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Abstract A cautious projection BFGS method is proposed for solving nonconvex uncon-

strained optimization problems. The global convergence of this method as well as a stronger

general convergence result can be proven without a gradient Lipschitz continuity assumption,

which is more in line with the actual problems than the existing modified BFGS methods

and the traditional BFGS method. Under some additional conditions, the method presented

has a superlinear convergence rate, which can be regarded as an extension and supplement of

BFGS-type methods with the projection technique. Finally, the effectiveness and application

prospects of the proposed method are verified by numerical experiments.
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1 Introduction

The problem we consider is as follows:

min{f(x) | x ∈ Rn}. (1.1)

Here f : Rn → R and is continuously differentiable (possibly nonconvex). The optimiza-

tion model of (1.1) has been widely used in many fields [1–5]. As one of the most effec-

tive quasi-Newton methods for solving (1.1), the popular Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method [6–9] updates Bj via

Bj+1 = Bj −
Bjsjs

T
j Bj

sTj Bjsj
+
yjy

T
j

sTj yj
, (1.2)
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where sj = xj+1−xj (xj is the value of x at iteration j), yj = gj+1−gj (gj = g(xj) = ∇f(xj) is

the gradient of f at xj), and Bj is the Hessian approximation at iteration j. Correspondingly,

the iterative formula requires steps

xj+1 = xj − αjHjgj , (1.3)

where Hj = B−1j and αj is the step-size, which is determined by weak Wolfe-Powell (WWP)

line search conditions

f(xj + αjdj)− f(xj) ≤ ζ1αjg(xj)
T dj , (1.4)

g(xj + αjdj)
T dj ≥ ζ2g(xj)

T dj , (1.5)

where 0 < ζ1 < ζ2 < 1. For convex problems, the global convergence of the BFGS method

is well established under some line search conditions [10–15]. Under inexact Wolfe line search

conditions Powell [16] proved that BFGS method has a superlinear convergence rate. To improve

the performance of the BFGS method, some modified BFGS methods and design skills have

been proposed [17–23]. However, for nonconvex problems, even under the Wolfe line search

conditions, the BFGS method may not converge [24]. The main reason for that may be the

following inequality cannot be deduced [10] that

‖yj‖2

sTj yj
≤M, (1.6)

where M is a positive constant. To overcome this difficulty, many scholars have proposed some

modified BFGS methods [25–38]. For example, there is the BFGS update rule modified by Li

and Fukushima [27] (called cautious BFGS),

Bj+1 =

Bj −
Bjsjs

T
j Bj

sTj Bjsj
+
yjy

T
j

yTj sj
, if

yTj sj

‖sj‖2
≥ ε‖gj‖α,

Bj , otherwise,

(1.7)

where ε > 0 and α > 0 are constants. In [25], for when a specific sufficient descent condition is

not satisfied, Yuan et al. proposed a projection iteration approach:

xj+1 = xj +
γ‖Xj − xj‖2 + (Xj − xj)T g(Xj)

‖g(Xj)− g(xj)‖2
[g(Xj)− g(xj)]. (1.8)

Here Xj = xj + αjdj , dj = −Hjgj is the search direction and γ is a positive constant; oth-

erwise, (1.3) proceeds as usual. The reason that (1.8) is called a projection is that when the

special sufficient descent condition is not satisfied, the current point xj is projected onto the

paraboloid γ‖Xj − x‖2 + (Wj − x)T g(Wj) and then through the appropriate transformation to

obtain the formula (1.8) (this treatment makes the convergence analysis possible). Combined

with a modified weak-Wolfe-Powell line search [29], this method can also converge globally for

nonconvex problems. All of the methods above, as well as the classical methods, require the

assumption of gradient Lipschitz continuity (even stronger gradient assumptions are required

for the projection iteration method [25]: ‖g(x) − g(y)‖ = O(‖x − y‖), x, y ∈ Rn). However,

this assumption is not entirely reasonable for the general problems. For example, the functions

f1(x) = lnx and f2(x) = x
1
2 , x ∈ Rn do not satisfy the gradient Lipschitz continuity condition

in the neighborhood of zero. In addition, these methods show that the sequence {xj} can only

converge to some accumulation point rather than a unique stationary point.
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Our Contributions The contributions of this paper are as follows:

? A new cautious BFGS method combined with projection technique is proposed to solve

(1.1).

? The presented algorithm converges globally for general problems without a gradient Lip-

schitz continuity condition.

? It is also demonstrated that the presented algorithm with a projection technique has a

superlinear convergence rate, which is an extension and supplement to the existing projection

BFGS methods [25, 28].

? A stronger general convergence result is demonstrated, which shows that under some

assumptions, the sequence {xj} generated by BFGS-type methods can converge to a unique

stationary point of f .

? The performance of numerical experiments suggests that the algorithm has strong com-

petitiveness and research prospects.

2 Motivation and Background of the Algorithm

The idea given by Yuan et al. [25] is relative to the descent condition −dTj gj > ραj‖dj‖2,

where the process (1.8) will be carried out when the condition is not satisfied; otherwise,

iteration will proceed normally. This technique can ensure that the presented algorithm is

globally convergent for non-convex functions if the following assumptions are satisfied: ‖g(x)−
g(y)‖ = O(‖x − y‖), x, y ∈ Rn. In our opinion, nonconvex unconstrained optimization is an

interesting problem, and it is valuable to study this method. However, there are two questions

that deserve our attention: 1) is it possible to weaken or even remove the above assumption to

achieve the global convergence? 2) how can we ensure the global convergence if the assumption

is removed? Motivated by the above section, we know that the idea of the cautious BFGS

method (1.7) may be used to satisfy some special conditions, so it is not difficult for us to use

this sufficiently and to answer the above two questions. We fully expect the designed algorithm

to satisfy the inequality (1.6), and we will further discuss the convergence rate of the projection

algorithm. Thus a cautious projection BFGS method is designed. For the sake of simplicity, a

special sufficient descent set is defined by

SDj := {xj |dTj gj ≤ −ραj‖dj‖2‖gj‖α, j ≥ 0}, (2.1)

and an index set by

τj := {j|‖αjdj‖‖gj‖α ≤ ‖yj‖ ≤M ′‖αjdj‖}, (2.2)

where M ′ = O(‖g(xj)‖−α) (which can be taken as a large parameter), ρ > 0, and α is a

positive tuning parameter. The setting of these two sets is indispensable for discussing the

global convergence and convergence rate of the proposed algorithm. As for the case xj /∈ SDj ,

xj does not meet the sufficient descent condition. We hope to achieve the same effect by

projection, so an adaptive surface needs to be introduced:

{x ∈ Rn|µ(x)‖Xj − x‖2 + g(x)T (Xj − x) = 0}. (2.3)

Here Xj = xj + αjdj , µ(x) = µ‖g(x)‖α is an adaptive term and µ > ρ is a given positive

constant. It is worth noting that the global convergence of the proposed algorithm can still be
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proven when α = 0, according to the difference of α, the performance of the proposed algorithm

will also be different, this will be shown in the numerical results section later.

The iterative process is now discussed briefly. Considering that the current point xj and

assuming the step-size αj and the search direction dj have been obtained, the generation of the

next point xj+1 will take the following steps:

Case (i) j ∈ SDj . xj+1 = Xj = xj + αjdj proceeds as usual.

Case (ii) j /∈ SDj . Project the current point xj onto the surface (2.3) to get Pj , and the

next iteration xj+1 is defined as

xj+1 = xj +
Pj

‖g(Xj)− g(xj)‖2
[g(Xj)− g(xj)], (2.4)

where

Pj = µj‖Xj − xj‖2 + (Xj − xj)T g(xj), and µj = µ‖g(xj)‖α. (2.5)

Finally we adopt an iterative approach similar to (1.7) to update Bj , which completes a brief

iteration. More specifically, the complete process of a cautious projection BFGS algorithm is

shown in Algorithm 1.

Algorithm 1 Cautious Projection BFGS algorithm (CPBFGS)

Initialization Choose an initial point x0 ∈ Rn, an initial symmetric and positive definite

matrix B0 ∈ Rn×n, the necessary parameters ρ ∈ (0,+∞), µ ∈ (ρ,+∞), ζ1 ∈ (0, 12 ), ζ2 ∈ (ζ1, 1)

and ε ∈ (0, 12 ), and a tuning parameter α ∈ (0,+∞). Set that j := 0. Compute that ‖gj‖ =

∇f(xj).

While ‖gj‖ ≥ ε do

1. Compute the direction dj by solving the linear equation

Bjdj + gj = 0. (2.6)

2. Find a step-size αj > 0 satisfying the WWP line search conditions (1.4) and (1.5).

3. Set that Xj := xj + αjdj and yj := g(Xj)− g(xj).

4. If xj ∈ SDj , set that xj+1 := Xj and sj := xj+1 − xj , then go to step 6.

5. Otherwise xj /∈ SDj . Determine the next iteration point xj+1 generated by the projec-

tion technique (2.4) and set that sj := xj+1 − xj .
6. Define τj by (2.2) and update Bj+1 by the cautious BFGS formula

Bj+1 =

Bj −
Bjsjs

T
j Bj

sTj Bjsj
+
yjy

T
j

yTj sj
, if j ∈ τj ,

Bj , otherwise .

(2.7)

7. Set that j := j + 1.

End while

3 Global Convergence of CPBFGS

In this section, we discuss the global convergence of the CPBFGS method and its conver-

gence rate under the weakened assumptions. We assume that f satisfies the following conditions:
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Assumption 3.1 The level set S0 = {x ∈ Rn|f(x) ≤ f(x0)} is bounded, and f(x) is

bounded below.

Assumption 3.2 The gradient function g(x) = ∇f(x) is continuous, and ‖g(x)‖ is

bounded above on S0; namely, there is a positive constant G0 > 0 satisfying that

‖g(x)‖ ≤ G0, ∀x ∈ S0. (3.1)

Remark 1 Note that the existing modified BFGS methods [25–28] need for the gradient

function to be Lipschitz continuous (projection algorithms require stronger one [25]).

Assumption 3.3 When j /∈ SDj , there will always be at least one step-size αj that

satisfies the condition that

f(xj+1)− f(xj) ≤ ζ1αjg(xj)
T dj . (3.2)

Lemma 3.4 Suppose that Assumptions 3.1–3.2 hold and that {xj} is generated by Al-

gorithm 1. Then the following inequality holds that

sTj yj ≥ λ‖αjdj‖2‖gj‖α, ∀j ≥ 0, (3.3)

where λ > 0 is a constant.

Proof The proof can be divided into two cases.

Case (i) xj ∈ SDj . From step 4 of Algorithm 1, we can easily obtain that

sTj yj = sTj [g(Xj)− g(xj)]

= sTj [g(xj+1)− g(xj)]

≥ −(1− ζ2)g(xj)
T sj

= αj(1− ζ2)(−gTj dj)

≥ (1− ζ2)ρ‖αjdj‖2‖gj‖α,

where the first and the last inequality follow the second WWP line search condition (1.5) and

the definition of the sufficient descent set SDj , respectively.

Case (ii) xj /∈ SDj . According to step 5 of Algorithm 1 and the definition of Pj , we can

derive that

sTj yj =
Pj

‖g(Xj)− g(xj)‖2
[g(Xj)− g(xj)]

T [g(Xj)− g(xj)]

= g(xj)
T (Xj − xj) + µj‖Xj − xj‖2

= αjg(xj)
T dj + µj‖αjdj‖2

> αj(−ραj‖dj‖2‖gj‖α) + µ‖gj‖α‖αjdj‖2

= (µ− ρ)‖αjdj‖2‖gj‖α,

where the inequality can be deduced from the definition xj /∈ SDj . Let λ := max{1−ζ2, µ−ρ},
the proof is complete. �

Remark 2 By this Lemma, we have that sTj yj > 0 which means that Bj is positive

definite for all j in Algorithm 1.

The following useful conclusion needs to be cited (Theorem 2.1 in [12]):
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Lemma 3.5 Suppose that Assumptions 3.1–3.2 hold and that {xj} is generated by Al-

gorithm 1. If there are positive constants m1 ≤ m2 such that

yTj sj

‖sj‖2
≥ m1 and

‖yj‖2

yTj sj
≤ m2, ∀j ≥ 0 (3.4)

hold, then there exist constants M1 >M2 > 0,M3 > 0 such that, for any integer t > 0,

‖Bjsj‖ ≤M1‖sj‖ (3.5)

and

M2‖sj‖2 ≤ sTj Bjsj ≤M3‖sj‖2 (3.6)

hold for at least dt/2e values of j ∈ {1, · · · , t}.
Now we analyze the global convergence of the CPBFGS method.

Theorem 3.6 Suppose that Assumptions 3.1–3.2 hold and that {xj} is generated by

Algorithm 1. Then the CPBFGS converges globally, i.e., we have that

lim inf
j→+∞

‖gj‖ = 0. (3.7)

Proof We use the method of contradiction. Without loss of generality, there must be a

positive constant ε such that

‖gj‖ ≥ ε, ∀j. (3.8)

According to the definition of M in (2.2) and the inequality (3.1), there are positive constants,

a1 and a2, satisfying that a1 ≤M ≤ a2.

First, when τj is infinite, for all j ∈ τj , we consider the following two cases:

Case (i) xj ∈ SDj . We can easily conclude the following inequalities from Lemma 3.4

and the definition of τj :

sTj yj

‖sj‖2
=

sTj yj

‖αjdj‖2
≥ λ‖gj‖α ≥ λεα (3.9)

and
‖yj‖2

yTj sj
≤ M ′2‖αjdj‖2

λ‖αjdj‖2‖gj‖α
≤ M ′2

λεα
. (3.10)

Case (ii) xj /∈ SDj , then 0 ≤ −gTj dj < ραj‖dj‖2‖gj‖α. By the definition of sj and τj ,

we have that

‖sj‖ = ‖ Pj
‖g(Xj)− g(xj)‖2

[g(Xj)− g(xj)]‖

=
‖Pj‖

‖g(xj + αjdj)− g(xj)‖

≤ ‖Pj‖
‖αjdj‖‖gj‖α

≤
µj‖αjdj‖2 + αj |gTj dj |

‖αjdj‖εα

≤ µ‖αjdj‖2‖gj‖α + ρ‖αjdj‖2‖gj‖α

‖αjdj‖εα

≤ (µ+ ρ)Gα0
εα

‖αjdj‖,
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where the second inequality is derived from the Cauchy inequality, and the last inequality can

be obtained by (3.1). From Lemma 3.4 and the definition of τj , we have that

sTj yj

‖sj‖2
≥ λ‖αjdj‖2‖gj‖α

(
(µ+ρ)Gα0

εα )2‖αjdj‖2
≥ λε3α

((µ+ ρ)Gα0 )2
(3.11)

and
‖yj‖2

yTj sj
≤ M ′2‖αjdj‖2

λ‖αjdj‖2‖gj‖α
≤ M ′2

λεα
. (3.12)

Overall, for all j ∈ τj and both cases, there are positive constants λ1 and λ2 such that

yTj sj

‖sj‖2
≥ λ1 and

‖yj‖2

yTj sj
≤ λ2, (3.13)

where λ1 = max{λεα, λε3α

((µ+ρ)Gα0 )2 } and λ2 = M ′2

λεα . Without loss of generality, having m1 = λ1

and m2 = λ2, according to Lemma 3.5, we immediately get (3.5) and (3.6). Under Assumption

3.1 and 3.3, summing both sides of (1.4) from j = 0 to +∞ yields that

+∞∑
j=0

−ζ1αjg(xj)
T dj < +∞, (3.14)

which implies that

−αjgTj dj → 0, as j → +∞. (3.15)

Then, define that A = lim sup
j→+∞

αj . When A > 0, there exist a subsequence {αjl} of sequence

{αj} and a positive constant a such that αjl > a, as l → +∞. From (3.15), we can infer that

−gTjldjl → 0, as l→ +∞. By (3.6), we have that

M2‖djl‖2 ≤ dTjlBjldjl = −gTjldjl → 0, as l→ +∞, (3.16)

so ‖djl‖ → 0, which further yields that

‖gjl‖ = ‖Bjldjl‖ ≤M1‖djl‖ → 0, as l→ +∞, (3.17)

where the inequality follows (3.5), which contradicts (3.8). When A = 0, lim
j→+∞

αj = 0. Note

that, from (3.6), we obtain that

M2‖dj‖2 ≤ dTj Bjdj = −gTj dj ≤ ‖gj‖‖dj‖ ≤ G0‖dj‖, (3.18)

which means that ‖dj‖ is bounded, and further yields that αjdj → 0, as j → +∞. Then

ραj‖dj‖2‖gj‖α ≤ M2‖dj‖2 ≤ −gTj dj is always true when j → +∞, which also means that

the sufficient descent condition (2.1) is automatically satisfied, i.e., iteration xj+1 = xj + αjdj

always holds. Due to the fact that level set is bounded, there must be a subsequence {xjk} of

{xj} that converges to some accumulation point x∗, as k → +∞. By the continuity of g(x), we

have that

‖g(xjk)− g(x∗)‖ → 0, as k → +∞. (3.19)

From (3.6) and the WWP condition (1.5), it can be deduced that

(1− ζ2)M2‖djk‖2 ≤ (1− ζ2)dTjkBjkdjk

= −(1− ζ2)g(xjk)T djk

≤ (g(xjk+1)− g(xjk))T djk
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≤ ‖g(xjk+1)− g(xjk)‖‖djk‖

≤ (‖g(xjk)− g(x∗)‖+ ‖g(xjk+1)− g(x∗)‖)‖djk‖,

which combined with (3.19), gives that ‖djk‖ → 0 as k → +∞. Using (3.6), we can derive the

same contradiction as (3.17). The proof of the first part is complete.

Second, when τj is finite, after a finite number of iterations, Bj is not updated (i.e. Bj

is uniformly positive definite for all j > 0). Therefore, for infinitely many j > 0, there exist

constants M1,M2 and M3 > 0 such that (3.5) and (3.6) hold. Thus we can easily complete the

proof of this part with the same steps. �

In the next theorem we analyze the convergence rate of the CPBFGS method under addi-

tional assumptions.

Assumption 3.7 1) f(x) is twice continuously differentiable.

2) {xj} converges to an isolated accumulation point x∗ at which g(x∗) = 0.

3) The Hessian matrix G(x) of f(x) is Hölder continuous and is positive definite at x∗.

Theorem 3.8 Supposing that Assumptions 3.1–3.3 and 3.7 hold, {αj} satisfies the strong

Wolfe condition, and {xj} is generated by Algorithm 1. When j is large enough, the convergence

rate of the CPBFGS method is superlinear.

Proof The strong Wolfe condition means that (1.5) is replaced by

|g(xj + αjdj)
T dj | ≤ −ζ2g(xj)

T dj . (3.20)

Due to the mean-value theorem and Assumption 3.7, we can deduce that when j is large enough,

yj =
∫ 1

0
G(xj + rαjdj)αjdjdr holds, which further yields that there is a positive constant m

such that

yTj (αjdj) ≥ m‖αjdj‖2, (3.21)

i.e., (g(xj + αjdj)− gj)T dj ≥ mαj‖dj‖2. By combining with (3.20) we get that

−(ζ2 + 1)dTj gj ≥ dTj (g(xj + αjdj)− gj) ≥ mαj‖dj‖2 ≥ (ζ2 + 1)ραj‖dj‖2‖gj‖α, (3.22)

which means that when j is large enough, xj ∈ SDj is always satisfied. Therefore, we only need

to consider xj ∈ SDj , where sj = xj+1 − xj = αjdj . Since the matrices {
∫ 1

0
G(xj + rαjdj)dr}

are uniformly positive definite, we can know that there are obviously positive constants m1 and

m2 such that

‖yj‖ ≤ m1‖sj‖ and yTj sj ≥ m2‖sj‖2, (3.23)

which further yields that

‖yj‖ ≥ m2‖sj‖, (3.24)

by the Cauchy inequality. Thus, the inequality m2‖sj‖ ≤ ‖yj‖ ≤ m1‖sj‖ implies that, when j

is large enough, ‖αjdj‖‖gj‖α ≤ ‖yj‖ ≤ M ′‖αjdj‖ always holds (parameter M ′ = O(‖gj‖−α)),

which means that j∈ τj is always satisfied. From the above derivation, the CPBFGS method

reduces to the ordinary BFGS method, and the superlinear convergence of Algorithm 1 has

been established (see, [12, 26, 27]). �

So far, we have completed the convergence analysis. Next, under some assumptions, we

will prove a general but stronger convergence result.
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Theorem 3.9 Assuming that the same assumptions as in Theorem 3.6 hold, g(x) is

uniformly continuous and M1 ≺ Hj ≺ M2 for all j > 0 (this means that Hj − M1I and

M2I −Hj are positive definite matrixes), where Hj = B−1j , M1 and M2 > 0. Then

lim
j→+∞

‖gj‖ = 0. (3.25)

Proof For any given ε > 0, according to (3.7), there exist infinitely many iterates xj

such that ‖g(xj)‖ < ε. We suppose that (3.25) is not true. Then there must be two infinite

subsequences, {xmk} and {xnk}, with mk < nk, for k = 1, 2, · · · , which satisfies the following

inequalities:

‖g(xmk)‖ ≥ 2ε, ‖g(xnk)‖ < ε, ‖g(xj)‖ ≥ ε, j = mk + 1, · · · , nk − 1. (3.26)

Then, from (1.4), the lower boundedness of f and M1 ≺ Hj ≺M2 for all j, it follows that

+∞ > −
+∞∑
j=1

αjg
T
j dj =

+∞∑
j=1

αjg
T
j Hjgj ≥

+∞∑
k=1

nk−1∑
j=mk

αjg
T
j Hjgj

≥
+∞∑
k=1

nk−1∑
j=mk

M1αj‖gj‖2 ≥M1ε
2
+∞∑
k=1

nk−1∑
j=mk

αj , (3.27)

which, together with αj ≥ 0, yields that

lim
k→+∞

nk−1∑
j=mk

αj = 0. (3.28)

According to (1.3), we have that

‖xj+1 − xj‖ = ‖ajHjgj‖ ≤ αj‖Hj‖‖gj‖ ≤ αjM∗, (3.29)

where M∗ =M2G0. Then it follows from (3.29) that

‖xnk − xmk‖ ≤
nk−1∑
j=mk

‖xj+1 − xj‖ ≤M∗
nk−1∑
j=mk

αj , (3.30)

which, together with (3.28), implies that lim
k→+∞

‖xnk − xmk‖ = 0. Therefore, combined with

the uniform continuity of g(x), it follows that lim
k→+∞

‖g(xnk)− g(xmk)‖ = 0, which contradicts

(3.26). �

Using Theorem 3.9 and considering the second part of the proof of Theorem 3.6, when τj

is finite, we will get a better conclusion: lim
j→+∞

‖gj‖ = 0.

4 Numerical Results

4.1 Test of Unconstrained Optimization Problems

In this subsection, some numerical experiments of Algorithm 1 are reported. We show the

total test results for 63 unconstrained optimization problems [30–32] on MATLAB R2019a.

Dimension The dimensions of the tested problems we consider are 300,1200, and 2100.

PC Requirements Windows 10 operating system with an Intel (R) Core (TM) i7-

6700HQ CPU at 2.60GHz (8 CPUs), 2.6GHz, 8066MB of RAM.
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The tested algorithms CBFGS [27] (with α = 1), PBFGS1 [25], PBFGS2 [28], CPBFGS1

(with ρ = 5, µ = 6, M = ‖gj‖α and α = 0.1 (if ‖gj‖ > 1), 1 (else ‖gj‖ ≤ 1)) and CPBFGS2

(with ρ = 13, µ = 15, M = 1000 and α = 0).

Parameters Setting B0 = I, ζ1 = 0.2, ζ2 = 0.85 and ε = 10−6.

Stopping Rule The Himmelblau stop rule is used: if |f(xj)| > ε1 holds, let H =
|f(xj)−f(xj+1)|

|f(xj)| ; otherwise, let H = |f(xj) − f(xj+1)|. If ‖g(x)‖ < ε (or H < ε2) is true,

or the total number of iteration loops exceeds one thousand, the program terminates, where

ε1 = ε2 = 10−5.

Other Settings Only when the number of WWP line search is guaranteed to be greater

than ten will the step size αj be selected. The notations used are ni: the total number of

algorithm iterations; nfg: the total number of function and gradient computations; cpu time:

the CPU time of the iterative process in seconds.

The performance profiles of tested algorithms are analyzed by the tool provided by Dolan

and Morè [33], and the Figures 1–3 show the performance results regarding ni, nfg and cpu time

respectively. The performance profile was first used to compare the efficiency in [39]. According

to Figures 1–3, there is no difficulty in concluding that CPBFGS1 exhibits the best performance

among the five algorithms for nfg and cpu time, while CPBFGS2 performs best for ni. In other

words, the algorithms with a projection technique have better performance and robustness for

ni and nfg but get lost for cpu time when compared with those without a projection technique.

It can be inferred from all of the above that CPBFGS overcomes the shortcomings of the

projection algorithms and CBFGS, and that it is competitive and promising.

In addition, to show the rationality of the proposed algorithm, we also report in Table 1 the

percentage of projection iterations (2.4) in the total iterations and the number of Bj updates

as a percentage of the total iterations.

Table 1 Projection iteration percentage and Bj update iteration percentage

Algorithm Projection iteration percentage Bj update iteration percentage

CBFGS1 9.8% 2.3%

CBFGS2 19.3% 69.1%
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Figure 3 Performance profiles of the algorithms for cpu time

5 Conclusions

In this paper, a cautious projection BFGS method has been proposed for solving nonconvex

unconstrained problems. We showed that CPBFGS with a WWP line search can converge

globally without a gradient Lipschitz continuity assumption, and that it also has a superlinear

convergence rate; this is a significant extension of projection-class methods and modified BFGS

methods. In addition, a stronger convergence result has been given. This method not only has

superior theoretical properties, but also shows good competitiveness and promising behavior in

terms of numerical experiments.
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