ΦT [S \ Λ]q[Λ]‖2,∞ −

√
ρ

N
‖x[S \ Λ]‖2

∑
j∈W
‖ΦT [j]q[Λ]‖2

≥ ‖x[S \ Λ]‖22(1−
√

ρ

N
+ 1δNK+1).

Removing
√
ρ‖x[S \ Λ]‖2 from both sides of the inequality simultaneously, we have that

‖ΦT [S \ Λ]q[Λ]‖2,∞ −
1

N

∑
j∈W
‖ΦT [j]q[Λ]‖2 ≥

(1−
√

ρ
N + 1δNK+1)‖x[S \ Λ]‖2√

ρ
.

In summary, the narrative of Lemma 3.1 is accurate.


